GNSS Products at NASA's CDDIS for Disaster Monitoring, Crustal Deformation, Extreme Weather and Other Applications

Yehuda Bock¹

¹Scripps Institution of Oceanography (SIO)

²Jet Propulsion Laboratory/California Institute of Technology

NASA MEaSUREs Project Team: Angelyn Moore², Donald Argus², Peng Fang¹, Dorian Golriz¹, Katherine Guns¹ Songnian Jiang¹, Zhen Liu², Anne Sullivan¹

September 28, 2022

Jet Propulsion Laboratory California Institute of Technology

Outline

- History of JPL, SIO & CDDIS Collaboration
- Motivation: Earth Sciences & Natural Hazards
- GNSS Infrastructure
- Four levels of ESDRs archived at CDDIS
- Three examples of the use of our products

Three-Decade Collaboration of JPL, SIO and CDDIS

- 1991-1992 First Continuous GNSS Stations: NASA funded in SoCal (JPL & SIO)
- 1993-present International GNSS Service (CDDIS, Central Bureau, JPL, SOPAC)
- 1994 Mw6.7 Northridge earthquake (57 killed, \$13–50 billion damage)
- 1999-2021 250-station SCIGN Project (JPL, SIO, USGS SCEC Umbrella)
- 2003-2007 REASoN CAN, PI Frank Webb (JPL), co-I Yehuda Bock (SIO)
- 2007-2012 MEaSUREs ROSES2006 SESES, PI Frank Webb (JPL), co-I Yehuda Bock (SIO)
- 2013-2018 MEaSUREs ROSES2012 SESES, PI Yehuda Bock, co-I Sharon Kedar (JPL)
- 2018-2023 MEaSUREs ROSES2017, ESESES, PI Yehuda Bock, co-I Angelyn Moore
- Proposed: 2023-2028, ROSES2022, ESESES continuation (Bock, Moore)

Development of Continuous GNSS Infrastructure

Continuous GNSS stations established for global and regional geodetic applications, earthquakes greater than magnitude five (brown squares) since 1990, major tectonic plate boundaries (black lines), and earthquake centroid moment tensor (CMT) solutions for significant earthquakes observed by GNSS over the last 30 years. (prepared by Dara Goldberg)

Network of the Americas (NOTA); Bay Area Regional Deformation Array (BARD); Pacific Northwest Geodetic Array (PANGA); Central Valley Spatial Reference Network (CVSRN), Southern California Integrated GPS Network (SCIGN); NASA, SIO

Observation Systems: Instrumentation

Typical continuous

Seismogeodesy

Conceptual diagram for integrated synthetic aperture radar InSAR

Accelerometer

https://www.unavco.org/wordpress/wp-content/uploads/2021/06/UNAVCO-infographic-GPSforEarthScience.jpg

Geodetic infrastructure and methodologies are essential to mitigating the effects of natural hazards

Earthquakes

Drought

Subsidence

MEaSUREs Earth Science Data Records Archived at CDDIS

MEaSUREs ESESES Product Levels

MEaSUREs ESESES Products Levels 0-2

Level 0: Raw GPS Observations

Level 1: Raw Daily Displacements

https://cddis.nasa.gov/archive/GPS_Explorer/archive/time_series/

Discovering physical transients is critical for enhancing knowledge in the Earth Sciences and associated hazards

Level 1: Raw Daily Displacements

https://cddis.nasa.gov/archive/GPS_Explorer/archive/time_series/

Level 1: Raw Displacements Level 2: Cal/Val Daily Displacements

https://cddis.nasa.gov/archive/GPS_Explorer/archive/time_series/

200

2000

Level 2: Cal/Val Combined Displacements

Artifacts (vertical black); Coseismic Offsets (vertical orange); Horizontal & Vertical Velocities; Postseismic models; Residual Displacements

https://cddis.nasa.gov/archive/GPS Explorer/archive/time series/

Mexicali

OLLION MUNTAINS

wentynine Palms

DHLG

Yucca Valle

P066

43 mm/yr

Photos courtesy of UNAVCO NOTA Station P800, Los Angeles

https://cddis.nasa.gov/archive/GPS_Explorer/archive/time_series/

MEaSUREs ESESES Products Levels 3-4

Network of the Americas (NOTA); Bay Area Regional Deformation Array (BARD); Pacific Northwest Geodetic Array (PANGA); Central Valley Spatial Reference Network (CVSRN), Southern California Integrated GPS Network (SCIGN); NASA, SIO

Level 3: Horizontal Station Velocities

Horizonal Non-linear Surface Motions (transients) Experienced in California

Non-Linear Vertical Motions (Transients)

Katherine Guns

Level 3 ESDR: Weekly Displacement Grids (Secular Motions + Transients)

https://cddis.nasa.gov/archive/GPS_Explorer/archive/displacement_grids/

Central Valley Subsidence

Level 4 ESDR: Strain Rate Grids - Transients

https://cddis.nasa.gov/archive/GPS_Explorer/archive/strain_rate_grids/

Prepared by Emilie Klein (SIO)

Prepared by Zhen Liu (JPL)

Fault slip models are very sensitive to the quality of level 2 displacement time series!!!

https://cddis.nasa.gov/archive/GPS_Explorer/archive/transients/

Scientific Rationale

- Investigate what physical processes underlie slow slip and tremor generation
- Study the connection between time-varying ETS processes and large earthquakes
- Provide constraints on frictional properties of fault zones when combined with physics based rate-andstate models
- Assess any systematic ETS variability throughout an earthquake cycle and its potential for forecasting future M9 megathrust earthquakes in Cascadia and/or other subduction zones

Prepared by Zhen Liu, JPL

Level 4 ESDR – Hydrology: Total Water Storage - Donald Argus, JPL - lead

4 years of harsh drought Oct 2011 - Oct 2015

https://cddis.nasa.gov/archive/GPS_Explorer/archive/water_storage/

Prepared by Donald Argus

Level 3 ESDR: Seismogeodetic Waveforms for Historical Earthquakes & Early Warning Systems

Table 1 Earthquakes Used in This Study											
Name/Region	M_w^{a}	Fault mechanism	Origin time (UTC) ^b	Longitude (E ^o)	Latitude (Nº) 35.818	Depth (km) 8.1					
Parkfield, California	6.0	Strike-slip	2004-09-28 17:15:24	-120.366							
El Mayor-Cucapah, Mexico	7.2	Strike-slip	2010-04-04 22:40:42	-115.295	32.286	10.0					
Miyagi, Japan	7.3	Reverse	2011-03-09 02:45:12	143.280	38.329	8.3					
Tohoku-oki, Japan	9.1	Reverse	2011-03-11 05:46:24	142.861	38.104	29.0					
Fukushima, Japan	6.6	Normal	2011-04-11 08:16:12	140.673	36.946	6.4					
Napa, California	6.0	Strike-slip	2014-08-24 10:20:44	-122.312	38.215	11.1					
Kumamoto, Japan	7.0	Strike-slip	2016-04-15 16:25:05	130.763	32.755	12.5					
Ridgecrest, California	6.4	Strike-slip	2019-07-04 17:33:49	-117.506	35.705	10.7					
Ridgecrest, California	7.1	Strike-slip	2019-07-06 03:19:53	-117.599	35.770	8.0					
Simeonof, Alaska	7.8	Reverse	2020-07-22 06:12:44	-158.522	55.030	28.0					

^aMagnitudes are from the United States Geological Survey (USGS) catalog. ^bEarthquake origin time and hypocenter location are from the NIED and USGS archives for Japan and Western U.S. earthquakes, respectively.

https://cddis.nasa.gov/archive/GPS_Explorer/archive/earthquake_displacements

Applications: Usage of our Products

1. Local Tsunami Warning: 2011 Mw9.0 Tohoku-oki, Japan Earthquake

Rapid magnitude estimation of large subduction zone earthquakes is critical for accurate local tsunami warnings

Melgar & Bock, JGR, 2015

Coseismic Window & Magnitude Estimation: 2011 M9.1 Tohoku event Station 0753, about 377km away from the Epicenter

L3 ESDR

Prepared by Dorian Golriz

https://cddis.nasa.gov/archive/GPS_Explorer/archive/earthquake_displacements

2. Coseismic & Postseismic Deformation Model

Ward et al., 2022

3. InSAR/GNSS Integration

Courtesy of Zhenkang-Shen and Zhen Liu

https://topex.ucsd.edu/gmtsar/insargen/

Prepared by Katherine Guns & Xiaoxua Xu

MEaSUREs ESESES Products at CDDIS

https://cddis.nasa.gov/archive/GPS_Explorer/archive/

		NASA'S Archive of	Space Geode	esy Data		1 - Ab		
Home	About CDDIS	Data and Products	Techniques	Programs	Publications	Citing our Data	CDDIS Text Search	
-	Derent Directory							
U	Parent Directory							
	coseismic_offsets	\$						
	displacement_grid	ds						
	earthquake_displa	acements						
	strain_rate_grids							
	time_series							
	transients							
	trop							
	velocities							
	water_storage							
E.	index 20210707	html 2021-07-07 17-	10:58 4 11KB					

Graduate Student & Postdoc Participation in MEaSUREs Projects

Dara Goldberg USGS Denver

Jessie Saunders USGS Menlo Park

Alumni

Diego Melgar University of Oregon **Current**

Brendan Crowell University of Washington

Emilie Klein CNRS/ENS, France

Katherine Guns SIO postdoc (PhD, Univ. Arizona)

Next: Troposphere Products & Visualization Demo

Jet Propulsion Laboratory California Institute of Technology

