
Helmus, J J and Collis, S M 2016 The Python ARM Radar Toolkit (Py-ART), a Library
for Working with Weather Radar Data in the Python Programming Language.
Journal of Open Research Software, 4: e25, DOI: http://dx.doi.org/10.5334/jors.119

Journal of
open research software

SOFTWARE METAPAPER

The Python ARM Radar Toolkit (Py-ART), a Library
for Working with Weather Radar Data in the Python
Programming Language
Jonathan J. Helmus and Scott M. Collis
Environmental Science Division, Argonne National Laboratory, Argonne, IL
Corresponding author: Jonathan J. Helmus (jhelmus@anl.gov)

The Python ARM Radar Toolkit is a package for reading, visualizing, correcting and analysing data from
weather radars. Development began to meet the needs of the Atmospheric Radiation Measurement Cli-
mate Research Facility and has since expanded to provide a general-purpose framework for working with
data from weather radars in the Python programming language. The toolkit is built on top of libraries
in the Scientific Python ecosystem including NumPy, SciPy, and matplotlib, and makes use of Cython for
interfacing with existing radar libraries written in C and to speed up computationally demanding algo-
rithms. The source code for the toolkit is available on GitHub and is distributed under a BSD license.

Keywords: Python; radar; weather; weather radar; Doppler velocity
Funding statement: This paper has been created by UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory,
is operated under Contract No. DE-AC02-06CH11357. This research was supported by the Office of
Biological and Environmental Research of the U.S. Department of Energy as part of the Atmospheric
Radiation Measurement Climate Research Facility.

(1) Overview
Introduction
Weather radars are ideally suited to provide remotely
sensed data of the state of the atmosphere over a wide
geographic area. These instruments are capable of pro-
viding measurements related to the size, concentration,
shape and motion of cloud and precipitation droplets. At
frequencies below 4 GHz, these instruments are capable of
detecting air motion during clear sky conditions by prob-
ing the differences in air density. Unlike other sensors,
weather radars operate and provide meaningful measure-
ments at all times and in most conditions. Additionally,
radar measurements are not severely affected by clouds
and dense precipitation, which limits the range of optical
instruments.

The data provided by weather radars are often used for
the near real-time forecasting of weather events by mete-
orologists, but can also be used to initialize and direct
numerical weather predictions, provide key insights on
atmospheric processes, serve as input for hydrological
models, and develop climatological statistics. Given the
wide uses of data from weather radar, it is not surprising
that there has been considerable investment in the devel-
opment and operation of these instruments worldwide.
Networks of radars cover much of the inhabited regions
of North America and Europe, providing updated views of

the atmosphere for these continents multiple times per
hour.

Measurements made by weather radars contain a
tremendous amount of information, yet considerable
effort must be made to extract out scientifically mean-
ingful parameters. The raw voltage measurements must
be converted into spectra from which moments are
extracted using signal-processing routines. Quality con-
trol and correction routines are typically applied to flag
and remove known artifacts from these radar measure-
ments after which retrieval algorithms can be applied
to derive geophysical parameters such as precipitation
type and amount, wind speeds and directions, and cloud
type [1, 2].

These corrected radar moments and retrieved properties
can be analysed in a variety of ways to provide additional
insight. For example, methods can be used to map how
conditions change over time allowing the development of
models that explain and predict atmospheric processes.
Routines that identify and categorize features in the data
can be run over large amounts of radar data to provide
statistical information on weather and climate patterns.

Processing, correcting and analysing weather radar data
covers a wide range of computational disciplines and
fields. The instrument itself accomplishes some of this
computational work, typically the signal processing steps

http://dx.doi.org/10.5334/jors.119
mailto:jhelmus@anl.gov

Helmus and Collis: The Python ARM Radar Toolkit (Py-ART), a Library for Working with
Weather Radar Data in the Python Programming Language

Art. e25, p.  2 of 6

and a limited amount of quality control and correction
of moments. Other software must be used for additional
processing and analysis. Given the wide scope of informa-
tion that weather radars can provide, having flexible and
extendable software is key. Users of such software will
have a wide range of needs from basic visualization of
the data to the development of complex processing pipe-
lines. Ideally software should be easy to use for common
tasks yet allow advanced users access to more powerful
features.

In this paper, we describe the Python ARM Radar Toolkit,
hereafter Py-ART, an open source Python package built on
top of modules in the scientific Python ecosystem that can
be used to visualize, correct and analyse radar data in a
number of formats. This package provides a framework
for working with radar data in Python from which sophis-
ticated workflows can be created for end-to-end analysis.

A short history of the package will be given followed by
a discussion of the features of the package. The next sec-
tion provides details on the implementation of the toolkit
as well as information on software engineering practices
and tools used to develop and insure the software is of
high quality. This is followed by information on the avail-
ability of the software and a short section on how por-
tions of the whole package can be reused in future radar
software.

History of the package
The Atmospheric Radiation Measurement Climate
Research facility (ARM) is a US Department of Energy
program, which provides in situ and remote sensing
observatories to the climate research community [3, 4].
The program’s mission is to improve the understand-
ing and representation of clouds and aerosols. Since the
early 1990’s, the program has been collecting and pro-
viding data to users from a wide array of instruments
which probe the atmosphere. With investments from the
American Recovery Act, the program acquired a number
of scanning cloud and precipitation radars and upgraded
existing profiling systems. The Python ARM Radar Toolkit
(Py-ART) was created in order to work with the data from
these new radars when existing software was not found to
meet the needs of the program.

As development of Py-ART progressed, it was recognized
that many of the processes and algorithms contained
within the software were not unique to the ARM program
and would be of use to the wider radar community. In
2013, Py-ART was released as open source software and
the scope of the project expanded to address the needs of
the nascent open source radar community. New features
were added to the toolkit such as the ability to read files
from non-ARM radars, and a community of developers and
users both within the ARM program but also outside of
the program formed around the software. Today, Py-ART
contains contributions from developers at universities,
government programs, and radar enthusiasts from around
the globe. The user base is continuously growing as users
learn of the package through short courses and presenta-
tions at conferences, the project’s online documentation,
and word of mouth from other users.

Implementation and architecture
Features and Use
Py-ART is a Python package that provides a variety of rou-
tines for reading, processing, analysing and visualizing
data from weather radars. The package is organized in a
number of sub-packages roughly separated by the type of
functionality they provide.

The core sub-packages contain the Radar and Grid
classes. These are the primary objects used throughout
Py-ART to store moments, pointing information and meta-
data from weather radars in the native elevation, azimuth
and range coordinates or Cartesian coordinates. Other
functions within Py-ART create, modify or visualize data
within these classes. The Radar class stores data from a
single radar volume in memory using a layout which is
based upon the structures used to store radar volumes on
disk as recommended by the CF/Radial convention [5].

The io sub-package provides the ability to read in radar
data from a number of common radar file formats into
Radar and Grid objects. This sub-package also contains
routines for writing data from Radar and Grid objects
out to disk as NetCDF files. Support for reading data from
additional file formats is provided in the aux_io sub-
package. Formats supported in this sub-package are more
limited in scope than those in the io sub-package. A sum-
mary of the file formats supported by Py-ART is given in
Table 1.

The graph sub-package contains classes and routines for
visualizing radar data. The RadarDisplay class can be used
to plot data from radar volumes made up of plan posi-
tion indicator (PPI) or range-height indicator (RHI) sweeps
as well as from vertically pointing instruments. Figure 1
shows an example plot created using the RadarDisplay
class to plot an RHI sweep from an X-band radar oper-
ated by the ARM program at its Southern Great Plains
site. Data from PPI scans or Cartesian grids can be visual-
ized on cartographic maps using the RadarMapDisplay
or GridMapDisplay classes. Figure 2 plots PPI scans
from an ARM C-Band radar which was created using the
RadarMapDisplay class. The sub-modules also contain
a RadarDisplay_Airborne class for plotting data from
radars attached to aircraft as well as a number of color-
maps appropriate for plotting various radar moments.

Format Reading Writing

CfRadial X X

CSU Chill X

GAMIC Partial

MDV X

NEXRAD Level II X

NEXRAD Level III X

ODIM H5 Partial

Sigmet X

UF X X

Table 1: Radar file formats supported by Py-ART.

Helmus and Collis: The Python ARM Radar Toolkit (Py-ART), a Library for Working with
Weather Radar Data in the Python Programming Language

Art. e25, p.  3 of 6

The correct sub-module contains algorithms for cor-
recting artifacts found in radar data. Multiple routines
are included for unfolding or dealiasing radial Doppler
velocities based upon the FourDD algorithm [6], multidi-
mensional phase unwrapping [7, 8] and a novel region-
based algorithm. The sub-module also contains routines
for correcting attenuation using polarametric variables [9]
and processing differential phase using a linear program-
ming method [10]. A limited number of radar retrievals
are available in the retrieve sub-module.

The map sub-module provides routines for creating reg-
ular Cartesian grids from data from one or multiple radars.
Grid points are found by interpolation of all radar gates
within a specified radius of influence using Cressman [11]
or Barnes [12] weighting. Figure 3 shows a mosaic over
the Chicago, IL region created from radar volumes from
five NEXRAD radars in the area.

Py-ART is written predominately in the Python program-
ming language [13]. Python is a high-level, interpreted

programming language that is known for its expressive,
concise and easy to read syntax. Python is a general pur-
pose programming language with a large standard library
and comprehensive repository of third-party packages
that includes a rich set of open source libraries designed
for scientific computing.

Py-ART makes use of many of these scientific Python
libraries. The multi-dimensional array data structure from
the NumPy library [14] is used as an effective means of
storing numerical radar data in memory. Routines in
NumPy as well as from the SciPy library [15] are used
within Py-ART to operate upon these arrays at speeds
that approach those of compiled programming lan-
guages. Visualization in Py-ART makes use of matplotlib
[16], another Python library widely used in the scientific
community. Increasingly, data used in the atmospheric
sciences community is stored and shared in NetCDF
(Network Common Data Format [17]) files. Many weather
radars offer an option to output data in this format. In
order to read and write from this format, Py-ART uses the
netcdf4-python library [18].

Figure 1: A plot of an RHI scan from an X-band radar operated by ARM at their Southern Great Plains site created using
Py-ART.

Figure 2: A plot of a PPI scan from an ARM C-band radar
at the Southern Great Plains site created using the
RadarMapDisplay class in Py-ART.

Figure 3: A mosaic of radar reflectivity from five NEXRAD
radars near the Chicago, IL area during an intense rain-
fall event created using the gridding and visualization
features in Py-ART.

Helmus and Collis: The Python ARM Radar Toolkit (Py-ART), a Library for Working with
Weather Radar Data in the Python Programming Language

Art. e25, p.  4 of 6

Portions of Py-ART are written in Cython, a superset
of Python that translates to C that is compiled to cre-
ate a Python extension module. Cython allows Python
code to interface with C and C++ routines and is used
in Py-ART to interface with the TRMM RSL library [19] as
well as to create a Python wrapper around the FourDD
[6] dealiasing algorithm. Py-ART also uses Cython to
speed up numerical Python routines by adding static
types to some of the variables. This process is only used
when these routines cannot be efficiently written using
NumPy or SciPy and the performance improvements
obtained by using Cython are significant. A small por-
tion of Py-ART is written in Fortran and uses f2py [20] to
interface with Python.

Development and project hosting of Py-ART are done on
GitHub. This service allows Py-ART to make use of a hosted
git version control system for tracking changes to the soft-
ware’s source code. In addition, GitHub provides a bug
tracker, feature request system, wiki, and documentation
hosting for the project. Contributions to Py-ART are typi-
cally submitted as a “pull request” through GitHub. All of
the contributions by core developers follow this process.

Quality control
To insure that high quality, working software is released,
Py-ART includes, maintains and runs a large suite of unit
tests, which exercise the majority of the functionality of
the package. The nose testing framework [21] is used to
design and run tests in Py-ART. Plug-ins to this package
provide details on the code coverage of the test suite,
which is monitored and used to find regions of code that
require additional units tests.

To insure that new additions to Py-ART work and do
not break existing functionality, a continuous integra-
tion platform run by Travis CI builds the package from
source and runs the unit tests upon each commit to the
repository. These same checks are run on pull requests
submitted by contributors. If these tests fail, the devel-
opers are notified so that modifications to the code can
be made to fix these issues prior to merging the changes
into Py-ART.

To aid end users and developers in using and under-
standing Py-ART, a comprehensive set of documentation
is available. This includes both a User and Developer
Reference Manual, which provide a listing of all functions
and classes in the packages aimed at either users or devel-
opers of the package. A number of examples are also avail-
able which provide pre-written scripts that demonstrate
some of the common use cases of Py-ART.

This documentation is built using the Sphinx
documentation generator [22] that creates the HTML
documentation, which is hosted on GitHub. This website
is automatically updated by Travis CI whenever new code
is added to ensure that the documentation and code stay
in sync.

Documentation of the functions, classes and methods is
included directly in the source code as comments formatted
as reStructuredText following the standards used in NumPy
and SciPy. These “docstrings” are extracted by Sphinx from

the source code and formatted nicely using the numpydoc
Sphinx extension [23]. The examples included in the docu-
mentation are also generated using Sphinx using an exten-
sion originally developed by the scikit-learn [24] project.
These examples execute code on real radar data and serve
as a limited set of functional tests for Py-ART.

(2) Availability
Operating system
Linux, OS X, and Windows.

Programming language
Python 2.6 and 2.7, 3.3, 3.4. and 3.5

Additional system requirements
None.

Dependencies
NumPy 1.6+, SciPy 0.11+, matplotlib 1.1+, netcdf4-python
1.0.2+. Additional optional dependencies required for cer-
tain features.

List of contributors
Jonathan Helmus, Argonne National Laboratory
Scott Collis, Argonne National Laboratory
Anderson Gama, Universität Stuttgart
Kirk North, McGill University
Joseph Hardin, Pacific Northwest National Laboratory
Nick Guy, University of Wyoming
Kai Muehlbaer, University of Bonn
Tim Lang, Marshall Space Flight Center

Software location
Archive (e.g. institutional repository, general repository)
(required)

Name: Figshare
Persistent identifier: https://dx.doi.org/10.6084/

m9.figshare.2202553.v1
Licence: BSD
Publisher: UChicago Argonne LLC
Version published: 1.6.0
Date published: 02/15/16

Code repository (e.g. SourceForge, GitHub etc.) (required)
Name: GitHub
Identifier: https://github.com/ARM-DOE/pyart
Licence: BSD
Date published: 02/01/16

Language
English

(3) Reuse potential
Despite being a relatively new software package, Py-ART
is already seeing use within the meteorology and weather
radar research communities. Py-ART drives the back end
of a number of websites that provide plots of data from
weather radars. Py-ART is used at universities and research
institutes to visualize and process data from weather

Helmus and Collis: The Python ARM Radar Toolkit (Py-ART), a Library for Working with
Weather Radar Data in the Python Programming Language

Art. e25, p.  5 of 6

radars for both educational and research activities includ-
ing a recent publication where Py-ART was used to detect
radar signatures of deep convection [25].

Often Py-ART is one component in a workflow that
includes a number of radar software packages. This
includes other open source weather radar libraries includ-
ing wradlib [26], RadX [27], and BALTRAD [28]. Members
from these packages along with the authors recently
worked together to provide a vision for open source radar
software [19] and built a Virtual Machine which includes
these software packages for use in a short course on open
source radar software [29].

Py-ART has been designed to allow the reuse of many
of its individual components. When possible, the imple-
mentation of an algorithm or routine was separated
from the architecture of the package. For example, to
read in data from a NEXRAD Level III file in Py-ART, a
user would use the read_nexradl_level3 function that
returns a Radar instance. The NEXRADLevel3File class
allows for low-level access to NEXRAD files that does
not use the Radar class data model. In fact, the module
that contains the NEXRADLevel3File is not coupled to
any portions of Py-ART and can be used independently
from the rest of the package. Many of the other functions
which read in data from files follow this setup, with a
class providing low-level access to the file content which
can be reused outside of Py-ART. Many of Py-ART’s pro-
cessing and analysis routines are also designed in a two-
layer manner where the top layer uses Py-ART specific
classes and objects, and the lower layer uses more basic
variables.

In addition to being re-usable, Py-ART is also extend-
able. The classes and functions within Py-ART can serve
as a base upon which additional functionality can be
built. Already, members of the community have written
the ARM Radar Toolkit Viewer, ARTView [30], an interac-
tive radar viewing browser using Py-ART as a base. Tim
Lang from NASA’s Marshall Space Flight Center has
released a number of packages that extend Py-ART to pro-
vide additional processing methods including PyTDA for
detecting Turbulence and PyBlock for estimating beam
blockage [31]. Colorado State University has released
a CSU_RadarTools package that contains Python tools
for polarimetric radar retrievals [32]. The documenta-
tion for these packages uses Py-ART for data loading and
visualization.

Acknowledgements
The authors wish to thank the users of Py-ART for their
encouragement and suggestions as well as the contribu-
tors to the various scientific Python packages for creat-
ing such a powerful programming environment. Finally,
the authors wish to thank Argonne National Laboratory
and the Atmospheric Radiation Measurement Climate
Research Facility for supporting the development of
Py-ART.

Competing interests
The authors declare that they have no competing interests.

References
1.	 Doviak, R and Zrnic, D 2006 Doppler Radar and

Weather Observations: Second Edition, Dover Publica-
tions.

2.	 Bringi, V and Chandrasekar, V 2005 Polarimetric
Doppler Weather Radar: Principles and Applications,
Cambridge University Press.

3.	 Ackerman, T and Stokes, G 2003 ‘The Atmospheric
Radiation Measurement Program,’ Phys. Today, 56 (1),
38–44. DOI: http://dx.doi.org/10.1063/1.1554135

4.	 Mather, J and Voyles, J 2012 ‘The Arm Climate Re-
search Facility: A Review of Structure and Capabilities,’
Bull. Am. Meteorol. Soc., 94 (3), 377–392. DOI: http://
dx.doi.org/10.1175/BAMS-D-11-00218.1

5.	 Dixon, M, Lee, W, Rilling, B, Burghard, C and
Van Andel, J 2015 ‘CfRadial data file format: Pro-
posed CF-compliant netCDF format for moments data
for RADAR and LIDAR in radial coordinates.’ URL:
http://www.ral.ucar.edu/projects/titan/docs/radial_
formats/CfRadialDoc.v1.3.20130701.pdf.

6.	 James, C and Houze Jr, R 2001 ‘A real-time four-
dimensional Doppler dealiasing scheme,’ J. Atmospher-
ic Ocean. Technol., 18 (10), 1674–1683. DOI: http://
dx.doi.org/10.1175/1520-0426(2001)018<1674:ARTF
DD>2.0.CO;2

7.	 Herráez, M, Burton, D, Lalor, M and Gdeisat, M
2002 ‘Fast two-dimensional phase-unwrapping algo-
rithm based on sorting by reliability following a non-
continuous path,’ Appl. Opt., 41 (35), 7437–7444. DOI:
http://dx.doi.org/10.1364/AO.41.007437

8.	 Abdul-Rahman, H, Gdeisat, M, Burton, D and
Lalor, M 2005 ‘Fast three-dimensional phase-unwrap-
ping algorithm based on sorting by reliability follow-
ing a non-continuous path,’ SPIE Proceedings, 5856,
32–40. DOI: http://dx.doi.org/10.1117/12.611415

9.	 Gu, J, Ryzhkov, A, Zhang, P, Neilley, P, Knight, P,
Wolf, B and Lee, D 2011 ‘Polarimetric Attenua-
tion Correction in Heavy Rain at C Band,’ J. Appl.
Meteorol. Clim., 50 (1), 39–58. DOI: http://dx.doi.
org/10.1175/2010JAMC2258.1

10.	Giangrande, S, McGraw, R and Lei, L 2013 ‘An
Application of Linear Programming to Polarimetric
Radar Differential Phase Processing,’ J. Atmospheric
Ocean. Technol., 30 (8), 1716–1729, Aug. 2013. DOI:
http://dx.doi.org/10.1175/JTECH-D-12-00147.1

11.	Cressman, G 1959 ‘An operational objec-
tive analysis system,’ Mon. Weather Rev., 87 (10),
367–374. DOI: http://dx.doi.org/10.1175/1520-
0493(1959)087<0367:AOOAS>2.0.CO;2

12.	Barnes, S 1964, ‘A Technique for Maximizing Details
in Numerical Weather Map Analysis,’ J. Appl. Meteorol.,
3 (4), 396–409. DOI: http://dx.doi.org/10.1175/1520-
0450(1964)003<0396:ATFMDI>2.0.CO;2

13.	van Rossum, G 1995 ‘Python Tutorial, Techni-
cal Report CS-R9526,’ Centrum voor Wiskunde en
Informatica (CWI).

14.	Oliphant, T 2007 “Python for Scientific Computing,”
Comput. Sci. Eng., 9 (3), 10–20. DOI: http://dx.doi.
org/10.1109/MCSE.2007.58

http://dx.doi.org/10.1063/1.1554135
http://www.ral.ucar.edu/projects/titan/docs/radial_formats/CfRadialDoc.v1.3.20130701.pdf
http://www.ral.ucar.edu/projects/titan/docs/radial_formats/CfRadialDoc.v1.3.20130701.pdf
http://dx.doi.org/10.1175/1520-0426(2001)018<1674:ARTFDD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2001)018<1674:ARTFDD>2.0.CO;2
http://dx.doi.org/10.1175/1520-0426(2001)018<1674:ARTFDD>2.0.CO;2
http://dx.doi.org/10.1364/AO.41.007437
http://dx.doi.org/10.1117/12.611415
http://dx.doi.org/10.1175/2010JAMC2258.1
http://dx.doi.org/10.1175/2010JAMC2258.1
http://dx.doi.org/10.1175/JTECH-D-12-00147.1
http://dx.doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1959)087<0367:AOOAS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1964)003<0396:ATFMDI>2.0.CO;2
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2007.58

Helmus and Collis: The Python ARM Radar Toolkit (Py-ART), a Library for Working with
Weather Radar Data in the Python Programming Language

Art. e25, p.  6 of 6

How to cite this article: Helmus, J J and Collis, S M 2016 The Python ARM Radar Toolkit (Py-ART), a Library for Working
with Weather Radar Data in the Python Programming Language. Journal of Open Research Software, 4: e25, DOI: http://dx.doi.
org/10.5334/jors.119

Submitted: 15 February 2016 Accepted: 01 July 2016 Published: 18 July 2016

Copyright: © 2016 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

15.	Jones, E, Oliphant, T and Peterson, P 2001 ‘SciPy:
Open source scientific tools for Python,’ URL: http://
www.scipy.org/

16.	Hunter, J 2007 ‘Matplotlib: A 2D Graphics Environ-
ment,’ Comput. Sci. Eng., 9 (3), 90–95. DOI: http://
dx.doi.org/10.1109/MCSE.2007.55

17.	Unidata ‘Network Common Data Form (netCDF)’.
DOI: http://doi.org/10.5065/D6H70CW6

18.	Whitaker, J 2015 ‘netCDF4 API documentation’. URL:
http://unidata.github.io/netcdf4-python/

19.	Heistermann, M, Collis, S, Dixon, M, Giangrande,
S, Helmus, J, Kelley, B, Koistinen, J, Michelson,
D, Peura, M, Pfaff, T and Wolff, D 2014 ‘The Emer-
gence of Open-Source Software for the Weather
Radar Community,’ Bull. Am. Meteorol. Soc., 96 (1),
117–128. DOI: http://dx.doi.org/10.1175/BAMS-
D-13-00240.1

20.	Peterson, P 2009 ‘F2PY: a tool for connecting For-
tran and Python programs,’ Int. J. Comput. Sci.
Eng., 4 (4), 296. DOI: http://dx.doi.org/10.1504/
IJCSE.2009.029165

21.	Pellerin, J 2009 ‘nose’. URL: https://nose.readthe-
docs.org/en/latest/

22.	Sphinx: Python Documentation Generator 2015
URL: http://sphinx-doc.org/

23.	numpydoc – Numpy’s Sphinx extensions 2015
URL: https://github.com/numpy/numpydoc

24.	Pedregosa, F, Varoquaux, G, Gramfort, A, Michel,
V, Thirion, B, Grisel, O, Blondel, M, Prettenhofer,
P, Weiss, R, Dubourg, V, Vanderplas, J, Passos,
A, Cournapeau, D, Brucher, M, Perrot, M and
Duchesnay, É 2011 ‘Scikit-learn: Machine Learning in
Python,’ J. Mach. Learn. Res., 12, 2825–2830.

25.	Lier-Walqui, M, Fridlind, A, Ackerman, A, Collis, S,
Helmus, J, MacGorman, D, North, K, Kollias, P and
Posselt, D 2015 ‘On Polarimetric Radar Signatures of
Deep Convection for Model Evaluation: Columns of
Specific Differential Phase Observed during MC3E’,
Monthly Weather Review, 144 (2), 737–758. DOI:
http://dx.doi.org/10.1175/MWR-D-15-0100.s1

26.	Heistermann, M, Jacobi, S and Pfaff, T 2013 ‘Tech-
nical Note: An open source library for processing
weather radar data (wradlib),’ Hydrol. Earth Syst. Sci.,
17 (2), 863–871. DOI: http://dx.doi.org/10.5194/hess-
17-863-2013

27.	Dixon, M 2015 ‘RADX.’ URL: http://www.ral.ucar.edu/
projects/titan/docs/radial_formats/radx.html.

28.	Michelson, D, Koistinen, J, Peltonen, T, Szturc, J
and Rasmussen, M 2012 ‘Advanced weather radar
networking with BALTRAD+,’ Proceedings of ERAD
2012, Toulouse, France.

29.	Heistermann, M, Collis, S, Dixon, M, Helmus, J,
Henja, A, Michelson, D and Pfaff, T 2015 ‘An Open
Virtual Machine for Cross-Platform Weather Radar Sci-
ence,’ Bull. Am. Meteorol. Soc., 96, 1641–1645. DOI:
http://dx.doi.org/10.1175/BAMS-D-14-00220.1

30.	Guy, N, Gama, A, Lang, T and Hein, P 2015 ‘artview:
ARTview release 1.0’ DOI: http://dx.doi.org/10.5281/
zenodo.27358

31.	Lang, T 2015 ‘Python-based scientific analysis and
visualization of precipitation systems at NASA Marshall
Space Flight Center’, 95th American Meteorological So-
ciety Annual Meeting. URL: https://ams.confex.com/
ams/95Annual/webprogram/Paper262779.html.

32.	Lang, T 2015 ‘CSU_RadarTools,” URL: https://github.
com/CSU-Radarmet/CSU_RadarTools.

http://dx.doi.org/10.5334/jors.119
http://dx.doi.org/10.5334/jors.119
http://creativecommons.org/licenses/by/4.0/
http://www.scipy.org/
http://www.scipy.org/
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.1109/MCSE.2007.55
http://doi.org/10.5065/D6H70CW6
http://unidata.github.io/netcdf4-python/
http://dx.doi.org/10.1175/BAMS-D-13-00240.1
http://dx.doi.org/10.1175/BAMS-D-13-00240.1
http://dx.doi.org/10.1504/IJCSE.2009.029165
http://dx.doi.org/10.1504/IJCSE.2009.029165
https://nose.readthedocs.org/en/latest/
https://nose.readthedocs.org/en/latest/
http://sphinx-doc.org/
https://github.com/numpy/numpydoc
http://dx.doi.org/10.1175/MWR-D-15-0100.s1
http://dx.doi.org/10.5194/hess-17-863-2013
http://dx.doi.org/10.5194/hess-17-863-2013
http://www.ral.ucar.edu/projects/titan/docs/radial_formats/radx.html
http://www.ral.ucar.edu/projects/titan/docs/radial_formats/radx.html
http://dx.doi.org/10.1175/BAMS-D-14-00220.1
http://dx.doi.org/10.5281/zenodo.27358
http://dx.doi.org/10.5281/zenodo.27358
https://ams.confex.com/ams/95Annual/webprogram/Paper262779.html
https://ams.confex.com/ams/95Annual/webprogram/Paper262779.html
https://github.com/CSU-Radarmet/CSU_RadarTools
https://github.com/CSU-Radarmet/CSU_RadarTools

