
ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

1

Zarr Storage Specification Version 2: Cloud-optimized persistence using Zarr

Status of this Memo

This Request for Comment (RFC) provides information to the NASA Earth Science community.

This RFC does not specify an Earth Science Data Systems (ESDS) standard. Distribution of this

memo is unlimited.

Change Explanation

This document is not a revision to an earlier version.

Copyright Notice

Copyright © 2024 United States Government as represented by the Administrator of the National

Aeronautics and Space Administration. No copyright is claimed in the United States under Title

17, U.S. Code. All Other Rights Reserved.

Abstract

This document designates the Zarr Storage Specification Version 2 as a cloud-optimized file

format convention for NASA Earth Science Data Systems.

Suggested Citation

Newman, D. J. (2024). Zarr storage specification version 2: Cloud-optimized persistence using

Zarr. NASA Earth Science Data and Information System Standards Coordination Office.

https://doi.org/10.5067/DOC/ESCO/ESDS-RFC-048v1.

Table of Contents

1 Introduction 2

1.1 Motivation 2

1.2 Evidence of Implementation 3

2 Zarr Structure 4

2.1 Metadata 6

2.2 Data 7

3 API 7

3.1 Implementations 7

3.2 Relevant libraries and extensions 9

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

2

4 Interoperability and Applicability Considerations 11

5 Future versions of the specification 11

6 References 12

7 RFC Authors' Addresses 13

1 Introduction

Zarr is a community project to develop specifications and software for storage of large N-

dimensional typed arrays. A particular focus of Zarr is to provide support for storage using

distributed systems like cloud object stores, and to enable efficient I/O for parallel computing

applications [1].

1.1 Motivation

One of EOSDIS’ primary motivations for migrating NASA Earth Science data holdings to the

cloud is to enable data-adjacent computing capabilities at scale for all. By data-adjacent we mean

that the data is close, network-wise, to the compute you bring to bear on that data.

With the rapid explosion of data volumes, and the corresponding explosion in the compute

necessary to produce science from that data, it is of paramount importance that users in the cloud

can access cloud-hosted data in an efficient and performant manner. Current EOSDIS archival data

formats are optimized for file system storage rather than cloud object storage. Consequently,

capabilities offered for accessing and using those datasets are optimized for traditional file systems

on local storage.

Given the different latency profiles of cloud and local storage, a cloud-optimized format should

facilitate minimizing the number of read operations whilst also minimizing the volume of data

accessed.

Since EOSDIS’ traditional formats, such as HDF4, HDF-EOS, HDF5, NetCDF-3, and NetCDF-

41 are optimized for storage, they produce large files. Quite often, a user will only need a small

percentage of the file to do their analysis. In order to determine which part of the file they need, in

the case of NetCDF and non-optimized HDF (Hierarchical Data Format), they need to read a

significant percentage of the file. When accessing the file through a distributed network rather than

a local file system this pattern is the opposite of the optimal case of minimizing reads and volume

of data accessed.

A cloud-optimized format needs to support the following,

● High-throughput distributed I/O

● Parallel processing at the process and thread level

1
 Explanation of versions of netCDF - https://docs.unidata.ucar.edu/nug/current/netcdf_introduction.html

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

3

● Chunking - the ability to split data into manageable, addressable parts along specific

dimensions. This allows the user or client to make performant decisions on what data users

access within a data store.

● Chunk compression - the ability to compress individual chunks rather than the dataset as a

whole so that decompression of data does not require access to the entire dataset.

One such format, optimized for object stores such as AWS (Amazon Web Services) S3 (simple

storage service) [3], is Zarr. Zarr is specifically useful for the earth science domain as it supports

large, multi-dimensional data arrays and is compatible with a variety of existing data science

tooling such as Dask [4] and Xarray [5].

The Zarr data format utilizes the following features, in addition/accordance to the items list above,

to achieve cloud-optimized data access,

● Random access with comparatively few communications

● Consolidated metadata. Other existing archival formats tend to place their metadata

throughout the file space, requiring large or multiple reads to obtain the metadata.

● Chunking across any dimension

● 1:1 file/chunk ratio2 to ease parallelism. Other existing archival formats use single binary

files and tend to provide library support that is thread-safe rather than thread-optimized.

● Chunk-based compression

Zarr also features several other benefits that are not cloud-specific, such as,

● An open specification

● A defined governance model

● A hierarchical data structure

● Metadata in a common plain-text format (JSON). Other existing archival formats tend to

describe their metadata in binary formats.

1.2 Evidence of Implementation

1.2.1 Pangeo Forge

The goal of the Pangeo Forge project [6] is to make it easy to extract data from traditional data

repositories and deposit them in cloud object storage in analysis-ready, cloud optimized (ARCO)

formats. It uses the Zarr format to achieve that goal. It has produced numerous datasets in the Zarr

format on AWS S3 using various earth science sources such as NASA, NOAA, DOE, The

Australian Bureau of Meteorology and the UK Met Office. It is an open source, community-driven

effort that has integrations with NASA EOSDIS’ CMR for finding canonical NASA earth science

datasets as inputs for Zarr arrays.

The Pangeo Forge Python SDK provides the components for generating Zarr arrays from archival

data stores in a variety of formats (such as NetCDF and HDF) and community-built recipes based

on those components.

2
 This is true for version 2 of the Zarr specification. Version 3 of the Zarr specification supports sharding. See section

5 for more information on this.

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

4

1.2.2 Giovanni in the cloud

The Geospatial Interactive Online Visualization And Analysis Infrastructure (Giovanni) [7],

developed at NASA’s GES DISC, is using Zarr to provide time and area averaging services for

GES DISC data. They achieve this in a performant manner by using a single grid-cell time series

service based on the Zarr storage format in AWS S3. GES DISC currently holds 1.82 TB of data

in Zarr format, representing six variables with a projected 20 TB of data representing 2,000

variables in the GES DISC archive.

1.2.3 AWS Open Data Registry

There are a variety of Zarr arrays related to Earth Science data in AWS’ Open Data Registry [8].

One, oft-cited, example is the Multi-Scale Ultra High Resolution (MUR) Sea Surface Temperature

(SST) dataset [9] which provides a Zarr array for PO.DAAC’s global, gap-free, gridded, daily 1

km Sea Surface Temperature dataset.

1.2.4 OGC Zarr spec 2.0

The Open Geospatial Consortium has endorsed Zarr 2.0 as a community standard.

1.2.5 Zarr arrays and dynamic imagery generation

The access performance of Zarr arrays opens up the possibility of imagery services providing

functionality without persisting intermediate assets. Historically, imagery services such as NASA

GIBS [10] have generated persistent stores of static imagery from archival data to provide WMS

and WMTS services. Zarr storage in the cloud allows the possibility of generating the imagery

required for their services on-demand from a Zarr array.

This architectural change is also being pursued by NASA IMPACT’s VEDA [11] to publish and

visualize NASA’s Earthdata Zarr archives and deliver interoperable APIs for its data stores to

support dynamic data visualization and storytelling.

It should be noted that the conventional Zarr chunk size stored for analysis (~100MB or more) is

deemed too large for in-browser transformation and visualization. The upper limit of request sizes

that can be reasonably fetched by a browser is ~10MB. This leads to a disparity between two very

popular use cases: analytics and visualization that cannot be solved by a single Zarr array in version

2 of the specification. However, the ZEP 0002 extension (Sharding: see section 5.1) can resolve

this issue and accommodate both access patterns in a single dataset.

2 Zarr Structure

Like HDF5, the Zarr format is designed to store an arbitrary number of array variables of arbitrary

dimensionality in a chunked, binary format, along with arbitrary metadata. Unlike HDF5, a Zarr

array is not a single entity but, conceptually, a key/value interface with read, write and delete

methods. In the case of a file store implementation, each variable is contained within a single

directory that contains the variable’s metadata files, in plain-text JSON, and a set of compressed

files representing the chunks of the variable’s data.

https://portal.ogc.org/files/100727

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

5

For example, measuring temperature and precipitation over a spatial and temporal area could be

visualized as follows,

3
Figure 1: Visual representation of multidimensional data

Each block in the first array would represent a temperature at a given spatial location (expressed

in latitude and longitude) for a given time. The second block would represent precipitation in the

same manner.

It should be noted that a Zarr array would represent either an entire collection, in EOSDIS parlance,

or a sizable subset of a collection rather than a single granule/file. The hierarchical nature of Zarr

allows the user to only interact with the parts of that array they are interested in.

The Zarr format consists of metadata in the json format that enables simple and efficient random

access to a ‘Zarr array’ which contains a set of compressed, binary data objects arranged in a

manner that matches the chunking scheme described in the metadata. This allows each chunk to

be accessed, decompressed, and analyzed in isolation.

3
 https://xarray.dev/

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

6

Figure 2: Visual representation of Zarr data layout

2.1 Metadata

Information about the structure and composition of the arrays in a datastore is represented in

several json files in the root and groups of the store.

2.1.1 .zarray

This file describes the composition of an array including the dimensions or shape, the chunking

strategy, and the compression used on each chunk.

{'shape': [8, 6, 6],

 'chunks': [4, 3],

 'compressor': {'blocksize': 0,

 'clevel': 5,

 'cname': 'lz4',

 'id': 'blosc',

 'shuffle': 1},

 'dtype': '<f8',

 'fill_value': 0.0,

 'filters': None,

 'order': 'C',

 'zarr_format': 2}

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

7

2.1.2 .zattrs

This file describes attributes associated with an array. For example, the CF standard name of the

measurement described and its units.
{'standard_name': 'air_temperature',

'units': 'degC'}

2.1.3 .zmetadata

In order to optimize performance for network distributed stores containing multiple

datasets/groups, Zarr allows you to consolidate metadata associated with multiple arrays (.zarray,

.zattrs) in a single top level artifact (.zmetadata). This means that the entire structure of the zarr

array can be determined with a single request.

2.2 Data

Each array contains one or more chunks. Each chunk is a binary, compressed object/file. That

chunk will contain a segment of the array defined by the.zarray file. These chunks are named

according to their location in the array.

3 API

Zarr provides library support in numerous languages to read and write Zarr to a number of

persistence stores [12]. Examples of API functionality are shown in Python for simplicity. It should

be noted that file access is generally achieved by other libraries that use Zarr as a data store. Those

libraries are detailed in the ‘relevant libraries and extensions’ section of this document.

3.1 Implementations

All that is required to implement a Zarr reader is the ability to parse JSON, to navigate a file system

directory structure, and to inflate compressed blobs according to the indicated compression

algorithm. Below are listed examples of libraries that implement Zarr4

● Python: https://github.com/zarr-developers/zarr-python

● Julia: https://github.com/JuliaIO/Zarr.jl

● C: https://github.com/Unidata/netcdf-c

● C++: https://github.com/constantinpape/z5

● Scala: https://github.com/lasersonlab/ndarray.scala

● Java: https://github.com/bcdev/jzarr

● Javascript: https://github.com/gzuidhof/zarr.js

● R: https://github.com/grimbough/Rarr

● Rust: https://github.com/aschampion/rust-n5

4
 For an exhaustive list see https://zarr.dev/implementations/

https://github.com/JuliaIO/Zarr.jl
https://github.com/bcdev/jzarr

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

8

3.1.1 Creating and chunking a Zarr array

The following, pythonic code, is a trivial example of a Zarr array creation to demonstrate that

chunking characteristics can be assigned on creation.

>import zarr

>z=zarr.zeros((10000,10000),chunks=(1000,1000), dtype='i4')

>z

<zarr.core.Array (10000, 10000) int32>

3.1.2 Compression

Each chunk in a Zarr array can be compressed. This means that data users can take advantage of

the lower latency compression affords but still limit the amount of data they access. Data curators

can choose from a variety of compression algorithms to suit their needs.

>from numcodecs import Blosc

>compressor=Blosc(cname='zstd',clevel=3,shuffle=Blosc.BITSH

UFFLE)

>data=np.arange(100000000,dtype='i4').reshape(10000,10000)

>z=zarr.array(data,chunks=(1000,1000),compressor=compressor

)

>z.compressor

Blosc(cname='zstd',clevel=3,shuffle=BITSHUFFLE,blocksize=0)

3.1.3 Reading from and writing to a Zarr array

In python, writing to and reading from a Zarr array can be achieved in the same way one would do

it using NumPy.

>z[0:0] = 42

>z[0, 0]

42

>z[0,1]

0

3.1.4 Storage options

Python Zarr can use any object that implements the MutableMapping interface from the collections

module in the Python standard library as the store for a group or an array.

3.1.4.1 Local storage

The simplest local storage is a file system. Zarr refers to this as a directory store.

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

9

> store = zarr.DirectoryStore('data/example.zarr')

But other local stores can be used, such as Zip Files or relational databases.

> store = zarr.ZipStore('data/example.zip', mode='r')

> store = zarr.SQLiteStore('data/example.sqldb')

3.1.4.2 Distributed storage

Zarr provides interfaces to different distributed storage mechanisms, a key factor in our

recommendation.
>import s3fs

>import zarr

>s3=s3fs.S3FileSystem(anon=True,client_kwargs=dict(region_name

='eu-west-2'))

>store=s3fs.S3Map(root='zarr-demo/store', s3=s3, check=False)

>root = zarr.group(store=store)

>z = root['foo/bar/baz']

>import azure.storage.blob

>container_client = azure.storage.blob.ContainerClient(...)

>store=zarr.ABSStore(client=container_client,prefix='zarr-

testing')

>root=zarr.group(store=store, overwrite=True)

3.1.5 Parallel computing

Zarr arrays have been designed for both concurrent read and write operations in parallel

computations. Concurrent write operations may occur, if each writer is updating a different chunk.

Both multi-threaded and multi-process parallelism are possible. If each worker in a parallel

computation is writing to a separate chunk, then no synchronization is required.

If concurrent writes are required across chunks then Zarr can be configured to support that but

performance will suffer as a consequence.

>z=zarr.zeros((10000,10000),chunks=(1000,1000), dtype='i4',

synchronizer=zarr.ThreadSynchronizer())

>synchronizer=zarr.ProcessSynchronizer('data/example.sync')

>z=zarr.open_array('data/example',mode='w',shape=(10000,

10000),chunks=(1000,1000), dtype='i4',synchronizer=synchronizer)

3.2 Relevant libraries and extensions

The relative simplicity of the Zarr format dramatically facilitates the implementations of Zarr

drivers in different programming languages.

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

10

3.2.1 GeoZarr specification

GeoZarr[13] is a geospatial specification for Zarr. It leverages CF conventions to provide a means

of georeferencing multidimensional arrays of geospatial observations. As of August 2023, the

charter for a GeoZarr working group at OGC has been submitted for review [14].

3.2.2 Xarray library

The popular N-Dimensional Array library, Xarray, supports reading from and writing to Zarr

arrays.

A user can leverage the xarray.open_zarr method on an existing Zarr array and utilize the suite of

XArray functionality to access and analyze the data. Xarray will leverage the Zarr specification

[2] and API to be performant when interfacing with distributed network storage, essentially

abstracting away the underlying storage mechanism from the user.

3.2.3 Dask library

Zarr can be used with Dask to provide multi-threaded or multi-process parallelization utilizing

lazy evaluation of arrays (ie. only accessing the parts of the arrays you need).

3.2.4 Intake library

Intake is a lightweight interface for loading and sharing data in data science projects. The intake-

xarray library supports the Zarr data format.

3.2.5 Kerchunk library

Kerchunk allows you to access a variety of legacy scientific formats (including NetCDF and

HDF5) as if they were a Zarr array, with the benefits Zarr provides for distributed network storage

such as cloud object stores. This technique is attractive in that it does not require the reformatting

and copying of the original archive to a Zarr array. Kerchunk works with the original format to

provide to the user the functionality and performance of a Zarr array.

3.2.6 GDAL library

The GDAL [15] translation library provides a common API for working with a variety of raster

data formats as well as tools for conversion between different raster formats. Zarr is a supported

format through both GDAL’s classic (2-dimensional) raster API and, since GDAL 3.1, through

GDAL’s multidimensional data API, which allows both direct analysis of Zarr archives using

certain GDAL utilities and transformation between Zarr and other formats (like NetCDF or

GeoTIFF). Support exists for version 2 of the specification with support for version 3 in an

experimental phase.

3.2.7 NetCDF library

Zarr archives that follow specific metadata specifications — specifically, either the Xarray-Zarr

specification or the NCZarr specification — can be opened and analyzed using the NetCDF C

library.

https://docs.xarray.dev/en/stable/generated/xarray.open_zarr.html
https://clouds.eos.ubc.ca/~phil/courses/parallel_python/03_dask_and_zarr.html
https://intake-xarray.readthedocs.io/en/latest/quickstart.html
https://intake-xarray.readthedocs.io/en/latest/quickstart.html
https://fsspec.github.io/kerchunk/
https://docs.xarray.dev/en/stable/internals/zarr-encoding-spec.html
https://docs.xarray.dev/en/stable/internals/zarr-encoding-spec.html
https://docs.unidata.ucar.edu/netcdf/NUG/nczarr_head.html

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

11

4 Interoperability and Applicability Considerations

Zarr arrays are most suitable for gridded data that are accessible via a distributed network. Non-

gridded data, swath data for example, are less well-suited for replication or representation as a Zarr

array.

EOSDIS’ migration to the cloud makes a strong case for the provision of data formats that are

designed for cloud usage in addition to our traditional formats. Zarr is a strong candidate for multi-

dimensional data which constitutes the bulk of the EOSDIS data archive, along with Kerchunk’s

ability to provide a Zarr interface for legacy formats, and HDF5’s cloud optimized additions5.

Cloud Optimized GeoTIFF (COG) does have applicability to EOSDIS data, but is out of scope for

this document.

While we expect EOSDIS to produce Zarr data stores, we also expect the community at large to

produce them, deriving them from EOSDIS archival data. One example of this is the Pangeo Forge

effort mentioned elsewhere in this document. A further driver for a more community-driven

approach is that the considerations taken to produce a Zarr array depend on the user consuming

the data, specifically the chunking strategy. This means that one archived data set could have

multiple Zarr arrays tailored for different uses. This plays, somewhat, into the Pangeo-Forge

philosophy that the generation of cloud-optimized data is not the sole domain of the data curator

but also of the data scientist.

Zarr is a work in progress, particularly in the realm of metadata standards. Attempts are in progress

to mitigate this risk with proposals such as GeoZarr which will attempt to standardize geospatial

Zarr arrays. Even so, there is a ground swell of adoption both within EOSDIS (see GES DISC

work for Giovanni) and the earth science data community (see Pangeo Forge).

There are areas in the geospatial tools domain where Zarr is not well supported. QGIS does not

currently support Zarr as a data format (although there is a pending feature request). ArcGIS Pro

3.2, however, does support Zarr as a multidimensional raster data format.

The Zarr format has some issues in the area of updating existing Zarr arrays with new data when

that array is concurrently being accessed by users. When a user reads the metadata associated with

a Zarr array in order to obtain the relevant parts they assume that the metadata is static. Updating

a Zarr array can alter this metadata, introducing risk to the access of the data based on the old

metadata. The relative size of a Zarr array increases this risk, compared to other data formats. The

enhancement proposal ZEP 2 has provisions to mitigate this risk. This is outlined in section 5.1

5 Future versions of the specification

The current version of Zarr is version 2 [2] and that is the version endorsed by this recommended

standard document. Version 3 of Zarr is currently under development at time of writing. Version

3 focuses on the following,

● Feature parity and full interoperability across all major programming languages.

5
 https://www.youtube.com/watch?v=bDH59YTXpkc

https://github.com/qgis/QGIS/issues/54240
https://pro.arcgis.com/en/pro-app/latest/help/data/imagery/an-overview-of-multidimensional-raster-data.htm
https://zarr.dev/zeps/accepted/ZEP0002.html
https://zarr.dev/zeps/draft/ZEP0001.html

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

12

● Support for novel encoding technologies, storage technologies and features by a broader

community.

● Reasonable performance characteristics of all Zarr implementations across a variety of

different underlying storage technologies, including storage with high latency per

operation.

● Improve performance for data with a very large number of chunks and/or with a variety of

common access patterns.

Additionally there are a number of Zarr Enhancement Proposals (ZEP) that are in flight including

the sharding codec detailed below.

5.1 ZEP 2 Sharding codec

The storage of very large (tera and ultimately peta-scale), chunked arrays, is inefficient or even

impossible due to the number of files/objects required. As the number of chunks increases in a

Zarr array the number of files required in a traditional file system can reach block size and inode

limits. In object store systems such as S3 and GCS, large numbers of small objects cannot be

handled efficiently.

To reduce the number of entities (files or objects) in a Zarr array without increasing the chunk size

(which would be problematic for streaming data in browser-based visualization software) ZEP 2

allows combining multiple chunks into single storage keys. This technique is referred to as

sharding.

Users can either read an entire shard (outer chunk) or, read the metadata of the shard to determine

the byte-range of one or more chunks within that shard and then obtain only the (inner) chunk(s)

they are interested in.

Sharding has the potential to mitigate some risks outside of very large arrays. For example, the

differing chunk size needs for visualization and analytics could be catered for by shard size and

chunk size considerations. It also has the provision to allow in-place update of compressed chunks

without altering the metadata (a risk outlined in section 4) by leveraging unused space within a

chunk.

6 References

6.1 Normative references

[1] Zarr homepage: https://zarr.dev

[2] Zarr specification: https://github.com/zarr-developers/zarr-specs

6.2 Informative references

[3] S3: https://aws.amazon.com/s3/

[4] Dask: https://www.dask.org/

[5] Xarray: https://docs.xarray.dev/en/stable/

[6] Pangeo Forge: https://pangeo-forge.org/

https://zarr.dev/zeps/accepted/ZEP0002.html
https://zarr.dev/zeps/accepted/ZEP0002.html#related-work
https://zarr.dev/zeps/accepted/ZEP0002.html#related-work
https://zarr.dev/
https://github.com/zarr-developers/zarr-specs
https://aws.amazon.com/s3/
https://www.dask.org/
https://docs.xarray.dev/en/stable/
https://pangeo-forge.org/

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

13

[8] Giovanni: https://earth.gsfc.nasa.gov/ocean/data/giovanni

[8] AWS open data registry: https://registry.opendata.aws

[9] MUR dataset on the AWS open data registry: https://registry.opendata.aws/mur/

[10] GIBS: https://wiki.earthdata.nasa.gov/display/GIBS/

[11] VEDA: https://www.earthdata.nasa.gov/esds/veda

[12] Zarr documentation: https://zarr.readthedocs.io/en/stable/

[13] GeoZarr: https://github.com/zarr-developers/geozarr-spec

[14] OGC GeoZarr Standards Working Group Charter: https://portal.ogc.org/files/105667

and https://eosdis.slack.com/archives/C04D3084GAZ/p1693497131582929

[15] GDAL: https://gdal.org/drivers/raster/zarr.html

7 RFC Authors' Addresses

Newman, Douglas J. douglas.j.newman@nasa.gov

ESDIS Standards Office (ESCO)

Email: esco-staff@lists.nasa.gov

Web: https://earthdata.nasa.gov/esdis/esdis-standards-office-esco

Appendix A

Acronym Description

API Application Programming Interface

ARCO Analysis-ready cloud optimized data

AWS Amazon Web Services

CF Climate and Forecast Metadata conventions

CMR Common Metadata Repository

DOE Department of Energy

EOSDIS Earth Observing System Data and Information System

GES DISC Goddard Earth Sciences Data and Information Services Center

GDAL Geospatial Data Abstraction Library

GIBS Global Imagery Browse Services

Giovanni Geospatial Interactive Online Visualization ANd aNalysis Infrastructure

IMPACT Interagency Implementation and Advanced Concepts Team

HDF Hierarchical Data Format

https://earth.gsfc.nasa.gov/ocean/data/giovanni
https://registry.opendata.aws/
https://registry.opendata.aws/mur/
https://wiki.earthdata.nasa.gov/display/GIBS/
https://www.earthdata.nasa.gov/esds/veda
https://zarr.readthedocs.io/en/stable/
https://github.com/zarr-developers/geozarr-spec
https://portal.ogc.org/files/105667
https://gdal.org/drivers/raster/zarr.html
mailto:eso-staff@lists.nasa.gov

ESDS-RFC-048 Newman, Douglas J.

Category: Convention April 2024

Updates: n/a Zarr Storage Specification V2

14

MUR Multi-scale Ultra-high Resolution

NetCDF Network Common Data Form

NOAA National Oceanic and Atmospheric Administration

OGC Open Geospatial Consortium

PO.DAAC Physical Oceanography Distributed Active Archive Center

S3 Simple Storage Service

SST Sea Surface Temperature

VEDA Visualization, Exploration, and Data Analysis

WMS OGC Web Mapping Service

WMTS OGC Web Map Tiling Service

