

Planet Imagery Geometric Assessment

Assessment completed by NASA CSDA Program Subject Matter Experts:

> Alana G. Semple Bin Tan Guoqing (Gary) Lin NASA GSFC Code 619 11-13-2023

Introduction

- Geolocation accuracy of Planet's SuperDove (SD) series is evaluated at 25 globally distributed cities.
- Geolocation accuracy of Planet's Dove-R (DR) series is evaluated at 24 globally distributed cities.
- Band-to-Band Registration (BBR) for the SuperDove series is assessed for all bands against Red band.
- Resolution performance is assessed for 6 SuperDove series sensors, 4 of which are assessed both soon after launch and 1+ years after launch.
- A similarly extensive assessment of the Dove-R series is in progress.
- See accompanying document for more details of our SuperDove assessment (LINK TO DOCUMENT?).

Relative Geolocation Accuracy Assessment Methods

- Planet (PS) SuperDove and Dove-R imagery are assessed for relative geolocation accuracy with WorldView (WV) imagery as the reference dataset. Red bands for both are assessed.
- Assessment is performed globally over cloud free images in likely best case scenario locations (i.e. cities or airports with low buildings and minimal tree cover).
- Images pairs (PS & WV) are split into subset image 'chips' and the offsets between them determined by which offsets give the best Pearson Cross Correlation.
- Chip offset results are filtered based on a match quality metric, and overall image offsets determined based on the high-quality valid matches.
- Reference geolocation uncertainties include those from our refence WV imagery and our orthorectification of it with the 30 m SRTM DEM
- This method is used for our BBR assessment on SuperDove (SD) images, with the corresponding SD Red band as the reference image.

Super Dove Relative Geolocation Accuracy

Table shows geolocation accuracy of PS Dove-R images relative to a single WV image at each location.
(*) mark locations with less certainty in the reference image. CE90-demean example on slide 6.

A City Within:	# of Images	# of Valid Matches	X Offset (m)	Y Offset (m)	X StdDev (m)	Y StdDev (m)	X RMSE (m)	Y RMSE (m)	CE90 (m)	CE90- demean (m)
Massachusetts	14	3683	1.3	-6.1	3.0	3.8	3.3	7.1	4.3	2.0
California	11	2257	-2.2	0.3	1.7	1.8	2.8	1.9	3.5	2.3
New Mexico	20	6072	4	-0.3	1.9	1.5	1.9	1.5	3.2	3.2
Canada*	6	517	1.7	2.0	2.0	3.2	2.4	3.7	6.0	5.2
Mexico	5	4361	2.0	1.0	1.5	1.4	2.5	1.7	4.5	3.1
Ecuador	6	408	-5.6	-7.6	1.6	2.3	5.8	7.9	11.3	2.6
Brazil	6	6848	9	3.3	1.0	1.6	1.3	3.7	5.1	2.6
Chile	5	1023	-4.6	3.8	1.2	1.6	4.8	4.2	7.6	2.6
Argentina	7	1851	-2.5	-5.4	1.7	1.5	3.0	5.6	7.9	3.1
England	6	2727	-3.7	12.8	1.9	2.8	4.1	13.1	16.6	4.6
Ireland	5	2668	-1.1	10.3	1.4	1.5	1.8	10.4	12.3	3.0
Sicily	5	2182	-5.8	10.4	4.3	5.1	7.2	11.6	15.7	5.0
Turkey*	9	2901	-22.0	12.2	2.4	1.9	22.1	12.3	28.1	4.5
Morocco	5	1182	4.3	2.0	5.0	4.2	6.6	4.6	7.0	2.7
Angola	6	4292	3.8	0.4	0.8	1.5	3.9	1.6	5.1	2.6
Somalia	5	5244	-1.2	1.0	1.3	1.2	1.7	1.5	3.3	2.6
South Africa	6	4597	-6.2	0.1	1.6	1.2	6.4	1.2	8.2	2.7
Cairns	6	2758	1.7	-0.3	3.0	3.7	3.4	3.7	6.0	5.0
Melbourne	6	2485	-10.1	9.8	1.0	1.7	10.1	10.0	15.2	2.0
Perth	6	3387	-7.6	-7.5	1.8	1.6	7.8	7.6	13.2	3.6
Baoshan	7	2920	9	-1.0	2.5	2.9	2.6	3.1	4.9	4.4
Hohhot	5	1569	-9.4	-1.4	2.0	1.6	9.6	2.1	11.7	3.2
Japan	6	4434	5.0	-7.2	1.2	1.8	5.1	7.4	11.1	3.3
Russia*	6	1463	4.6	3.3	1.9	1.8	5.0	3.7	7.3	2.5
Singapore	6	4159	5.5	4.4	6.4	6.5	8.4	7.9	14.3	9.2
Global	175	75988	-1.7	1.4	6.3	6.1	6.5	6.3	13.8	3.8

4

Dove-R Relative Geolocation Accuracy

٠

Table shows geolocation accuracy of PS Dove-R images relative to a single WV image at each location. (*) mark locations with less certainty in the reference image. **CE90-demean example on slide 6**.

A City Within:	# of DR	# of Valid	X Mean	Y Mean	X StdDev	Y StdDev	X RMSE	Y RMSE	CE90	CE90-demean
	Images	Matches	(m)	(m)	(m)	(m)	(m)	(m)	(m)	(m)
California	12	11548	-1.3	2	1.0	1.0	1.6	1.0	2.6	2.0
Massachusetts	11	. 1999	1.4	-6.4	2.9	2.7	3.2	7.0	8.7	2.8
Canada*	E	5 2748	3.	3.7	1.1	1.8	1.4	4.1	5.2	3.1
Mexico	e	5 3877	2.0).5	1.2	.9	2.3	1.0	3.5	2.0
Ecuador	5	5 1781	-11.8	-2.3	3.3	1.3	12.2	2.6	15.3	5.3
Brazil	E	5 7187	-1.1	. 3.8	.6	1.1	1.2	4.0	5.2	1.8
Chile	4	575 ^ل	-6.1	. 3.6	1.3	2.6	6.3	4.5	9.3	4.4
Argentina	5	5 2635	-2.9	-5.2	1.2	.8	3.1	5.3	7.2	2.2
England	11	. 5188	-2.7	10.8	1.7	4.1	3.2	11.5	14.6	7.2
Ireland	5	6 4587	3	9.8	1.1	1.4	1.4	9.9	11.4	2.5
Sicily	5	6920	-6.1	. 11.0	1.5	2.2	6.3	11.3	15.1	3.5
Turkey*	ç	8168	-17.9) 11.5	1.6	1.9	18.0	11.6	23.2	3.7
Morocco	5	5 2935	4.4	1.4	2.1	1.9	4.9	2.3	6.0	2.3
Angola	e	5 2520	4.0).5	2.0	1.8	4.4	1.9	5.2	2.4
Somalia	7	⁷ 1451	-1.9	.6	4.8	5.2	5.2	5.2	4.5	3.1
South Africa	e	6 4984	-6.1	5	1.4	1.2	6.3	1.2	8.0	2.7
Cairns	e	5 1190	2.0)5	2.5	3.8	3.2	3.8	6.6	5.2
Melbourne	5	5 2062	-10.3	9.5	2.0	1.9	10.5	9.6	15.1	1.8
Perth	e	5 2091	-7.8	3 13.1	2.3	.7	8.1	13.1	17.0	3.7
Egypt	e	6 4486	6	6 8.5	2.0	2.4	2.1	8.8	10.7	2.8
Baoshan	6	5 3338	-1.2	-1.6	1.2	1.8	1.7	2.4	4.0	3.0
Hohhot	7	2741	-8.7	-2.0	1.7	2.9	8.9	3.6	10.8	3.7
Japan	8	3 4282	5.0) -7.7	1.1	2.0	5.2	7.9	11.5	3.2
Russia*	5	5 1529	4.7	3.0	2.2	2.0	5.2	3.7	7.9	3.3
Total Data:	158	90822	-3.2	3.6	6.2	6.3	7.0	7.3	16.5	3.2

5

SuperDove Chile Site: CE90 & CE90-Demean

Chile SD CE90 vs CE90-demean

CE90

- CE90 relative to WV reference image.
- CE90 = 7.6 m

CE90-demean

- Definition: CE90-demean, the CE90 with the offset bias of reference image removed.
 Assuming the bias is wholly contributed from the reference image.
- CE90demean = 2.6 m

SuperDove BBR

Band vs. Red	# of Valid Matches	Mean X Offset (m)	Mean Y Offset (m)	Mean r _i (m)	CE90(r _i) (m)
Costal Blue	79726	-0.01	-0.16	0.69	1.26
Blue	81598	0.05	0.14	0.52	1.01
Green I	94215	0.00	0.03	0.44	0.82
Green	109539	-0.01	0.00	0.40	0.73
Yellow	125743	0.00	-0.02	0.39	0.68
Red Edge	101528	-0.01	-0.03	0.50	0.93
NIR	41913	0.08	-0.04	1.13	2.36

$$r_i = \sqrt{x_i^2 + y_i^2}$$

- x_i are the EW offsets for each valid chip match relative to red band
- y_i are the NS offsets for each valid chip match relative to red band
- r_i is the radial offset for each valid chip match

- SuperDove Band-to-Band Registration (BBR) is performed with the Red band as reference.
- Note that as the spectral band moves away from Red, the number of matches decreases.
- BBR is sub-pixel for all bands and increases in offset as the spectral bands move away from Red. All offsets are much smaller than footprint size.
- Best performing bands are Yellow and Green with mean radial offset of 0.39 m and 0.40 m, respectively.
- Band farthest offset is NIR with a mean radial offset of 1.13 m.
- This assessment was performed with their reprocessed archive data.

Assess SuperDove Spatial Resolution

- CalVal site in India
- 70 m squares + 10 m color and B/W squares

Image provided to NASA by © Planet 2023 Image ID: 20230310_042633_64_24a1 Band: Red

8

- Extract raw pixels along black/white (B/W) transition
- Transform from pixel number to distance from B/W transition
- Fit a polynomial to the transformed data to make Edge Spread Function (ESF). Relative Edge Response (RER) is calculated based off the normalized ESF with $RER = \sqrt{ESF_V(0.5) - ESF_V(-0.5)}$
- Calculate derivative of ESF to find Line Spread Function (LSF)
- Fourier transform the LSF to find Modulation Transfer Function (MTF)
- Find Ground Resolved Distance (GRD) where MTF(1/(2GRD)) = 0.5

1. Define a line as the transition from black to white (blue line in diagram) 2. Calculate perpendicular distance from pixel center to blue line (purple lines in diagram, d_n) $d_p = d^* \cos(\Theta)$ Pixel d θ center B/W transition dp θ **Grid Vertical** Θ = Angle between transition and image grid's vertical *NOT TO SCALE, sizes exaggerated for demonstration 9

Transform into distance from B/W transition

SuperDove RGB Resolution Sensor: 24a1, Along Column Green I ESF Red Edge Spread Function (ESF) **Blue ESF** 3000 2000 all together the state -1-1100 1500 1500 2000 1000 1000 -2 0 -2 -2 _4 ń Distance (pixels) Distance (pixels) Distance (pixels) RER = 0.21**RER = 0.21** RER = 0.20Green I LSF Red Line Spread Function (LSF) Blue LSF 1.0 1.0 1.0 -0.5 0.5 0.5 0.0 0.0 0.0 -2 Ó 0 -7 n Distance (pixels) Distance (pixels) Distance (pixels) FWHM = 3.4 pixels FWHM = 3.6 pixels FWHM = 3.4 pixels Red Modulation Transfer Function (MTF) Green I MTF Blue MTF 1.0 1.0 1.0 0.5

SuperDove RGB Resolution: Temporal Changes

Sensor (image date)	Pixel Size (m)	Band	RER	FWHM (pix)	GRD (pix)	MTF @ny	RER	FWHM (pix)	GRD (pix)	MTF @ny
			Row Direction			Column Direction				
24b0	3.0	R	0.29	2.57	4.00	0.004	0.29	2.59	4.10	0.004
(06/23)		G	0.30	2.67	3.90	0.049	0.30	2.70	4.00	0.031
Y		B	0.30	2.69	3.75	0.040	0.30	2.71	3.75	0.028
2478	3.0	R	0.23	3.14	4.20	0.007	0.23	3.20	4.20	0.008
(03/22)		G	0.23	3.10	4.20	0.008	0.23	3.11	4.00	0.010
X		B	0.24	3.00	4.00	0.007	0.24	3.05	4.00	0.009
2478	3.0	R	0.24	3.06	4.20	0.011	0.23	3.10	4.20	0.010
(03/23)		G	0.22	3.24	4.20	0.011	0.22	3.25	4.20	0.011
X		B	0.24	2.93	4.00	0.006	0.24	3.02	4.00	0.005
2420	3.0	R	0.22	3.21	4.20	0.007	0.22	3.25	4.20	0.007
(03/21)		G	0.20	3.53	4.33	0.008	0.20	3.55	4.33	0.007
S		B	0.23	3.21	4.10	0.010	0.22	3.23	4.20	0.009
2420	3.0	R	0.24	2.84	4.20	0.012	0.24	2.85	4.33	0.010
(03/23)		G	0.20	3.55	4.33	0.010	0.20	3.57	4.33	0.008
S		B	0.24	2.93	4.20	0.013	0.24	2.93	4.33	0.009
2254	3.0	R	0.14	4.21	4.50	0.002	0.14	4.21	4.50	0.005
(10/20)		G	0.13	4.20	4.50	0.006	0.14	4.21	4.50	0.006
V		B	0.13	4.15	4.50	0.007	0.13	4.17	4.50	0.010
2254	3.0	R	0.20	3.33	4.20	0.009	0.20	3.36	4.20	0.009
(10/22)		G	0.21	3.30	4.20	0.012	0.21	3.32	4.20	0.009
V		B	0.21	3.31	4.10	0.008	0.21	3.32	4.10	0.010
2231	3.0	R	0.20	3.87	4.00	0.010	0.19	3.90	4.00	0.009
(09/20)		G	0.20	3.60	4.00	0.008	0.20	3.61	4.10	0.008
P		B	0.20	3.86	4.00	0.008	0.20	3.88	4.00	0.002
2231	3.0	R	0.22	3.19	4.10	0.005	0.22	3.19	4.10	0.006
(08/22)		G	0.23	3.14	4.00	0.004	0.23	3.15	4.00	0.005
P		B	0.23	3.16	4.00	0.007	0.23	3.16	4.00	0.007
Mean	3.0	R	0.22	3.40	4.18	0.006	0.21	3.43	4.20	0.007
(near		G	0.21	3.42	4.19	0.016	0.21	3.44	4.19	0.012
Launch)		B	0.22	3.38	4.07	0.014	0.22	3.41	4.09	0.012
Mean		R	0.23	3.18	4.18	0.009	0.22	3.20	4.21	0.009
(After 1+		G	0.22	3.36	4.18	0.009	0.22	3.37	4.18	0.008
Years)		B	0.23	3.11	4.08	0.009	0.23	3.13	4.11	0.008

- Planet has launched 5 'Flocks' of SD series satellites.
 - Flock4Y 1/2023
 - Flock4X 1/2022
 - Flock4S 1/2021
 - Flock4V 9/2020
 - Flock4P 11/2019
- We assessed RGB resolution for 1 sensor of Flocks P X at two times;
 - 1st: soon after launch
 - 2nd: 1+ yrs after launch
- Generally, SD performance improves after launch

Summary

- PS self-consistency (CE90-demean) is internally consistent with less than 3 pixels (9m) of offset at all sites for both SuperDove and Dove-R. Globally, SD self-consistency is 3.8 m and DR self-consistency is 3.2 m.
- PS relative to WV geolocation accuracy varies by location. SuperDove varies from 3.2 m 28.1 m CE90, Dove-R varies from 2.6 m CE90 – 23.2 m CE90.
- SD BBR is sub-pixel for all bands when compared to Red band, and offsets are much smaller than sensor footprint size. Mean radial offsets vary from 0.39 m – 1.13 m.
- SD sensor performance (RER, FWHM, GRD) improves with time. Average performance in both row and column direction after 1+yrs in orbit is RER = 0.22, FWHM = 3.23 pixels (9.7 m), GRD = 4.15 pixels (12.5 m).
- A similarly extensive analysis of DR series is in progress.

Appendix – SuperDove Image IDs

Angola	20220614 091642 30 2414	California	20220102_173945_81_241f	Melbourne	20230106 231854 93 2423	Sicily	20220728 084908 71 2420
Angola	20220615 091655 93 2403	California	20220314_180751_22_2484	Melbourne	20230108 235759 99 2492	Sicily	20220826 093854 03 2403
Angola	20221120 090504 69 248f	California	20220318_173912_93_2458	Melbourne	20230113 232237 45 2439	Sicily	20220920 090907 39 2251
Angola	20221231 090256 29 2488	California	20220318_173915_23_2458	Melbourne	20230124 235515 91 2474	Sicily	20221009 092155 59 247c
Angola	20230117 082359 56 2449	California	20220321_182556_66_2274	Melbourne	20230209 235646 09 2495	Sicily	20221102 084454 96 2421
Angola	20230212 082900 15 245c	California	20220322_173527_69_2436	Melbourne	20230214 232059 65 2430	Singapore	20220115 023613 93 241d
Argentina	20220906 135826 07 248e	California	20220323_180829_98_2479	Mexico	20220812 164557 68 248f	Singapore	20220305 023515 15 2442
Argentina	20220921 135935 89 24a3	California	20220325_175254_94_2251	Mexico	20221012 164427 41 24a4	Singapore	20220330 023353 67 2460
Argentina	20221006 132013 07 2420	California	20220327_173324_59_2455	Mexico	20221115 160955 84 2449	Singapore	20220608 023038 30 2423
Argentina	20221016 141519 61 2426	California	20220327_173326_89_2455	Mexico	20221130 161039 16 2464	Singapore	20220608 023040 60 2423
Argentina	20221107 135943 29 2470	California	20220327_182311_48_240c	Mexico	20221206 165334 75 2416	Singapore	20220626 030343 20 249a
Argentina	20221202 131553 16 2445	Canada	20220818_180159_98_248e	Morocco	20220119 103512 22 2276	Somalia	20230103 062753 37 2421
Argentina	20221204 135655 60 24a4	Canada	20220831_174603_38_2251	Morocco	20220701 110523 37 2405	Somalia	20230117 070122 69 2481
Baoshan	20230416 025814 60 2463	Canada	20220912_175827_76_2461	Morocco	20220712 110438 64 2426	Somalia	20230127 062533 71 242d
Baoshan	20230419 034202 10 2495	Canada	20220928_175725_94_2231	Morocco	20220801 104927 16 2485	Somalia	20230209 071657 90 2402
Baoshan	20230419 034204 30 2495	Canada	20221008_180125_31_24a5	Morocco	20220818 105201 85 2481	Somalia	20230214 065921 43 249b
Baoshan	20230507 030934 45 242e	Canada	20221031_173210_36_2427	New Mexico	20210521 170216 43 2435	South Africa	20221117 082550 90 248f
Baoshan	20230507 030936 73 242e	Chile	20220227_135324_78_242b	New Mexico	20210721 175133 06 2405	South Africa	20221204 075225 33 2432
Baoshan	20230508 030846 05 24c9	Chile	20220303_144415_55_2413	New Mexico	20210821 175205 10 240c	South Africa	20221221 084024 39 2414
Baoshan	20230521 033404 20 2276	Chile	20220309_135743_19_245c	New Mexico	20210918 170207 40 2460	South Africa	20230108 082340 59 2488
Boston	20211105 144343 64 241d	Chile	20220315_144314_88_241c	New Mexico	20211018 170903 24 2262	South Africa	20230130 082603 51 2461
Boston	20211217 153204 71 2413	Chile	20220406_142800_60_2446	New Mexico	20211120 165918 53 2448	South Africa	20230213 074524 57 2460
Boston	20220116 144110 64 2429	Ecuador	20211224_145421_31_241d	New Mexico	20211220 170206 79 241e	Turkey	20220103 074152 64 2463
Boston	20220211 144123 01 2464	Ecuador	20220430_145139_27_2427	New Mexico	20220121 165951 74 241e	Turkev	20220103 074548 15 245d
Boston	20220220 143956 50 2428	Ecuador	20220509_145043_12_241f	New Mexico	20220220 165722 46 2463	Turkey	20220327 081557 40 2478
Boston	20220220_143958_98_2428	Ecuador	20220726_152125_71_2489	New Mexico	20220325_165623_73_2436	Turkey	20220620_073855_91_2434
Boston	20220313 144011 83 2435	Ecuador	20220820_144826_61_2430	New Mexico	20220420 174134 74 2414	Turkey	20220713 081123 06 2481
Boston	20220313 144014 31 2435	Ecuador	20221005_144601_04_2442	New Mexico	20220520 172717 50 247b	Turkey	20220721 082556 10 227a
Boston	20220418 143755 97 241d	England	20220415_104155_70_2446	New Mexico	20220601 165617 69 2434	Turkey	20220727 080737 08 222f
Boston	20220418_151350_69_248b	England	20220430_101315_25_2212	New Mexico	20220711_165613_72_2429	Turkey	20220730_073957_28_241f
Boston	20220505_151336_92_2475	England	20220711_104046_58_2489	New Mexico	20220812_165207_99_2429	Turkey	20220801_073724_55_2442
Boston	20220605 151232 63 2481	England	20220719_105448_62_2403	New Mexico	20220906 165015 66 2459		
Boston	20220713 150926 11 247e	England	20220812_100725_04_2458	New Mexico	20221014 172421 42 247f		
Boston	20220713_150928_40_247e	England	20220814_103737_39_2446	New Mexico	20221109_164932_90_2455		
Boston	20220806_144108_34_2432	Hohhot	20230507_023004_46_24bc	New Mexico	20221219_165519_34_242d		
Boston	20220908_143645_97_2455	Hohhot	20230508_030650_98_227a	New Mexico	20230112_165441_23_245c		
Boston	20221008_151304_57_247a	Hohhot	20230515_023009_52_24af	Russia	20230422_051520_05_2481		
Boston	20221104_143732_55_2432	Hohhot	20230517_022426_06_241d	Russia	20230504_051659_13_2479		
Boston	20221213_152633_03_2413	Hohhot	20230518_030209_16_2446	Russia	20230510_043913_72_24b6		
Brazil	20220924_124349_64_249c	Ireland	20220421_110555_09_2478	Russia	20230519_044131_33_2439		
Brazil	20221011_120749_62_242b	Ireland	20220620_110736_45_247a	Russia	20230520_051918_30_2489		
Brazil	20221108_124503_22_249d	Ireland	20220829_110915_90_2492	Russia	20230521_051552_39_247a		
Brazil	20221110_120729_31_2459	Ireland	20221013_103101_99_2453	Perth	20221219_015630_57_2446		
Brazil	20221118_124518_22_2486	Ireland	20221022_103358_26_2427	Perth	20230101_012048_43_2430		
Brazil	20221129_120859_02_2465	Japan	20230425_010304_31_2488	Perth	20230113_012250_57_2436		
Cairns	20221022_000732_39_2477	Japan	20230502_003624_72_24cc	Perth	20230129_015706_14_2482		
Cairns	20221115_002353_99_240c	Japan	20230514_003139_48_24b9	Perth	20230205_015645_96_24a5		
Cairns	20221206_233443_53_241e	Japan	20230516_010706_16_247a	Perth	20230212_011900_62_2442		
Cairns	20221207_000941_97_247c	Japan	20230516_010/08_3/_24/8				
Cairns	20221208_233511_27_242d	Japan	20230520_005957_42_2276				
Cairns	20230124_233228_65_2449						

Appendix – Dove-R Image IDs

Angola	20210530 095104 75 105a	California	20210328 185011 20 1059	Ireland	20210307 114651 75 105d	Singapore	20210302 034803 70 1057
Angola	20210926 095718 66 105d	California	20210428 180506 83 106a	Ireland	20210330 115219 18 105a	Singapore	20210526 035254 74 105a
Angola	20220117 100107 23 1057	California	20210428 180508 38 106a	Ireland	20210417 102336 72 1067	Singapore	20210708 033313 25 106a
Angola	20220212_100349_67_1057	California	20210503_180429_99_106c	Ireland	20210717_101708_79_106d	Singapore	20220128_040350_68_1057
Angola	20220318 100343 74 1066	California	20210503 180431 52 106c	Ireland	20210824 115511 20 105d	Singapore	20220128 040352 18 1057
Angola	20220416 100726 69 1061	California	20210614 180426 60 106d	Japan	20210601 015129 68 105e	Singapore	20220330 030358 75 105c
Argentina	20210509_155251_49_106e	California	20210728_185802_20_105d	Japan	20210601_015131_68_105e	Somalia	20210130_073753_40_1069
Argentina	20210818_154414_19_1067	California	20210825_185834_67_1061	Japan	20210719_015147_24_1057	Somalia	20210227_074305_74_105a
Argentina	20210907_145240_23_105d	California	20210914_190209_68_1060	Japan	20210720_003616_73_106c	Somalia	20210305_071322_55_105c
Argentina	20211130 145730 26 1058	California	20211014 190008 17 1066	Japan	20210720 003618 73 106c	Somalia	20210412 073234 09 1067
Argentina	20220222_153115_66_1063	California	20211216_175056_68_106c	Japan	20210731_011256_01_105c	Somalia	20210901_074940_73_1061
Baoshan	20210125_041856_11_1060	Canada	20210612_171559_49_1063	Japan	20210731_011258_49_105c	Somalia	20220113_075816_69_1066
Baoshan	20210126_041858_28_1064	Canada	20210613_171157_63_106e	Japan	20210915_003558_82_106a	Somalia	20220205_075951_24_105e
Baoshan	20210126_041859_79_1064	Canada	20210728_185218_70_105d	Melbourne	20210709_004751_21_1057	South Africa	20211028_093121_71_106a
Baoshan	20210127_041929_48_1059	Canada	20210818_170616_25_106e	Melbourne	20210830_011002_32_1067	South Africa	20211217_092202_74_1057
Baoshan	20210206_034730_22_1063	Canada	20210907_185639_68_105a	Melbourne	20211003_004918_23_1057	South Africa	20220121_092508_72_1058
Baoshan	20210209_034732_33_106c	Canada	20211030_190038_69_105a	Melbourne	20220110_005621_18_105d	South Africa	20220205_092307_68_106c
Boston	20210309_152625_60_105c	Ecuador	20190320_164054_19_1063	Melbourne	20220319_005722_33_106a	South Africa	20220325_092316_69_106c
Boston	20210409_145440_44_1065	Ecuador	20200908_161335_58_106b	Mexico	20210719_165623_80_1063	South Africa	20220419_093142_23_1066
Boston	20210507_145136_35_106c	Ecuador	20201022_153753_25_105c	Mexico	20211012_165254_81_106a	Turkey	20201111_085123_67_1057
Boston	20210507_145137_88_106c	Ecuador	20201113_155848_75_1057	Mexico	20211225_164729_16_106c	Turkey	20201204_085218_07_105a
Boston	20210602_145031_69_106c	Ecuador	20210419_155701_06_106c	Mexico	20220127_174450_17_1061	Turkey	20201206_085414_50_105e
Boston	20210602_145033_19_106c	Egypt	20210818_090137_76_1058	Mexico	20220221_174841_24_105e	Turkey	20201220_081056_53_1065
Boston	20220106_151110_58_105c	Egypt	20210906_090425_73_1058	Mexico	20220329_175202_74_105a	Turkey	20211030_074855_69_106c
Boston	20220315_143252_73_1067	Egypt	20211217_075801_24_106c	Morocco	20210816_104134_91_1067	Turkey	20211030_090927_18_105e
Boston	20220315_143254_23_1067	Egypt	20220105_090728_73_1061	Morocco	20210826_114137_17_1064	Turkey	20211117_090745_20_1064
Boston	20220322_161543_17_105d	Egypt	20220118_091048_24_1058	Morocco	20211207_103328_94_106a	Turkey	20211121_090745_73_1061
Boston	20220322_161544_67_105d	Egypt	20220211_075337_76_106a	Morocco	20220113_115014_70_1058	Turkey	20211212_081427_16_105c
Brazil	20210522_134001_99_106e	England	20190826_103638_06_106c	Morocco	20220116_114807_68_1058		
Brazil	20210722_133634_73_106c	England	20190904_105353_82_1058	Novosibirsk	20200708_044014_13_1067		
Brazil	20210824_133803_66_105a	England	20200129_102510_77_1062	Novosibirsk	20200717_054302_34_1057		
Brazil	20210824_133805_66_105a	England	20200730_110942_71_1064	Novosibirsk	20200813_043749_61_106b		
Brazil	20210919_133902_20_1060	England	20201224_111906_70_1057	Novosibirsk	20200921_054740_78_105a		
Brazil	20211002_133021_12_1067	England	20210227_112402_71_1064	Novosibirsk	20200928_043640_11_1063		
Cairns	20201030_002337_59_105c	England	20210722_095340_04_106e	Perth	20211208_025328_25_1058		
Cairns	20210725_005641_70_1064	England	20211021_113350_71_1058	Perth	20220106_025548_69_1067		
Cairns	20210922_010053_76_105d	England	20211107_113541_24_1061	Perth	20220120_025715_77_1061		
Cairns	20211123_004711_05_1065	England	20211125_094955_73_106a	Perth	20220201_025104_73_1065		
Cairns	20211123_004713_10_1065	England	20220308_093934_88_1065	Perth	20220225_025848_75_1057		
Cairns	20211209_001150_46_105c	Hohhot	20201122_033527_68_1060	Perth	20220325_025845_21_1064		
		Hohhot	20201122_033529_68_1060	Sicily	20211114_101903_73_1058		
		Hohhot	20201130_033508_71_1064	Sicily	20211210_085813_54_1065		
		Hohhot	20201204_025101_25_106c	Sicily	20220103_102307_69_105a		
		Hohhot	20201219_031305_18_105c	Sicily	20220218_102342_72_1061		
		Hohhot	20210105_031143_31_105c	Sicily	20220304_102133_23_1061		
		Hohhot	20210201_024548_88_1063				