Calibration Analysis of the Maxar (Digital Globe) Constellation

PI: Alexei Lyapustin, NASA GSFC
Y. Wang (UMBC), M. Choi (UMBC)
J. C. Tucker (NASA GSFC)

Lunch & Learn, NASA GSFC
June 2, 2022
MODIS Calibration Over CEOS Desert Sites

Method:
1) Perform MAIAC retrievals (CM, AOT, WV, BRDF etc.);
2) Compute TOA reflectance \(R_n \) for a fixed view geometry (VZA=0°, SZA=30°) and evaluate trends in both Terra and Aqua;
3) Apply de-trending and compute Terra-Aqua X-calibration factor (gain correction for Terra)

(Lyapustin et al., AMT, 2014)

BRDF normalization reduces variability by a factor of ~3-5!

Normalized \(R_n \)

Original \(R_n \)

Lyapustin et al., 2012, RSE

Developed calibration has been a standard part of MODIS Land Discipline Processing in C6 and C6.1.
Maxar Calibration Trend Characterization

- Use Libya4 CEOS cal-val site; follow general methodology developed for MODIS:

- Problems
 - High resolution images are acquired for variable view geometry (SZA~10-54°, VZA~0-37°);
 - Due to small frame size (17km), low spatial overlap among VHR images;

- Solution (100×100km² total area, each point is 5×5km² average):
 - Use MAIAC MODIS ancillary data (aerosol, column water vapor, spectral BRDF @ 1km resolution) to perform atmospheric correction of high resolution images;
 - Normalization to the common view geometry (nadir view, SZA=30°);
 - “Spatial transfer” to the common reference calibration point;
WV2 Calibration Trend Analysis

Final Result: Normalized (Blue). A direct (un-normalized) approach produces large errors.
RSR: Spectral Conversion Factor

- DESIS - DLR Earth Sensing Imaging Spectrometer, on ISS since 2018 (400-1000 nm, spectral sampling at 2.55 nm and res. of 3.5 nm; 30m spatial resolution and ~30 km swath).
- By our request, 97 DESIS measurement granules were collected over Libya-4 during 2018–2021.

• Spectral convolution of surface reflectance
 \[\rho_{\text{simulated}} = \frac{\sum E_i R_i \Delta \lambda}{\sum E_i R_i \Delta \lambda} \]
 \(E_i \): solar irradiance
 \(R_i \): DESIS surface reflectance with high spectral resolution

• BRDF normalization factor
 \[c(\lambda) = \frac{\text{BRF from fixed view geometry}}{\text{BRF from various DESIS view geometries}} \]
 \(\text{BRF from MODIS MAIAC} \)
 \(\rho_{\text{simulated}}(\lambda) = \rho_{\text{simulated}}(\lambda) \cdot c(\lambda) \)

• Spectral conversion factor (SCF)
 \[\text{SCF} = \frac{\rho_{\text{simulated (DG sensors)}}}{\rho_{\text{simulated (MODIS/Aqua)}}} \]
Cross-Calibration of De-trended DG to Aqua

- Using MAIAC MODIS ancillary data (CM, aerosol, column water vapor @ 1km) perform AC of de-trended DG;

- Perform normalization to the common view geometry (nadir, SZA=20°) and “spatial transfer” to the common reference calibration (5x5km²) point;

- Apply Spectral Conversion Factor (effectively brings DG reflectance to the reference Aqua band) → $\rho^{*\text{DG}}$. Compute scale to MODIS Aqua BRDF, $\alpha=\rho^{*\text{DG}}/\text{BRDF}_n$;

- Using scaled BRDF, $\text{RTLS}^{*\text{DG}}=\alpha\text{RTLS}$, compute $\text{TOA}^{*\text{DG}}$ at normalized geometry (for reference Aqua band). Compute X-cal:

$$\frac{\text{TOA}^{*\text{DG}}}{\text{TOA}_{\text{Aqua}}}$$

Example for GeoEye

TOAₙ Aqua
TOAₙ GeoEye
TOAₙ GeoEye at Aqua band
De-Trending & X-Calibration Coefficients (DG/Aqua)

De-trending

<table>
<thead>
<tr>
<th>Satellite</th>
<th>Bands</th>
<th>Trend/Year/Unit Refl. (MODIS CS)</th>
<th>Trend/Year/Unit Surface Reflectance (reference spot)</th>
<th>Statistically Significant</th>
</tr>
</thead>
<tbody>
<tr>
<td>World View II</td>
<td>Blue</td>
<td>-1.39E-03</td>
<td>-8.90E-04</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>2.38E-03</td>
<td>-5.70E-04</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>2.89E-03</td>
<td>-1.70E-03</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>NIR</td>
<td>1.88E-03</td>
<td>7.80E-04</td>
<td></td>
</tr>
<tr>
<td>World View III</td>
<td>Blue</td>
<td>-9.29E-04</td>
<td>-8.90E-04</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>-2.84E-03</td>
<td>-5.70E-04</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>-1.69E-03</td>
<td>-1.70E-03</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>NIR</td>
<td>-1.24E-03</td>
<td>7.80E-04</td>
<td></td>
</tr>
<tr>
<td>GeoEye I</td>
<td>Blue</td>
<td>-2.48E-03</td>
<td>-8.90E-04</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>-1.85E-03</td>
<td>-5.70E-04</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>2.21E-04</td>
<td>-1.70E-03</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>NIR</td>
<td>-2.25E-03</td>
<td>7.80E-04</td>
<td>Y</td>
</tr>
<tr>
<td>QuickBird II</td>
<td>Blue</td>
<td>3.54E-03</td>
<td>-8.90E-04</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>3.51E-03</td>
<td>-5.70E-04</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>2.63E-03</td>
<td>-1.70E-03</td>
<td>Y</td>
</tr>
<tr>
<td></td>
<td>NIR</td>
<td>9.23E-05</td>
<td>7.80E-04</td>
<td>N</td>
</tr>
</tbody>
</table>

Cross-Calibration

<table>
<thead>
<tr>
<th>Band</th>
<th>GeoEye</th>
<th>QuickBird</th>
<th>WV02</th>
<th>WV03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>1.0350</td>
<td>1.0194</td>
<td>1.0156</td>
<td>0.9956</td>
</tr>
<tr>
<td>Green</td>
<td>1.0290</td>
<td>1.1180</td>
<td>1.0343</td>
<td>1.0424</td>
</tr>
<tr>
<td>Red</td>
<td>1.0838</td>
<td>1.0959</td>
<td>1.0689</td>
<td>1.0799</td>
</tr>
<tr>
<td>NIR</td>
<td>1.0267</td>
<td>1.0670</td>
<td>1.0189</td>
<td>1.0321</td>
</tr>
</tbody>
</table>

Summary

1. Results for QuickBird are not reliable (low stats)
2. DG sensors are within ~2-3% of each other
3. DG are systematically higher than Aqua:
 - Blue: 0-3.5% (0-1.6%)
 - Green: 2.9-4.2% (3.4-4.2%)
 - Red: 6.9-8.4% (6.9-8%)
 - NIR: 1.9-3.2% (1.9-3.2%)

Acknowledgements:

This work utilized data made available through the NASA Commercial Smallsat Data Acquisition (CSDA) Program. This work was funded through the NASA Commercial Smallsat Data Acquisition (CSDA) Program (manager A. Hall).
Atmospheric Correction of VHR Data

1. Quality of MAIAC MODIS Ancillary Data:
 - **CM**: MAIAC C6 has 5-25% more high-quality SR data than MOD09 annually (Lyapustin et al., FRSen, 2021);
 - **CWV**: validated against AERONET within 10% accuracy (Martins et al., 2018; 2019);
 - **AOD**: 1km resolution, 10% accuracy (Lyapustin et al., 2018, ...) + significant improvement from C6 to C6.1;

 21x21 km2 (50% coverage), 0.47µm

 A single 1km pixel

<table>
<thead>
<tr>
<th></th>
<th>MAIAC C6</th>
<th>C6.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>304553</td>
<td>409960</td>
</tr>
<tr>
<td>%EE</td>
<td>66%</td>
<td>69.8%</td>
</tr>
<tr>
<td>R</td>
<td>0.84</td>
<td>0.903</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.12</td>
<td>0.107</td>
</tr>
<tr>
<td>MBE</td>
<td>0.01</td>
<td>0.012</td>
</tr>
</tbody>
</table>

2. MAIAC CM and AOD are successfully used to screen “good quality” VHR data with low cloud/cloud shadow fraction and aerosol;

3. Atmospheric Correction with BRDF normalization.
Atmospheric Correction of VW2 Data

201410030717, TOA

BRF

... somewhere in Madagascar

TOA

201510010718, BRF