

Spire Earth Observations

NASA CSDA Program Lunch & Learn

Unauthorized disclosure prohibited: This document and any documents attached and information contained therein have proprietary and competitively-sensitive information of Spire Global Inc. Spire provides the documents and information solely for the use of the recipient and solely for the purpose of evaluation of Spire products and services for the subject opportunity or contract. The documents and information are protected from unauthorized disclosure pursuant to 18 U.S.C. § 1905, the Trade Secrets Act, and any Non-Disclosure Agreement signed by the parties. Additionally, the documents and information is exempt from disclosure under the Freedom of Information Act pursuant to Exemptions (b)(4) and (b)(6).

Introductions

Vu Nguyen GNSS-RO Scientist Spire Global, Inc.

eo-tech-support@spire.com

Phil Jales GNSS-R/Bistatic Radar Specialist Spire Global, Inc.

eo-tech-support@spire.com

Hunter Garbacz Account Executive, Federal Programs Spire Global, Inc.

hunter.garbacz@spire.com

una sectore de la qu

· · · ·

Agenda

Spire Overview

CSDA Program Data Products

EULA

Accessing the Data & Support

The Spire Constellation

One of the largest private

constellations in the world

- The Low Earth Multi-Use Receiver (LEMUR) is • Spire's 3U CubeSat platform used to track maritime, aviation, and weather activity from space
- We operate the world's largest RF sensing fleet • and are the largest producer of radio occultation and space weather data
- Our data provides a global view with coverage in • remote regions like oceans and poles; all data can be refreshed within **15 minute** cycles
- We are continuously launching improved sensors • and upgrading them in-orbit
- We turn ideas into live feed from space in as little • as 6-12 months

Global Ground Station Footprint

We own and operate the most geographically dispersed and largest network for ground stations, which allows us to repatriate our satellite-generated data at record speed

Spire Market Sectors & Product Verticals

Earth Intelligence

Spire generates unique data sets of Earth's surface and atmospheric layers using GNSS remote sensing techniques such as radio occultation, reflectometry, and ionospheric electron density and scintillation

GNSS Interference

Spire collects and geolocates sources of GNSS interference in real-time; global GNSS spectrum monitoring and custom RF collection solutions are available for certain operational use cases

Space Services

Spire offers access to its proven LEMUR CubeSat platform and infrastructure for a wide range of customer-driven missions. Standard APIs enable customer access to Spire's cloud-based constellation management and ground stations

Maritime

Spire provides vessel tracking and information on the state of global waterways by leveraging the International Maritime Organization (IMO) Automatic Identification System (AIS) standard

Spire collects near real-time information on the movements of civilian aircrafts across the globe, following the International Civil **Aviation Organization** (ICAO)-backed Automatic Dependent Surveillance-Broadcas t (ADS-B) standard

Spire models global space-based weather data for hyperlocalized coordinates at various vertical levels, with critical implications for severe weather events forecasting, preparation, and management

∆spire | federal

Spire's Low Earth Multi-Use Receiver 3U and 6U Spacecraft with Over 450 Years Collective Heritage

Hosted Payload Parameter	3U Carrier Specs	6U Carrier Specs			
Empty Carrier Mass	4.2 kg	5 kg			
Payload Mass	Up to 1.4 kg	Up to 7kg			
Total Mass	Up to 5.6 kg	Up to 12 kg			
Volume	Up to 1.5U	Up to 4U			
Payload Power	5 W - 15 W OAP 40 W Peak				
Payload Voltage	3.3V, 5V, 12V, VBAT (6.8 - 8.4 V)				
Onboard Storage	16 GB (expandable)				
Pointing Precision	+/-3° all axes (+/- 0.05° w/ Star Tracker)				
Pointing Accuracy	+/-3° all axes (+/- 0.1° w/ Star Tracker)				
Timing Accuracy	<12 ns (w/ Time & Frequency Reference System)				
Orbit Position Knowledge	<2 m (w/ Time & Frequency Reference System)				

6U

12U & 16U LEMUR Higher SWP Platforms for

Enhanced Mission Capability

- 12U & 16U LEMUR satellites under development
 - PDR complete w/ CDR scheduled for Oct 2022
 - First launch in Q3 2023
- Development timelines driven by commercial contracts
 - \circ NorthStar: Six 16U satellites scheduled to launch in Q3/Q4 2023
 - **Commercial Customer:** Minimum constellation of three 16U satellites with first launch in late 2023 / early 2024
- 'Alpha' Power System under development with first launch Q1 2024

Spacecraft Parameter	12U / 16U Platform Specs		
Empty Carrier Mass	10 / 12 kg		
Payload Mass	Up to 14 / 16 kg		
Total Mass	Up to 24 / 28 kg		
Volume	Up to 8U / 12U		
Payload Power	Up to 100 W OAP & 300 W Peak		
Payload Voltage	3.3V, 5V, 12V, 24V, 28V, VBAT (28.8V)		

una sectore de la qu

· · · · · ·

Agenda

Spire Overview

CSDA Program Data Products

EULA

Accessing the Data & Support

Spire Proprietary Information – disclosure subject to restrictions on cover page.

Data Available Under CSDA Program

Data available from both NASA CSDA Program

task orders and older NASA CSDA pilot program

- NASA procured access to data types starting 01 NOV 2019 through to 17 JUN 2023
- Data available with a 30-day delay (i.e., 30 days after collection)
- Current Spire products available under the NASA
 CSDA Program
- New products undergo NASA evaluation
- Product improvements made available as developed
- Conventional GNSS-R (Near-Nadir)

Data Type	Date Range
GNSS Radio Occultation (GNSS-RO) (L0-L2 Atmos. Prf)	24 SEP 2018 - 14 DEC 2018 14 DEC 2018 - 08 MAR 2019 01 NOV 2019 - present
Grazing Angle GNSS-Reflectometry (GNSS-R) (L0-L2 Sea Ice Type & Altimetry)	09 JAN 2019 - 18 APR 2019 01 NOV 2019 - present
Conventional GNSS-R L1 Bistatic Radar	17 MAY 2022 - present
Conventional GNSS-R L2 Ocean Winds	01 AUG 2022 - present
Conventional GNSS-R L2 Soil Moisture	Est. DEC 2022
Raw IF captures (GNSS-R)	Various
L0-L1 Precise Orbit Determination	24 SEP 2018 - 18 APR 2019 01 NOV 2019 - present
L0-L2 Space Weather (TEC, EDP, Scintillation)	01 NOV 2019 - present
L0 Magnetometer (Simple Sensor Data)	01 NOV 2019 - present

un state the second

Data Products

GNSS Radio Occultation

Space Weather

Precise Orbit Data

Grazing Angle GNSS-Reflectometry

Conventional GNSS-Reflectometry

Spire Earth Intelligence Data

Our satellites also capture data

relevant for NWP modeling, space weather monitoring, ionosphere corrections for navigation, and thermospheric density

Ionosphere

GNSS-RO Collection

Spire GNSS-RO satellites

- Moderate gain, dual antennas (rising/setting)
- Multi-GNSS signals tracked in open-loop
- STRATOS receiver v2 launched and capable of more RO collection
- 40+ RO-capable satellites, 25+ in production

GNSS-RO Data in the CSDA Program

RO Data Processing

- Spire RO data are downloaded and processed into all data levels using a state-of-the-art processing system
- Mainly follows CDAAC conventions and includes:
 - Level 0 Low-level 50 Hz data (custom netCDF, opnGns)
 - Level 1B Excess phase (atmPhs)
 - Level 2 Atmospheric profiles (atmPrf, bfrPrf)
 - Navigation data
 - Level 1A RINEX data (podObs)
 - Level 1A Attitude data (leoAtt and telAtt)
 - Level 1B Precise orbit estimates (leoOrb)
 - Ancillary data available

profiles from multiple GNSS

Growing GNSS-RO Volume & Coverage

- Spire constellation is currently producing 20,000+ quality-controlled profiles per day, satisfying the current established IROWG/CGMS target
 - Ability to scale quickly to meet future demand
- Delivering raw and processed data in near-real-time to major processing centers for further dissemination to NWP centers and users

Spire Daily Avg RO Production (QC'ed)

Long-term RO production increase

World's largest producer of RO profiles (24 hr coverage shown below)

Diverse local time coverage

External Evaluations

- Several years of third-party evaluations from EUMETSAT, UCAR, NOAA** have shown Spire RO data to be of high-quality and exceeding performance of many legacy missions
 - $\circ~$ Near real-time results available at ROMSAF and JCSDA
- Demonstrated positive impact of Spire RO data on NWP systems from evaluators at NOAA, NASA, ECMWF, UK Met Office**

UCAR study on planetary boundary layer from Spire data

Mean PBL height as detected directly from Spire data. It is noted that Spire's penetration depth exceeds heritage, making this measurement possible.

Source: W. Schreiner, 2021 (Data Processing and Scientific Evaluation of Spire GNSS RO Data for the NASA CSDA)

ECMWF FSOI increase after assimilating Spire RO in 2020

** References for Schreiner, Healy, Lonitz, Ho, and McCarty evaluations listed throughout Slides 17 and 18 of this presentation

Source: S. Healy, ECMWF, 2020

External Evaluations

At the 2021/2022 International RO Working Group meetings, independent users

showed Spire RO is similar in quality and impact to institutional RO missions

NOAA showed Spire matches COSMIC-2 penetration depths

	10N-10 S	10N-30 N	30S-10 S	30N-45 N	45S-30 S	45N-60 N	60S-45 S	60N-90 N	90S-60 S
COSMIC-2	0.85	0.90	0.75	1.35	1.10				
GeoOptics	0.95	1.05	1.10	0.70	0.80	0.35	0.40	0.55	0.20
SPIRE	0.90	0.90	0.75	0.80	0.55	0.45	0.25	0. <mark>4</mark> 5	0.20
KOMPSAT-5	1.85	1.50	1.15	0.40	0.95	0.35	0.40	0.25	0.20
PAZ	2.65	1.85	2.05	0.90	1.30	0.45	0.45	0.35	0.25

Source: B. Ho. NOAA. 2021 (link to IROWG presentation)

NASA showed Spire data moved RO FSOI to third place among all observations and Spire led in fractional total impact Source: W. McCarty, NASA, 2021 (link to IROWG presentation)

Total FSOI Ranking Change

CENTRAL TRANSPORT

Data Products

GNSS Radio Occultation

Space Weather

Precise Orbit Data

Grazing Angle GNSS-Reflectometry

Conventional GNSS-Reflectometry

Ionospheric Data Collection

- SpWx relevant data collected from both POD and RO antennas
 - POD antenna: 1-Hz closed loop tracking
 - RO antennas: 1-Hz closed loop tracking and 50 Hz open loop tracking
 - Observation range overlap between POD and RO antennas
- Data Products
 - GNSS observables in RINEX format (podObs)
 - Total Electron Content (TEC) estimates (podTec, ionTec)
 - On-board scintillation indices (scnLv1)
 - Electron density profiles (ionDen)

More details at Angling et al. Sensing the ionosphere with the Spire radio occultation constellation, *J. Space Weather Space Clim*, 2022

TEC Estimates

- Closed-loop dual-frequency pseudorange and phase observations used to derive TEC measurements through each antenna
 - Standard procedure applied: Weighted levelling, cycle slip correction and estimation of differential code biases
 - Stored in CDAAC podTec format
- GNSS observations/TEC estimates can be combined across POD and RO antennas to produce longer ionospheric tracks (ionTec)
 - Over 5000 ionospheric tracks per day spanning from maximum elevation to less than 90 km altitude
 - Over 500 ionospheric tracks per day satisfying median latency of 30 minutes required by NOAA SpWx Data Pilot
 - Currently only tracking GPS in closed-loop mode.
 Can add other constellations to increase number of ionospheric tracks.

High-rate Data & Scintillation

- High-rate (50-Hz) open-loop phase data are collected through RO antennas
 - Spans at least from 150km and downward
 - Multi-constellation
- On-board estimate of S4
 - Computed every second from a 10 second block of I and Q data sampled at 1 kHz
 - Computed on both frequencies through the RO antennas
 - 50-Hz data from orbit altitude is downlinked if S4 > 0.3 for at least 10 seconds

F-region 50 Hz Data and Scintillation Indices

CENTRAL TRANSPORT

· · · ·

Data Products

GNSS Radio Occultation

Space Weather

Precise Orbit Data

Grazing Angle GNSS-Reflectometry

Conventional GNSS-Reflectometry

Spire Proprietary Information – disclosure subject to restrictions on cover page

Precise Orbit Data in CSDA Program

- Spire GNSS precise orbit products are collected operationally by all sats
- The product types follow COSMIC conventions (CDAAC) and include:
 - Navigation data (leoOrb precise orbits in SP3 format, RINEX data)
- Possible applications:
 - These data have been successfully used to estimate thermospheric density through satellite drag
 - Mass change trend signals and annual signals for different recovered by GPS receivers in LEO using POD techniques (e.g., da Encarnação et al, 2019)

Space Weather®

Research Article 🖻 Open Access 💿 🛈 😒

Toward Accurate Physics-Based Specifications of Neutral Density Using GNSS-Enabled Small Satellites

Eric K. Sutton 🕿 Jeffrey P. Thayer, Marcin D. Pilinski, Shaylah M. Mutschler, Thomas E. Berger, Vu Nguyen, Dallas Masters

First published: 08 May 2021 | https://doi.org/10.1029/2021SW002736

SECTIONS

Abstract

Satellite-atmosphere interactions cause large uncertainties in low-Earth orbit determination and prediction. Thus, knowledge of and the ability to predict the space environment, most notably thermospheric mass density, are essential for operating satellites in this domain. Recent progress has been made toward supplanting the existing empirical, operational methods with physics-based data-assimilative models by accounting for the complex relationship between external drivers such as solar irradiance, Joule, and particle heating, and their response in the upper atmosphere. Simultaneously, a new era of CubeSat constellations is set to provide data with which to calibrate our upperatmosphere models at higher spatial resolution and temporal cadence. With this in mind, we provide an initial method for converting precision orbit determination solutions from global navigation satellite system

CENTRAL TRANSPORT

Data Products

GNSS Radio Occultation

Space Weather

Precise Orbit Data

Grazing Angle GNSS-Reflectometry

Conventional GNSS-Reflectometry

Spire Proprietary Information – disclosure subject to restrictio

Spire GNSS-Reflectometry Constellation

Grazing Angle GNSS-R

Operational on 25+ satellites

Antennas

o Two dual-frequency RHCP antennas on each satellite for rising/setting radio occultation

Processing

- Multi-GNSS (GPS, Galileo, GLONASS, QZSS, Beidou.)
- Coherent signal processing output I/Q at 50 Hz
- o Ice characterisation and altimetry

Conventional (Near-Nadir) GNSS-R

Four (4) satellites on-orbit with near-nadir antennas

Antennas

- Single frequency LHCP nadir-pointing antennas
- o Antenna beamforming and advanced relative calibration

Processing

- o Multi-GNSS (GPS, Galileo, QZSS, Beidou)
- o DDM signal processing (up to 30 channels)
- Prototypes for long-term, high-res (3 km) soil moisture observations

Spire GNSS-Reflectometry Constellation

Grazing Angle GNSS-R

Operational on 25+ satellites

Antennas

o Two dual-frequency RHCP antennas on each satellite for rising/setting radio occultation

Processing

- Multi-GNSS (GPS, Galileo, GLONASS, QZSS, Beidou.)
- Coherent signal processing output I/Q at 50 Hz
- Ice characterisation and altimetry

Conventional (Near-Nadir) GNSS-R

Four (4) satellites on-orbit with near-nadir antennas

Antennas

- Single frequency LHCP nadir-pointing antennas
- o Antenna beamforming and advanced relative calibration

Processing

- Multi-GNSS (GPS, Galileo, QZSS, Beidou)
- DDM signal processing (up to 30 channels)
- Prototypes for long-term, high-res (3 km) soil moisture observations

Grazing Angle GNSS-R Data Collection

- Up to 25 satellites in various orbital planes
- **Stable operational data collection**, averaging 2000+ L1B events per day, each ranging from several seconds to nearly 6 minutes
- Data collection 50 Hz IQ measurements
- Open-loop tracking of **direct and reflected** signals
- Dual frequency **L1 and L2** (E1 and E5 for Galileo)
- Median latency of 90 min from data collection to Level 2 product availability
- Products:
 - o Level 1A: Instrument data aggregation
 - Level 1B: Measurement georeferencing
 - o Level 2: Ice extent and classification
 - Level 2: Height profile extraction

Spire Proprietary Information – disclosure subject to restrictions on cover page

Grazing Angle GNSS-R Technique

Phase-delay altimetry is a type of GNSS-R that uses <u>coherent</u> reflections of GNSS signals at low grazing angles (5-30 deg) to estimate cm-level heights of smooth surfaces

Grazing angle GNSS-R altimetry has the ability to collect large quantities of relative height profiles of sea ice with precisions that approach traditional altimeters (< 10 cm RMSE @ 50 Hz) and can potentially complement these other altimeters to fill gaps

Running operationally on up to 25 satellites

Grazing Angle GNSS-R in CSDA Program _____

- Spire grazing angle GNSS-R products are collected operationally by GNSS-RO satellites (targeting polar, Gulf of Mexico, and Indonesian areas)
- The product types are Spire-defined and include:
 - Low-level 50 Hz data open-loop tracked I/Q data (direct and reflected signal in RO antenna (L1A base data in nc4 format)
 - Georeferenced reflection (L1B data nc4 format)
 - Level 2: Ice extent and classification
 - Level 2: Height profile extraction

Geophysical Research Letters

Research Letter

Initial GNSS Phase Altimetry Measurements From the Spire Satellite Constellation

Vu A. Nguyen 🗙, Oleguer Nogués-Correig, Takayuki Yuasa, Dallas Masters, Vladimir Irisov

First published: 08 July 2020 | https://doi.org/10.1029/2020GL088308

Read the full text >

👮 PDF 🔧 TOOLS < SHARE

Abstract

The collection of phase coherent Global Navigation Satellite System (GNSS) reflected signals from radio occultation receivers in low-Earth orbit potentially offers the capability of deriving precise altimetry measurements over open and sea-ice-covered water at unprecedented coverage and low cost. Although past studies have verified the possibility of deriving altimetric measurements from GNSS observations, there is still uncertainty regarding the precision of this technique and its application. This study highlights the extraction of altimetric information from initial grazing angle GNSS reflection events observed by Spire satellites. Results show that the majority of coherent events occur over sea-ice-covered regions. A smaller number of coherent events are observed over the open ocean due to rougher scattering conditions. Altimetric retrieval was performed using dual frequency base measurements from several events and compared to

Grazing Angle Measurement Coverage

12

Total Measurement Coverage over 1 Week

Altimetric Height Coverage over 1 Week

Ice Altimetry Reflection event over Sea of Okhotsk L1 & L2 SNR correlated and show transition from sea ice to open ocean around 80 seconds

Grazing Angle Sea

- Estimated reflector height again follows expected mean sea surface (DTU18) with tides (TPX09-atlas) removed
- Residual shows little gradient along the track (< 3 cm RMSE)
- SMOS thickness estimate is larger in • center of track
- Reflection is likely occurring off the top of the ice or snow interface

140°E 145°E 150°E 155°E

55°N

52.5°N

50°N

100

Point Elevation[deg]

Spec.

14

12

20

50

100

Seconds since 2019-03-27 12:28:58

150

150

100

80

Two-Sat Validation of Sea Ice Altimetry

Collected

50 100 150

Phase Unwrapped

200

250

FM101 at T03:00

16

10

FM100 at T03:02

Sats in same orbit (2 min apart) measure similar profile gives intrinsic method to validate data within the constellation (CS2SMOS below) OM/ Cesa CS2SMOS 17/01/2021 - 23/01/2021

Grazing Angle GNSS-R Phase Noise

- Standard deviation of the change in the phase over a one second window
- Temporal and spatial variation in patterns in roughness
- First Year and Multi-Year ice clearly visible in Arctic data

Application to Sea

Thresholds trained: 1st March 2020 - 1st March 2021

Data shown:

1st March 2020 - 1st March 2022

	Active	Passive	Operational
Arctic	94 %	93 %	95 %
Antarctic	98 %	96 %	

Separate training and testing datasets

Sea Ice Type First Year Ice Multi-Year Ice 2.5

Application to

2.0

1.0

0.5

0.0

Arctic

0.6

0.8

Weekly Ice Chart

74 %

1.5 1.5

Ice Type / 2020-03-09 12:00:00

Unclass Ambig Multi-Year

Separate training and testing datasets

1.0 First-year Ice $\leftarrow \rightarrow$ Multi-year Ice

Aspire Proprietary Information - disclosure subject to restrictions on cover page.

1.2

1.4

Active Product

77 %

CENTRAL TRANSPORT

Data Products

GNSS Radio Occultation

Space Weather

Precise Orbit Data

Grazing Angle GNSS-Reflectometry

Conventional GNSS-Reflectometry
Spire GNSS-Reflectometry Constellation

Grazing Angle GNSS-R

Operational on 25+ satellites

Antennas

Two dual-frequency RHCP antennas on each satellite for rising/setting radio occultation
 Processing

- o Multi-GNSS (GPS, Galileo, GLONASS, QZSS, Beidou.)
- Coherent signal processing output I/Q at 50 Hz
- Ice characterisation and altimetry

Conventional (Near-Nadir) GNSS-R

Four (4) satellites on-orbit with near-nadir antennas

Antennas

- Single frequency LHCP nadir-pointing antennas
- o Antenna beamforming and advanced relative calibration

Processing

- Multi-GNSS (GPS, Galileo, QZSS, Beidou)
- o DDM signal processing (up to 30 channels)
- Prototypes for long-term, high-res (3 km) soil moisture observations

GNSS-R Data in the CSDA Catalog

- Spire Conventional (Near-Nadir) GNSS-R products are collected operationally by GNSS-R Batch-1 & Batch-2 satellites
- The product types are Spire-defined and include:

Level 1B

GNSS-R Land Surface Reflectivity

(along-track, netCDF)

L2 Ocean Wind Speed and MSS (along-track, netCDF)

Level 1B GNSS-R Ocean Normalized Bistatic Cross-sections (along-track, netCDF)

** undergoing NASA evaluation

Combining Conventional (Near-Nadir) and Grazing-Angle GNSS-R offers a rich set of observables: Dual polarisation and frequency Coherent & incoherent Diversity of geometry

High resolution data products: sea ice extent, ice type

Fourteen (14) days starting 2021-12-16 over a 10 km grid

GNSS-R Ice Classification

CYGNSS CYGNSS **Ocean wind** corr = 0.74std(diff) = 0.004std(diff) = 1.60 m/s

Spire L2 GNSS-R

Ocean Products

(8.6*10⁶ point pairs)

Spire vs. CYGNSS ocean products

Spire L2 GNSS-R Ocean Products _

 University of Michigan 2021 evaluation of Spire L2 Ocean Wind speed

GNSS-R Sensitivity to Soil Moisture

** product undergoing NASA evaluation

- Compared to the other active and passive remote sensing methods used to monitor soil moisture, GNSS-R has the advantages of increased moisture sensitivity and better penetration of foliage by L-band signals due to forward scattering.
- Spire GNSS-R L2A Surface Soil Moisture
- change detection calibrated soil moisture that retains the along-track structure of GNSS-R sampling characteristics.

Spire GNSS-R reflectivity (10 km grid) over 2021 - monthly frames

Spire GNSS-R Reflectivity over North America (top) and South America (bottom):

False-color showing seasonal changes in reflectivity

Spire L2 GNSS-R Soil Moisture ____

** product undergoing
NASA evaluation

- Track-wise comparison of Spire & SMAP Soil Moisture
- GNSS-R soil moisture shows comparable quality to SMAP but has inherently smaller footprint

Spire L2 GNSS-R Soil Moisture ____

** product undergoing NASA evaluation

Regional and Spatial Comparison of Spire & SMAP SM

Averaging period (2021: Jan, Feb, Mar, Apr)

0.2 0.3 0.4 0.5 0.6 SPIRE CSSM (sm gflag = 0)

una sectore de la qu

· · · ·

Agenda

Spire Overview

CSDA Program Data Products

EULA

Accessing the Data & Support

Data Available Under CSDA Program

Data available from both NASA CSDA Program

task orders and older NASA CSDA pilot program

- NASA procured access to data types starting 01 NOV 2019 through to 17 JUN 2023
- Data available with a 30-day delay (i.e., 30 days after collection)
- Current Spire products available under the NASA
 CSDA Program
- New products undergo NASA evaluation
- Product improvements made available as developed
- Conventional GNSS-R (Near-Nadir)

Data Type	Date Range	
	Date Range	
GNSS Radio Occultation (GNSS-RO) (L0-L2 Atmos. Prf)	24 SEP 2018 - 14 DEC 2018 14 DEC 2018 - 08 MAR 2019 01 NOV 2019 - present	
Grazing Angle GNSS-Reflectometry (GNSS-R) (L0-L2 Sea Ice Type & Altimetry)	09 JAN 2019 - 18 APR 2019 01 NOV 2019 - present	
Conventional GNSS-R L1 Bistatic Radar	17 MAY 2022 - present	
Conventional GNSS-R L2 Ocean Winds	01 AUG 2022 - present	
Conventional GNSS-R L2 Soil Moisture	Est. DEC 2022	
Raw IF captures (GNSS-R)	Various	
L0-L1 Precise Orbit Determination	24 SEP 2018 - 18 APR 2019 01 NOV 2019 - present	
L0-L2 Space Weather (TEC, EDP, Scintillation)	01 NOV 2019 - present	
L0 Magnetometer (Simple Sensor Data)	01 NOV 2019 - present	

End User License Agreement

This latest version* of the EULA is effective as of 9 NOV 2020 and applies to Spire data accessible through the NASA CSDA Program

* The EULA document is available on the CSDA Program website: https://cdn.earthdata.nasa.gov/conduit/upload/16879/CSDA Program_USG_EULA-11-09-20_Rev3.pdf

una sectore de la qu

.

· · · ·

Agenda

Spire Overview

CSDA Program Data Products

EULA

Accessing the Data & Support

Spire Proprietary Information – disclosure subject to restrictions on cover page

Accessing the data

Spire data is accessible through the NASA Smallsat Data Explorer (SDX) using Earthdata login credentials

- Create an Earthdata login:
 <u>https://urs.earthdata.nasa.gov/</u>
- Navigate to the CSDA Program Smallsat Data Explorer (SDX): <u>https://csdap.earthdata.nasa.gov/</u>
- On the left side of the screen, login to your
 Earthdata account.
- Selected your filter parameters and click
 "Request data"
- A NASA reviewer will validate the request and, if approved, send a URL with access to the data

User Support

NASA can provide SDX and data access support, Spire is available for questions on the data itself

Accessing the data through SDX:

Click the <u>Contact Us</u> link at the bottom of the <u>SDX page</u>

Submit a Spire Support Request:

- Navigate to https://spire.com/developers/support/
- Fill out the requested information
- Indicate on the form that you are asking about NASA CSDA Program data

🛆 spire	Solutions 🗸
 Make a support request 	
Company name®	
First name*	Last name*
Email®	
Support Request Type* Specify the type of issue being r service is proven to be unavailal	reported. Please only specify Critical System Failure if a Spire ble.
Specify the type of issue being re	eported ~
Summary of request for suppor One line summary of the ticket I	
Client Region*	
Please Select	~
Product for Support*	
Please Select	~
Details* Enter details clarifying the supp	ort request
 Did you gain access to Spire o (CSDA) Program? 	data through NASA's Commercial SmallSat Data Acquisition
File upload Upload files with information re Choose Files No file chosen	lating to the support request
protected by reCAPTCHA Privacy - Terms	2
Submit	
Submit	

Thank you

From our team, to yours.

Hunter Garbacz Account Executive, Federal Programs Spire Global, Inc.

hunter.garbacz@spire.com

Vu Nguyen GNSS-RO Scientist Spire Global, Inc.

eo_technical_support@spire.com

Phil Jales GNSS-R/Bistatic Radar Specialist Spire Global, Inc.

eo_technical_support@spire.com

∆spire