
LIS/OTD Software Guide

Dennis J. Boccippio
Kevin Driscoll

John Hall
Dennis Buechler

Global Hydrology and Climate Center
977 Explorer Blvd

Huntsville, AL 35806

June 2, 1998

2

Contents

I Introduction 7

1 Introduction 9
1.1 Background . 9
1.2 Software Strategy . 10
1.3 The Tools . 13

2 OTD/LIS/LMS Lightning Data 17
2.1 The Instruments . 17

2.1.1 Optical Transient Detector (OTD) 18
2.1.2 Lightning Imaging Sensor (LIS) 18

2.2 Data Organization . 19
2.3 Data Usage . 22

3 Installation 27
3.1 Macintosh PowerPC . 27

3.1.1 System Requirements . 27
3.1.2 Installation . 28

3.2 Windows 95/NT . 29
3.2.1 System Requirements . 29
3.2.2 Installation . 29

3.3 Un*x . 30
3.3.1 System Requirements . 30
3.3.2 Installation . 30
3.3.3 X Terminals / X Windows 32

3.4 Other . 32

II High Level Interfaces 33

4 IDL Interfaces: LISAPP 35
4.1 General Usage . 35
4.2 Recovering from Crashes . 36
4.3 Command line interface . 36
4.4 Menu options . 38

3

4 CONTENTS

4.4.1 File menu . 38
4.4.2 QuickView menu . 42
4.4.3 Analysis menu . 45
4.4.4 Export menu . 52
4.4.5 Verify menu . 60
4.4.6 Tools menu . 60
4.4.7 Help menu . 61

4.5 Adding modules . 62
4.5.1 Widget interface . 62
4.5.2 Color tables . 63

4.6 Future plans . 63

5 IDL Interfaces: API 65
5.1 Data Structures . 65
5.2 Interface Routines . 67

5.2.1 READ ORBIT . 67
5.2.2 READ OLD ORBIT . 69

5.3 Date/Time Utilities . 71
5.3.1 NEW DATETIME STRUCTURE 71
5.3.2 CALC DATETIME . 72

5.4 Geolocation Utilities . 74
5.4.1 GET NADIR LOCATION 74
5.4.2 GET POINTING VECTOR 76
5.4.3 GET EARTH INTERSECTION 77

5.5 General Purpose Utilities . 79
5.5.1 WHICH SENSOR . 79
5.5.2 OTD QA . 80

6 C Interface: High-level API 83
6.1 History . 83
6.2 Compatibility . 84
6.3 Data Structures . 85
6.4 Startup/Shutdown Routines . 87

6.4.1 Initialize() . 87
6.4.2 ResetAllBounds() . 87
6.4.3 FreeData() . 88
6.4.4 Example of startup/shutdown sequence 88

6.5 Interface Routines . 89
6.5.1 GetData() . 89
6.5.2 WriteData() . 90
6.5.3 AddASCIIOutputField() 91
6.5.4 ResetASCIIOutputFields() 92

6.6 Subsetting Routines . 93
6.7 Date/Time Utilities . 94

6.7.1 UTC to TAI93() . 94
6.7.2 TAI93 to UTC() . 94

CONTENTS 5

6.7.3 UTC to GPS() . 94
6.7.4 GPS to UTC() . 95
6.7.5 getDayOfYear . 95
6.7.6 InvJulian . 96

6.8 Geolocation Utilities . 97

III Low Level Interfaces 99

7 C Interface: Low-level API 101

IV Appendices 105

A HDF/C/IDL Structures 107
A.1 Basic structure . 107
A.2 orbit summary . 108
A.3 one second . 110
A.4 point summary . 111
A.5 viewtime . 112
A.6 bg summary . 113
A.7 area . 114
A.8 flash . 115
A.9 group . 116
A.10 event . 117
A.11 Alert Flags . 118

A.11.1 Instrument Alert . 120
A.11.2 Platform alert . 122
A.11.3 External alert . 124
A.11.4 Processing and algorithm alert 126

B Sample Code 129
B.1 Read an orbit . 130
B.2 Export some data to ASCII . 131
B.3 Flash rate climatology . 134

C Software Strategy 139

6 CONTENTS

Part I

Introduction

7

Chapter 1

Introduction

This document serves as a guide to the software intended for use with satel-
lite data from the Optical Transient Detector (OTD) and Lightning Imaging
Sensor (LIS). The software suite consists of both fully featured GUI (Graphical
User Interface) driven applications, and collections of high- and low-level APIs
(Application Programming Interfaces). The software is designed to simplify, as
much as possible, user access to the OTD and LIS lightning data sets, which
are currently distributed in HDF (Hierarchical Data Format) files. The suite
is designed with four goals in mind: simplicity, reusability, compatibility and
deployment. By providing software strongly tailored to these goals, we hope
to minimize each user’s time spent accessing and managing the datasets, and
maximize the time spent actually analyzing them.

1.1 Background

Lightning data from sensors deployed by the NASA / Marshall Space Flight
Center began in April 1995, with the prototype OTD instrument, and continues
with the launch of the LIS instrument aboard the Tropical Rainfall Measure-
ment Mission (TRMM). The collection, processing, filtering, quality assurance
and archiving of these data are nontrivial processes, and the datasets themselves
require a fair amount of ancillary information in order to be useful (instrument
viewtime, alert flags, navigation data, etc.). Rather than maintain these vari-
ous data in separate data streams (e.g., one file for lightning locations, one for
viewing information, one for navigation data), we have chosen to store all data
for each satellite orbit in HDF format files.

The HDF structure is a flexible, self-describing data format, which allows
collections of different data (both in ’type’, e.g., integer, floating point, etc,
and ’order’, e.g., point, vector, array) to be stored together in the same data
file. HDF is an extremely useful tool in scientific data management, but until

9

http://hdf.ncsa.uiuc.edu
http://www.msfc.nasa.gov
http://thunder.msfc.nasa.gov/otd.html
http://trmm.gsfc.nasa.gov
http://trmm.gsfc.nasa.gov

10 CHAPTER 1. INTRODUCTION

quite recently has been hobbled by a rather cumbersome, low-level programming
interface required to access the data in each file. Given the relative ease with
which scientists can create confusing arrangements of data within the HDF files,
the result can easily be a rather unattractive vehicle for storing and deploying
data.

The ultimate goal of the LIS/OTD software suite is to allow scientists to
”forget” that the data is even in HDF format. We have observed that in recent
years, far more time is often spent writing ”translator” and ”extraction” code
for various datasets than is actually spent analyzing them. Furthermore, for
large, complicated, internally linked data sets, students are often scared off by
the complexities of memory allocation, pointer management, etc., which might
be required in some programming languages to handle these data sets.

We thus provide a variety of tools for scientists to access our data at the level
at which they feel comfortable, or may require. The simplest data interface is
a ”conventional” menu-driven software application, which requires little to no
programming skill. This is provided in the form of an IDL program. The next
simplest interface is a ”high-level” programming API, or set of libraries. ”High
level” APIs are those which, for our purposes, allow easy import of the contents
of an HDF file into a programming language such as C or IDL, effectively hid-
ing all of the ”low level” HDF input and output. This frees the scientist from
writing I/O routines, and allows him or her to concentrate on writing analysis
algorithms. Finally, ”Low level” APIs are provided which allow more detailed
access to the HDF data, for programmers who feel comfortable with such access.
Even these APIs are still ”higher level” than the lowest level interface functions
provided in the NCSA HDF distribution, which users of LIS and OTD data
should never need to use.

1.2 Software Strategy

As noted above, the LIS/OTD software suite includes applications, high level
programming libraries, and low level programming libraries. Together, these
give users the flexibility to access the data as they are able (based on their com-
puting resources) and as they require (based on their needs, e.g., file-at-a-time
analysis, batch processing, etc.). The suite has been designed with the following
four goals in mind: simplicity, resuability, compatibility, and deployment.

1. Simplicity means that the LIS/OTD software should have a low learn-
ing curve - users should familiarize themselves with the features of the
sensors themselves, and the general way in which the data is organized,
but shouldn’t have to develop vastly greater programming skill sets than
they already possess in order to use the data. Users need only learn the
software tools which they feel comfortable using. ”Simplicity” also means
that the LIS/OTD data should be contained in a clear, logical hierarchy

1.2. SOFTWARE STRATEGY 11

within HDF files. Significant effort has gone into improving the old OTD
HDF data format to improve its clarity and ease of use.

2. Reusability means that the data structures, programming techniques,
and much of the actual analysis code written by users can be nearly
language-independent, at least in terms of data and algorithm structure.
This would mean that an IDL routine written by one scientist to analyze
LIS data could be easily translated to C by a scientist who did not own a
copy of IDL. This is accomplished primarily by keeping the overall data
structure definitions, variable names, etc. nearly identical between the
HDF file and the IDL and C variables into which the software reads HDF
data.

3. Compatibility means that, as much as possible, we strive to make newly
deployed software backwards-compatible with previously deployed data
formats and/or programming tools. Thus, old format OTD HDF files are
completely supported by the new programming tools. Further, the simpli-
fied HDF data structure should now be general enough to be easily reused
to contain level 1 data from the geostationary Lightning Mapping Sensor
(LMS), when that instrument comes online.

4. Deployment means that our tools must be usable across the widest va-
riety of computing and analysis platforms possible. Our goal is not to
ensure that every tool will work on every platform; resources at the LIS
SCF (Scientific Computing Facility) simply cannot allow that level of soft-
ware support. However, we have attempted to guarantee that at least one
analysis tool is available on every platform, regardless of the operating
system, amount of commercial software installed, etc. This should be
a distinct improvement over our older OTD software tools, which were
severely limited in their cross-platform deployment. We want as many
scientists as possible to use our data!

Fig. 1 illustrates the current implementation of the LIS/OTD software.
The diagram looks complicated, but it’s actually not. At the top are the raw
LIS/OTD data, directly received from the satellites. Users never see these ”level
0” data; they are immediately processed at the LIS/SCF with our ”production
code”. This in-house software organizes and filters the raw satellite data, and
computes some value-added parameters for good measure. The production code
generates HDF data files, which are then distributed to the user community.
Currently there are two HDF file formats, the old OTD format and the new
LIS/OTD format. Both are readable by the software in this package. Eventu-
ally, all old OTD data will be reprocessed and stored in the new file format, but
this is a detail most users need not worry about.

http://ghrc.msfc.nasa.gov

12 CHAPTER 1. INTRODUCTION

Current OTD/LIS
Production & Analysis

Paradigm (1998)

Old OTD
Raw Data

LIS
Raw Data

OTD
Production Code

LIS
Production Code

OTD HDF Files LIS HDF Files

HDF APIs (C, Java, FORTRAN, IDL)

Low-level C
OTD/LIS API

Low-level IDL
OTD/LIS API

OTD/LIS
shared libs

High-level IDL
OTD/LIS API

LISAPP User IDL
Programs

User C
Programs

3rd-Party
Software

Extracted Data

Analysis &
Visualization

Extracted
 Data

Low-level C
OTD API

High-level C
OTD API

User C
Programs

(obsolete)

High-level C
OTD/LIS API

HDF API

The ultimate goal is at the bottom of the diagram - analysis and visualiza-
tion. Everything in between comprises different ”analysis paths”, or ways to
achieve that goal. Users who have access to IDL 5.0.2 (a commercial scientific
data language available for almost all computer platforms) or higher can follow
the leftmost paths. Note that since IDL allows direct plotting, there is no ”in-
termediate” ASCII data dump stage; users may immediately read in an HDF
data file and begin working with it, either with the LISAPP application in this
package, or with their own IDL programs using our high-level IDL API. Several
other applications (such as EOSView or Fortner’s commercial Noesys software)
allow limited access to our HDF files, we term these ”3rd party software”, on
the right side of the diagram. Users who do not have access to commercial
software packages can still access our data through the high- and low-level C
language APIs, also provided as part of this package. Analysis using C usually
involves some data dumping to intermediate ASCII files, and later visualization
with other software tools.

The grey shading in this diagram denotes two things: light grey indicates
commercial software, and dark grey indicates tools in this package for which we

http://www.fortner.com
http://www.rsinc.com
http://ltpwww.gsfc.nasa.gov/ltpcf/about/unix/Depotdoc/EOSView/index.html

1.3. THE TOOLS 13

can only guarantee limited cross-platform support (although they may work on
many platforms). As can be seen from the diagram: we retain backwards com-
patibility with OTD files, offer a variety of analysis paths, offer cross-platform
deployment, offer at least one direct data-to- visualization path, offer high level
APIs, and offer at least one analysis path without platform or software limi-
tations (the low-level C APIs, which use only ’vanilla’ HDF calls). Again, the
selection of analysis path will be ultimately determined by the user’s hardware
and software resources, and their comfort level with the various programming
tools.

Users interested in the future evolution of this software strategy should con-
sult the diagrams in Appendix C.

1.3 The Tools

As discussed above, the LIS/OTD software suite includes a number of different
tools, ranging from pre-built applications to software libraries and APIs. The
tools are briefly summarized below.

1. C low-level API
The low-level C language API includes both basic structure definitions
for LIS and OTD data, and rudimentary input/output routines to ex-
tract portions of the data from LIS/OTD HDF data files, storing them
in C structures. Users are responsible for properly opening and closing
the HDF files, allocating memory, etc. The code is fairly generic C and
HDF. Thus, this package is perhaps the most complicated, but also the
most cross-platform compatible, path to access and analyze the data. The
vast majority of users should, however, be able to also implement one of
the higher-level APIs (C or IDL), and thus never worry about the more
complicated low-level C API.

2. C high-level API
The high-level C language API includes basic structure definitions for the
LIS and OTD data, as well as ”nested” structure definitions and simple,
single-call input/output routines. These routines allow direct import of all
data in a LIS/OTD HDF data file into a C language ”structure of struc-
tures”, whose form matches exactly the internal HDF data organization.
Basic subsetting, filtering, geolocation and date/time conversion utilities
are also included in this package. Users need not worry about any details
of HDF file access; it is all done transparently by the I/O routines. The
code is still fairly generic C, and should be usable across most Un*x vari-
ant platforms, as well as desktop PC operating systems. However, direct
support by the LIS/SCF will be limited to Windows, MacOS, IRIX and

14 CHAPTER 1. INTRODUCTION

Linux operating systems.

3. Shared libraries
A set of shared libraries is available for a few platforms, which allow IDL
to read in LIS/OTD HDF data significantly faster than by using IDL’s
built-in HDF input/output routines. The performance improvement can
be up to a factor of two. Support for these shared libraries is limited to
MacOS, IRIX and Linux platforms, with Windows support expected by
Q3-Q4 1998.

4. IDL high-level API
The high-level IDL API includes basic structure definitions for LIS and
OTD data, as well as ”nested” structure definitions and simple, single-
call input/output routines. These routines allow direct import of all data
in a LIS/OTD HDF data file into an IDL language ”structure of struc-
tures”, whose form matches exactly the internal HDF data organization.
Users may thus easily write their own custom IDL programs to analyze
and visualize the LIS/OTD data. Several routines for geolocation and
date/time conversion are included in the package. It is compatible with
the shared libraries described above, which accelerate HDF data input.
The API should work with IDL on any platform which supports IDL 5.0.2
or higher; an IDL license is of course required.

5. LISAPP
LISAPP is a self-contained, GUI-based, menu-driven IDL application for
analysis and visualization of LIS/OTD HDF data. It is compatible with
the shared libraries described above, which accelerate HDF data input.
LISAPP allows users to load partial or entire LIS/OTD HDF orbit data
files, and examine the data in either tabular or graphical format. Plotting
of LIS/OTD lightning data with background image overlays is supported.
Export of plots to GIF format is supported, as is export of data to ASCII
format. The application also leaves the inputted HDF data file resident
in IDL memory, and accessible as a structure variable at the IDL com-
mand line. This allows direct, flexible, interactive analysis of individual
LIS/OTD orbit data.

Tables 1.1 and 1.2 summarize the current and future computer platform support
for the various programming tools included in this package. Much of the code
in this package is fairly modular, and users who wish to port and test certain
tools to platforms not supported below are welcome to do so.

As can be seen from the tables, direct or indirect support is available for
all major computer platforms, with the exception of nearly obsolete operating
systems/computers such as Macintosh 68K and Windows 3.1. No support is

1.3. THE TOOLS 15

currently planned for OS/2, BeOS or OpenStep. Limited C language support
for LinuxPPC/Mklinux may be available by Q3-Q4 1998.

http://www.linuxppc.org
http://www.be.com

16 CHAPTER 1. INTRODUCTION

Win 3.1 Win 95 Win NT Linux Mac68K MacPPC
HDF 4.1r1

√ √ √ √

C
√ √ √ √ √ √

IDL 5.0.3
√ √ √ √

C API Lo-Lev ? ? † √

C API Hi-Lev ? ? † √

Shared Libs ? ? ?
√

IDL API
√

† †
√

IDL LISAPP
√

† †
√

Noesys
√ √ √

EOSView
Commercial N Y Y Y N Y

Freeware N ? ? Y N Y

Table 1.1: Software availability for various workstation or mainframe com-
puter systems.

√
denotes software available and supported. ? denotes software

planned for release in Q3-Q4 1998, support level TBD. † denotes software which
should operate on a given platform, but for which no direct support is available
from the LIS/SCF.

SunOS Solaris AIX HPUX DigUnix IRIX VMS
HDF 4.1r1

√ √ √ √ √ √ √

C
√ √ √ √ √ √ √

IDL
√ √ √ √ √ √ √

C API Lo-Lev † † † † †
√

†
C API Hi-Lev † † † † † √ †
Shared Libs

√

IDL API † † † † † √

IDL LISAPP † † † † †
√

Noesys
EOSView

√ √ √ √ √

Commercial Y Y Y Y Y Y Y
Freeware Y Y Y Y Y Y Y

Table 1.2: Software availability for various workstation or mainframe com-
puter systems.

√
denotes software available and supported. ? denotes software

planned for release in Q3-Q4 1998, support level TBD. † denotes software which
should operate on a given platform, but for which no direct support is available
from the LIS/SCF.

http://hdf.ncsa.uiuc.edu
http://www.rsinc.com
http://www.fortner.com
http://ltpwww.gsfc.nasa.gov/ltpcf/about/unix/Depotdoc/EOSView/index.html
http://ltpwww.gsfc.nasa.gov/ltpcf/about/unix/Depotdoc/EOSView/index.html
http://www.fortner.com
http://www.rsinc.com
http://hdf.ncsa.uiuc.edu

Chapter 2

OTD/LIS/LMS Lightning
Data

As discussed in chapter 1, the data contained in LIS/OTD HDF files includes
both actual lightning locations and parameters and ancillary platform/sensor re-
lated information. In order to properly use the sensor data, a basic understand-
ing of the instruments’ deployment, characteristics and limitations is required.
This chapter briefly discusses the important highlights of each sensor.

2.1 The Instruments

Three sensors comprise the NASA/MSFC spaceborne lightning detection pro-
gram. All are based upon a staring charge coupled device (CCD) camera system
with a narrowband interferometric filter centered on the peak lightning emis-
sion line. All three sensors search for transient optical pulses which rise above
the background scene radiance. All three sensors measure individual pixel tran-
sients, then group these pulses in space and time into data units more analagous
to lightning strokes and flashes. All three sensors are capable of detecting total
(intracloud and cloud-to-ground) lightning during both day and night, although
the lightning detection efficiency (LDE) varies from sensor to sensor.

Each sensor in the NASA/MSFC lightning program represents a specific
”milestone” on the route to operational spaceborne lightning detection. The
Optical Transient Detector (OTD) launched in April 1995 aboard the Microlab-
1 platform was a prototype/proof-of-concept instrument, built and deployed
cheaply, and intended to demonstrate the technology’s viability and collect
the first-ever global lightning climatology unbiased by the diurnal lightning cy-
cles. The Lightning Imaging Sensor (LIS) launched in November 1997 aboard
the Tropical Rainfall Measurement Mission (TRMM) is a full science instru-
ment, designed to improve on OTD’s hardware, and collect high-quality storm
scale lightning data, from which scientific algorithms could be crafted for opera-

17

http://www.msfc.nasa.gov
http://thunder.msfc.nasa.gov/otd.html
http://thunder.msfc.nasa.gov/lis.html
http://trmm.gsfc.nasa.gov
http://www.orbital.com
http://www.orbital.com

18 CHAPTER 2. OTD/LIS/LMS LIGHTNING DATA

tional application of spaceborne lightning data. The Lightning Mapping Sensor
(LMS), planned for launch aboard a future GOES satellite, will be a geostation-
ary instrument which implements further hardware refinements, and uses the
science knowledge gained from LIS for operational purposes, primarily forecast-
ing and hazard alerts.

2.1.1 Optical Transient Detector (OTD)

OTD has been continuously monitoring global lightning from a near-polar orbit
since April 1995. The instrument is comprised of a 128x128 CCD pixel array,
with individual pixel resolutions from 8-13 km across, and a total field of view
of 1300x1300 sq km. The instrument has about a 50% detection efficiency;
see (ref) for more details. The Microlab platform precesses slowly through the
diurnal cycle, and use of composite OTD data for longer time scale averages
must take account of this, or severe aliasing of the diurnal lightning cycle will
contaminate the data. 55 day averaging should be adequate to anti-alias the
data. The OTD sensor attitude (orientation) may rotate over the course of an
orbit, so individual geographic locations seen by OTD in a given orbit may be
seen for anywhere between 1 and 270 seconds (this information is available in
the HDF file). Note also that the Microlab platform’s navigation (ephemeris
and attitude) data is sometimes poor, resulting in low spatial accuracy. While
adequate for global or regional composites, use of the data for storm-scale appli-
cations should be undertaken cautiously, with the navigation problems in mind.
Further details may also be found in (ref).

2.1.2 Lightning Imaging Sensor (LIS)

The LIS instrument has been in a 35 degree (tropical) orbit since November
1997. LIS also is comprised of a 128x128 CCD pixel array, with individual pixel
resolutions from 3-6 km across, and a total field of view of 550x550 sq km. The
instrument has about a 90-95% detection efficiency, although exact values have
yet to be determined. Note also that the instrument uses variable thresholding
based upon the background cloud radiance (the sensitivity varies inversely with
the background radiance). Since the ultimate detection efficiency is a function
of the threshold applied, users should make careful use of the threshold values
associated with each lightning datum. The TRMM instrument usually flies in a
”x-forward” or ”x-reverse” attitude (orientation), so the LIS sensor array does
not rotate, and almost all geographic locations observed by LIS during a given
orbit are viewed for about 90 seconds (this information is available in the HDF
file). TRMM navigation is usually very good, so the LIS instrument has very
high spatial accuracy. LIS data is ideal for storm-scale applications and tropical
climatological usage. 100 day averaging windows should be sufficient to remove
aliases of the diurnal lightning cycle from climatological LIS data.

http://thunder.msfc.nasa.gov/otd.html
http://thunder.msfc.nasa.gov/lis.html
http://trmm.gsfc.nasa.gov

2.2. DATA ORGANIZATION 19

2.2 Data Organization

In the current software suite, both OTD and LIS data are represented inter-
nally by a new data structure, which we term here the ”LIS/OTD structure”.
This structure matches the format of the new LIS HDF files. Old OTD HDF
files which are input using this software are translated, internally, to the new
structure. Eventually the entire OTD dataset will be reprocessed and stored in
the new format, but this change should not affect most users.

As noted previously, the LIS/OTD data structure has been crafted such
that the same data hierarchy exists in the HDF data files and in the IDL and
C variables used to read in this data. This hierarchy is summarized thus:

1. Orbit data

(a) Orbit summary

(b) Point data

i. Point data summary
ii. Viewtime granules
iii. Background image summaries
iv. Lightning data

A. Areas
B. Flashes
C. Groups
D. Events

(c) One second data

2. Orbit metadata

(a) Summary Image

(b) Text metadata

In order to help understand the data organization, users should think of
each orbit as having three types of information contained within it. The first is
granular (point) data. This category includes all data which exists at a discrete
geographic location and time. In our data files, this includes viewtime granules,
background image summaries and lightning data. The lightning data is further
composed of four different levels of optical pulse grouping, areas, flashes, groups
and events. The second major type of information is continuous (one-second)
data. This data is a continuous record over the course of the orbit of key pa-
rameters such as attitude and ephemeris, warning flags, etc. The third major
type of information is orbit-descriptive metadata. In the LIS/OTD data repre-
sentation, this includes both a raster summary image and ASCII text metadata.
The organization of these three data types is further shown in Fig. 2, and each
element described below.

20 CHAPTER 2. OTD/LIS/LMS LIGHTNING DATA

1. Orbit data is actually a data ”container”, a placeholder to collect related
information. Previously, the orbit data container was assumed to be the
same as the HDF file itself, which made some programming and analysis
tasks involving more than one orbit somewhat complicated. It is included
in the present LIS/OTD structure for convenience and completeness.

(a) Orbit summary is a small data structure containing vital infor-
mation such as the orbit start and end time, and the number of
one-second (see below) data structures contained within each orbit.

(b) Point data includes any data which occurs discretely in space and
time. It is also a data ”container” with no values directly associated
with it, merely data ”children”.

i. Point data summary is a small data structure containing the
number of occurrences of each point datum in this branch of the
data tree.

ii. Viewtimes are the method chosen to describe the OTD or LIS
sensors’ coverage of given geographic regions on the earth. The
earth is divided into 0.5 degree bins for this computation. Every
time the sensor begins to see a given spatial bin, a new ”view-
time granule” is created. Each granule contains the bin location,
the start and stop times of the coverage, and an ”effective ob-
servation” time which tries to account for bins which are only
partially grazed by the sensor (and thus may be shorter than the
end-start time difference). Note that because of the curvature
of the sensor field of view, possible rotation of the sensor, or
obscuration by the OTD gravity boom, there may be multiple
viewtime granules for a given lat/lon bin (i.e., the sensor ’starts’
and ’stops’ seeing a given location multiple times during a single
overflight). Viewtimes are necessary to convert observed light-
ning counts into actual lightning rates.

iii. Background image summaries contain the locations and times
at which the LIS or OTD-observed background scenes are re-
ported. While each sensor continuously monitors the background
radiances to detect optical transients, these scenes are only recorded
for archival purposes every 30 seconds or so. The background im-
age summaries provide the basic information needed to geolocate
(plot on a map) the recorded scenes, in conjunction with the one-
second data. Note that the new LIS file format keeps the actual
background scenes in separate HDF files, in order to keep the
science dataset size manageable for users with limited disk space
and no need for the background images.

2.2. DATA ORGANIZATION 21

iv. Lightning is another data container, into which are placed the
various groupings of lightning optical pulses which correspond to
more familiar physical features such as thunderstorms, flashes,
strokes, etc.

A. Areas are distinct regions of the earth which have one or
more flashes (see below) in a given orbit. They are meant
to roughly correspond to individual thunderstorm cells, or
perhaps charge centers. Note that because of resolution and
sensitivity issues, areas derived from OTD data may not be
strictly intercomparable with areas derived from LIS data.

B. Flashes are collections of observed pulse groups (see be-
low) which are both spatially and temporally ”close” to each
other. They are intended to closely match the physical light-
ning ”flash”, i.e., a collection of nearby channels which may
illuminate and re-illuminate multiple times. Note that with
the finer resolution of LIS, separate ”flashes” may actually
be describing individual channel segments rather than phys-
ically distinct flashes.

C. Groups are collections of observed pulse events (see below)
occuring during the same 2 ms time frame, which are also ad-
jacent to each other in sensor CCD pixel space. Groups may
be interpreted as individual lightning strokes or K-changes.
They are the basic building blocks of flashes, and hence of
areas. The algorithm which clusters events into groups is ro-
bust, well defined and stable, so users may wish to consider
groups, rather than events, as the lowest level lightning data.

D. Events are individual sensor pixel transients, or optical pulses.
These are the true basic building blocks of the reported light-
ning data, first collected into groups, which are then clus-
tered into flashes, which are finally arranged in areas. Note
from the sensor descriptions above that the basic pixel size
varies from sensor to sensor.

(c) One-second data are a continuous record of the sensor and plat-
form’s status over the course of its orbit. They include key infor-
mation such as alert flags, navigation (attitude and ephemeris) data,
threshold information, etc. Certain alert summary flags contained in
the point data may be investigated further by examining the relevant
one-second data found here.

2. Orbit metadata are descriptive records summarizing various aspects of

22 CHAPTER 2. OTD/LIS/LMS LIGHTNING DATA

the orbit data above. They include a raster summary image and ASCII
(text) metadata.

(a) Summary Image is a raster image plot of the orbit in each file. It is
included for quick examination and manual identification of specific
orbits of interest.

(b) Metadata is ASCII (text) descriptive information which summa-
rizes the contents of each file. It is primarily intended for use by data
archival and subsetting systems, and not intended for end-users.

The detailed contents of each data group, as represented in HDF, C and
IDL, are described in Appendix A.

2.3 Data Usage

This section contains some useful tips on working with the LIS/OTD data. We
recommend users read this section carefully, to avoid false, misleading or inap-
propriate results when using our data.

☞ Not all degrees are created equal. This warning applies especially to
OTD data being used climatologically. Remember that if you are working
with fixed size lat/lon bins for convenience in gridding data, a ”square de-
gree” at the equator differs in size from a ”square degree” near the poles.
Be sure to make the appropriate corrections if you are presenting your
results in square kilometers.

☞ Use the viewtimes! Because both LIS and OTD are in low-earth orbit,
their sampling of the earth is fairly limited. Also, there are times when the
sensors’ hardware buffers fill up (too much lightning or noise data is being
seen) and the sensor becomes briefly ”blinded”. Further, in the case of
OTD, there are times when the instrument is either intentionally turned
off or in a warmup condition, again effectively ”blinding” it. All these in-
stances are accounted for in the viewtime granule data. Whether you are
examining a single storm or building a climatology, be sure to consider the
actual viewtime granules recorded in the files. Satellite-observed lightning
”counts” are virtually meaningless unless you convert them to lightning
”rates” using the viewtimes.

☞ Use the viewtimes sensibly! There will be some instances where the
sensor field of view just “grazes” a viewtime grid cell during a given orbit;
this is a result of the finite viewtime grid resolution, the geometry of the
field of view and the on-orbit rotation of sensors themselves (this rotation

2.3. DATA USAGE 23

is rare for LIS but very common for OTD). As a result, some total view-
times will be very low (several seconds or less); indeed, if you use the view-
times populated with the point data (e.g., orbit.point.lightning.area.delta time;
integer values) rather than the viewtime granules themselves (orbit.point.viewtime;
floating point values), some associated viewtime times may even be zero.
Clearly trying to calculate a lightning rate from a very brief observation
time is ill-advised. You should definitely consider this when writing flash
rate caclulation algorithms using the LIS/OTD data.

☞ Consider variance. This is an issue related to viewtime. Note that at
the ”top” and ”bottom” of each sensor’s orbital path, a given latitude will
be seen many more times than at the equator (over time). While this can
be corrected for by using the viewtime data, don’t forget that this also
implies that lightning flash rate estimates at the most poleward extents of
the orbits have significantly lower variance than near the equator. Also,
for OTD, data dropouts clustered in two geographic regions: the South
Atlantic Anomaly (SAA) noise region, and the eastern United States (due
to planned satellite resets when passing over the Orbital Sciences ground
station). Climatological flash rate estimates in these regions thus will
have distinctly higher variance than elsewhere on the earth. (Note that
the SAA effects on LIS are much smaller, and hence the region of higher
variance is also much smaller). These differences in variance should be
considered when interpreting climatological flash rate results.

☞ Consider thresholds. Over its lifetime, OTD has used several different
threshold settings. LIS, as noted above, constantly uses variable thresh-
olds based upon the actual background radiance at each CCD pixel. These
thresholds are recorded with each lightning datum. Since the lightning de-
tection efficiency (LDE) can vary by up to 20% between various threshold
settings, you may want to either select an LDE based upon the actual
threshold used (if this is known), or postprocess the data to reject low-
amplitude events and keep your dataset (be it orbital, daily, annual, etc.)
at the highest of all possible thresholds used within your period of interest.

☞ Check the alert flags. Each lightning datum carries with it an ”alert
summary flag”. This is a 1-byte number whose bits correspond to ”warn-
ing” and ”fatal” conditions for each of the following: the instrument, the
platform, the environment, and the software processing. Non-zero alert
flags should not be ignored! The individual bits in the alert flags, along
with the TAI93 time of the event, should be used to reference the one-
second data. Within the one-second data are more comprehensive sum-
mary flags which will help you track down the specific problem, and decide
whether to use the datum or not. Of course, the decision of whether or not
to use data flagged ”warning” or ”fatal” is application-specific, so users

24 CHAPTER 2. OTD/LIS/LMS LIGHTNING DATA

should familiarize themselves with the potential problems and decide for
themselves on a project-by-project basis. The various possible alerts are
described in Appendix A.

☞ Beware OTD navigation. As mentioned previously, the Microlab-1
satellite on which OTD was hosted frequently reported questionable navi-
gation (attitude and ephemeris) data. This resulted in times in which the
sensor spatial accuracy could be as low as 100-200 km. While fine for cli-
matological work, this could be problematic in individual storm analysis.
While work continues at the LIS/SCF to identify and repair bad Microlab
navigation data, users should in the interim exercise caution when using
OTD data for storm-scale case studies. If a storm’s lightning signature
looks ”smeared”, especially in comparison to other data sources, it is prob-
ably because of poor nav data. Note that LIS does not suffer from this
problem.

☞ Apples and oranges. Be very careful when intercomparing OTD and
LIS data. We have already mentioned that then sensors have different
spatial resolution and sensitivity. These differences also have indirect ef-
fects, particularly on the algorithms used to assemble lightning groups into
flashes and areas. Not only have the algorithms been refined to handle the
increased number of events in the LIS data set, but the actual ’meaning’
of the algorithms varies with the resolution and sensitivity of the sensors.
Thus, flashes and areas reported by OTD may not correspond to the same
physical entities as flashes and areas reported by LIS. Be cautious when
trying to make direct comparisons - just because the data shares the same
name, does not mean it is representing the same physical entity.

☞ What is a flash? All lightning detection and mapping sensors, be they
RF or optical, must use some algorithm to cluster the individual measured
components of lightning into the entity scientists term ”flash”. Physically,
a lightning flash is of course simply a collection of contiguous channels
which may be both conductive and radiant one or more times. However,
actual lightning morphology is often too detailed for most instruments’
resolution and accuracy, especially when the flashes and channels are con-
current in time or nearby in space. Thus, our assembly of optical pulses
into the data element we call ”flash” may be different than NLDN’s or
LDAR’s assembly of RF bursts. Until the statistical relation of OTD and
LIS ”flashes” to other sensors’ ”flashes” is fully known, OTD- and LIS-
derived flash rates should be used with caution, at least when comparing
to other lightning data.

☞ Consider regrouping. The best way to ensure that the flash or thun-
derstorm area definitions are suitable for your specific scientific use would

2.3. DATA USAGE 25

be to devise your own ”grouping” algorithm, which assembles LIS/OTD
groups or events into ”flashes” and ”areas” of your own definition. All
the necessary information for such a task is contained in the HDF/C/IDL
data structures. While this obviously entails some programming on your
part, you may easily come up with a much better technique for grouping
the pulse data than we have. Note that you may also wish to regroup the
data if you have filtered low-amplitude events in an effort to simulate a
constant threshold setting in your data sample.

☞ Be careful with radiance. We report the total cloud-top radiance for
each event, group, flash and area. This of course is the radiance as seen
from space. If you plan to use these radiances scientifically, or try to con-
vert them to optical energy, consider a few issues: the reported radiances
are only for the range of our narrowband filter, bandwidths can be found
in Koshak (); the radiances are not channel source radiances, but arise
from multiple scatterings within the cloud; the optical depth of clouds
may vary significantly; conversions to optical energy may require a plane-
parallel assumption. While these issues do not preclude the scientific use
of LIS/OTD-observed radiances, they may complicate it. Note also that
the LIS sensor is slightly more likely to saturate than OTD; this was an in-
tentional tradeoff to improve the sensor’s resolution of low radiance values.

These are the major issues to consider when using LIS/OTD data. They
may sound complicated, but are actually fairly easy to deal with once you fa-
miliarize yourself with the datasets. The best way to do this is to dig in and
look at some data, before undertaking a rigorous analysis project. Fortunately,
we’ve given you tools which will make this easy. The next chapter describes
installation of the LIS/OTD software suite, and Part II of this guide will show
you how to use it.

26 CHAPTER 2. OTD/LIS/LMS LIGHTNING DATA

Chapter 3

Installation

This chapter describes the basic system requirements, installation and opera-
tion procedures for the LIS/OTD software package. Some unsupported platform
configurations (i.e., certain Un*x variants) may require assistance from your lo-
cal system administrator.

3.1 Macintosh PowerPC

Macintosh PowerPC support is available for all components of the LIS/OTD
software package.

3.1.1 System Requirements

We recommend a minimum system of a 100 MHz PowerPC Macintosh or Macin-
tosh clone, with a minimum of 48 Mb RAM and MacOS 7.5.x or higher. There
is no Mac 68k support planned. Obviously a faster processor and more memory
will dramatically improve the software performance. To use the IDL API and
LISAPP program, you will need a licensed copy of IDL 5.0.3, available from
RSI (http://www.rsiinc.com). LISAPP requires at least 1024x768 monitor
resolution. It can be run at any color depth.

To use the C language API, you will need the CodeWarrior Pro R3 compiler
suite (the Academic version should work fine as well) from Metrowerks:

http://www.metrowerks.com

and the HDF 4.1r1 distribution (full source tree) from NCSA:

http://hdf.ncsa.uiuc.edu

27

http://www.apple.com
http://www.rsinc.com
http://www.rsinc.com
http://www.metrowerks.com
http://hdf.ncsa.uiuc.edu

28 CHAPTER 3. INSTALLATION

If you plan to keep the LIS/OTD datasets on a Un*x host, you might
also consider the commercial NFS/Share package which allows Macs to NFS
(network) mount Un*x disk volumes. The LIS/OTD software supports NFS
mounted volumes as well as volumes mounted via AppleShare (e.g., if you keep
your dataset on a WindowsNT or other Macintosh server). You will need the
shareware program Stuffit Expander to unpack the software distribution.

3.1.2 Installation

Drag the file LISOTD.sit.hqx onto the Stuffit Expander icon to unpack the
software distribution. This will create a folder named LISOTD, containing the
folders IDL, src and Documentation.

If you have IDL, you’ll need to first increase its minimum and preferred
memory settings. Find the original IDL application (not its alias), select it, and
choose ”Get Info” from the File Menu. The minimum memory should be set to
no less than 23000, and the preferred memory anywhere from 23000-64000, the
more the better. The simplest way to use the IDL components is to drag all the
contents of the IDL folder into your IDL startup folder; this method prevents you
from having to reset any paths. If you wish to keep the IDL software separate,
you must add the LISOTD:IDL path to your IDL paths via the IDL preferences
menu option. You will also need to type ’cd,"<full path to LISOTD:IDL>"’
at the IDL command prompt each time you start IDL, or else configure your
IDL startup.pro file to do this. To start LISAPP, type .compile lisapp and
then lisapp. To include the LIS/OTD IDL API in your own programs, add
@lisotd.pro and @lisapp DateTime.pro at the top of your custom programs.
Finally, if you wish to use the shared libraries in LISAPP or your own code to
speed up file input (we strongly recommend this), be sure to choose the appro-
priate shared library. This is done in LISAPP by using the ”Preferences...Input
Settings” menu option, and in the API by specifying the shared library path
and filename in your read routine. Chapter 4 describes the IDL software and
the shared libraries in more detail.

To use the C API and libraries, open the project UNIFIED in the CodeWar-
rior Integrated Development Environment (IDE). We assume you know how to
work within the IDE. You will likely need to add some paths to the project so
it can find the HDF 4.1r1 libraries and include files (which we assume you have
already installed elsewhere on your Mac). Choose the target ”LISOTD Appli-
cation”. The file reader.c is the main code module of this target; it contains
a basic program template which you can modify as you wish. If you want a
console interface, say using the SIOUX package, you must of course add the
appropriate libraries in CodeWarrior (refer to the CodeWarrior documentation
for details).

Some further Mac tips: First, consider using the Motorola math libraries

3.2. WINDOWS 95/NT 29

libmoto. These are considerably faster than the fastest version of the bundled
Apple math libraries, and are free from Motorola’s web site:
http://www.mot.com/SPS/PowerPC/library/fact sheet/libmoto download.html

Second, if you are memory-limited and need to resort to virtual memory (using
the Memory Control Panel), consider ugrading to MacOS 8.1. Virtual memory
in System 8.1 is dramatically faster than it was in 7.5.x or 8.0, and has been
reported to be even faster than the commercial RamDoubler product.

3.2 Windows 95/NT

Windows 95/NT support is available for the IDL components of the LIS/OTD
software package. There is no Windows 3.1 support planned. Support for the
C components may be available by Q3-Q4 1998.

3.2.1 System Requirements

We recommend a minimum system of a 100 MHz Pentium/AMD/Cyrix machine
and 32 Mb of RAM. To use the IDL API and LISAPP program, you will need
a licensed copy of IDL 5.0.3, available from RSI (http://www.rsiinc.com).
LISAPP requires that you set your display to 256 colors before invoking IDL.
It needs 1024x768 or higher monitor resolution to function correctly.

Although not yet available, initial C language support will eventually be
with the CodeWarrior Pro R3 compiler suite (the Academic version should
work fine as well) from Metrowerks (http://www.metrowerks.com). Support
for Visual C++ from Microsoft (http://www.microsoft.com) may be added
at a later date. The program WinZip or equivalent will be needed to unpack the
distribution. Consult your system administrator for the appropriate software if
you wish to access files stored remotely on a Un*x machine via NFS.

3.2.2 Installation

Open the file LISOTD.zip; this will create a folder named LISOTD, containing
the folders IDL and Documentation.

The simplest way to use the IDL components is to copy all the contents of
the IDL folder into your IDL startup folder. If you use a shared (networked)
version of IDL, you may not be able to do this; in this case, you will need to add
the appropriate paths to IDL in order to use this software. To start LISAPP,
type .compile lisapp and then lisapp. To include the LIS/OTD IDL API in
your own programs, add @lisotd.pro and @lisapp DateTime.pro at the top
of your custom programs. There is currently no shared library (DLL) support
on Windows for improved file access speed; this support will be available once

http://www.mot.com/SPS/PowerPC/library/fact_sheet/libmoto_download.html
http://www.connectix.com
http://www.rsinc.com
http://www.metrowerks.com
http://www.microsoft.com

30 CHAPTER 3. INSTALLATION

the C APIs for Windows are released.

3.3 Un*x

Un*x support is available for the IDL components of the LIS/OTD software
package, and the low-level C API. The high-level C API is only supported un-
der Linux and IRIX, but may work on other systems. The shared libraries are
only available under Linux and IRIX.

3.3.1 System Requirements

We recommend a minimum system of a 100 MHz Un*x box or Pentium/AMD/Cyrix
system and 64 Mb of RAM. To use the IDL API and LISAPP program, you will
need a licensed copy of IDL 5.0.3, available from RSI (http://www.rsiinc.com).
To use the C APIs, you will need a C compiler. The commercial version available
from your machine’s manufacturer will probably give you the least trouble. The
public domain gcc compiler will work fine on Linux boxes, but we cannot guar-
antee easy compatibility with gcc on other systems. You will also need the HDF
4.1r1 distribution (full source tree) from NCSA (http://hdf.ncsa.uiuc.edu).
You will likely need your system administrator to install C and HDF if they are
not already available. Since the LIS/OTD datasets can be quite large, you
might also want to NFS-mount various machines in your workstation cluster to
conserve disk space; again, for this you must consult your sysadmin. Finally,
you will need either the uncompressor gunzipcommands available to unpack the
software distribution.

3.3.2 Installation

First, uncompress the distribution file using:

uncompress LISOTD.tar.Z or gunzip LISOTD.tar.gz

depending on the archive you have downloaded. Next, unpack the tar archive
file using tar -xvf LISOTD.tar. This will create a directory tree containing
the directories IDL, src and doc.

To use the IDL LISAPP and API, just be sure to change directories to
the LISOTD/IDL directory before invoking IDL or the IDL Development Envi-
ronemnt (idlde). This way you shouldn’t need to change any path settings,
although you may want to if you move the software elsewhere. To start LIS-
APP, type .compile lisapp and then lisapp. To include the LIS/OTD IDL
API in your own programs, add @lisotd.pro and @lisapp DateTime.pro at
the top of your custom programs. Finally, if you wish to use the shared libraries

3.3. UN*X 31

in LISAPP or your own code to speed up file input (we strongly recommend
this), be sure to choose the appropriate shared library. This is done in LISAPP
by using the ”Preferences...Input Settings” menu option, and in the API by
specifying the shared library path and filename in your read routine. Chapter
4 describes the IDL software and the shared libraries in more detail.

To use the C APIs, a sample Makefile has been included in the LISOTD/src
directory. You will need to adjust a few directory paths at the top of the Make-
file; consult your system administrator for details. The file reader.c is a generic
template you may use to write your own C applications. The following make
options are available:

• make clean ... Remove all object code and libraries from this directory.
Useful if things get mucked up or if you are upgrading or patching the
software.

• make allbutshared ... Creates the basic libraries to be used by your
application without attempting to create the C/IDL shared library. Also
compiles the file reader.c to make sure it builds.

• make all ... As above but also attempts to compile the C/IDL shared
library. The options in the distributed Makefile are only guaranteed to
work under IRIX. For other platforms, consult your system administrator
it the make fails. This option also compiles the file reader.c to make sure
it builds.

• make reader ... The variant you will routinely use to compile your cus-
tom C code. This will compile or recompile the necessary libraries if they
are not present or if their source code has been modified.

• make reader lowlevel ... The variant you will use if you wish to only
employ the low-level C API. This will compile or recompile the necessary
library if it is not present or if the source code has been modified.

Adventurous users on non-Linux or non-IRIX platforms may want to try and
recompile the C/IDL shared libraries to improve their IDL performance. The
Makefile illustrates how the libraries are made on IRIX boxes, and might help
you recompile. You’ll likely need the help of your sysadmin; unfortunately, the
LIS/SCF cannot provide assistance on unsupported Un*x systems. However,
we’d certainly like to hear if you manage to get the libraries rebuilt, and to
receive copies.

32 CHAPTER 3. INSTALLATION

3.3.3 X Terminals / X Windows

When using Un*x-hosted IDL remotely via an X-terminal or X-window, there
may be several additional considerations. For LISAPP, your monitor must be
run at 1024x768 resolution or higher. Also, various X and X emulation soft-
ware handle color table allocation differently. If you seem to be getting awk-
ward colors in your LISAPP graphics windows, try restarting IDL, and typing
device,pseudo=8 before compiling and running LISAPP. If this works, you
will need to either enter this at the start of each session or modify your IDL
startup.pro file accordingly.

3.4 Other

IDL 5.0.3 is currently supported under OpenVMS. The LIS/OTD IDL API
should function properly under OpenVMS. However, the LISAPP program
would likely need some hacking in order to support the VMS directory/path
syntax. Users interested in customizing the LISAPP code should contact the
LIS/SCF before attempting this.

Currently, there is no support planned for OpenStep or BeOS. Limited C-
language support for LinuxPPC/LinuxPMac/Mklinux may be available by Q3-
Q4 1998. Apple Rhapsody for PowerPC and Rhapsody for Intel support is
planned; the release date will be determined by the Rhapsody development
schedule and timing of the initial HDF 4.1r1 port to Rhapsody.

http://www.rsinc.com

Part II

High Level Interfaces

33

Chapter 4

IDL Interfaces: LISAPP

The LISAPP IDL program is a self-contained, GUI-based, menu (event) driven
application which is invoked from within IDL. It allows direct input, analysis
and visualization of LIS and OTD HDF data files, without any additional pro-
gramming required by the end-user. It also leaves an inputted data file resident
in IDL memory, and accesible as an IDL variable at the IDL command line. It
is thus ideal for orbit-at-a-time data analysis. It is also easily extensible and
modular, so users familiar with IDL widget programming can add their own
functionality to the program.

4.1 General Usage

To use LISAPP, first start IDL or the IDL Development Environment. Depend-
ing on your platform, you may need to next set the working directory to the
directory in which LISAPP is installed (see Chapter 3 for details). Next, type
.compile lisapp and then lisapp. The main program window should appear,
ready for use. If the window does not appear, and IDL complains about missing
files, you haven’t configured the startup directory properly.

Note that many of the menu options are initially ”grayed out”. LISAPP
only activates menu options when it has enough data loaded to make them use-
ful. You can read in a LIS or OTD data file by choosing Open Orbit from
the File menu. Once an orbit is loaded, you’re ready to go. Play around with
some of the menu options to explore LISAPP further. The menu options are
described in detail in section 4.4.

35

36 CHAPTER 4. IDL INTERFACES: LISAPP

4.2 Recovering from Crashes

As with any developmental software package, LISAPP isn’t completely bug-
free. If you should happen to encounter a program-stopping bug (we’ve tried to
eliminate as many as possible!), the following command sequence should restore
full control of IDL, and restart LISAPP :

cd , ” f u l l path to the LISOTD/IDL d i r e c t o ry ”
widget contro l , / r e s e t
retal l
xmanager
l i sapp
; Be sure to use the cor rec t d i r e c t o r y de l im i t e r s
; i . e . , ”/” on UNIX, ” : ” on Mac , ”\” on Windows
; Example : cd , ”/ usr / peop l e /me/LISOTD/IDL”
; Example : cd , ” MacHardDrive : LISOTD: IDL”
; Example : cd , ” C:\LISOTD\IDL”

Important note : We strongly recommend using only the ”Done” or ”Can-
cel” buttons available in most LISAPP windows to get rid of these windows,
rather than the standard ”close boxes” your computer may place on the win-
dows. This will ensure that LISAPP does not try to manipulate windows which
it is not aware have been closed (which will almost certainly cause a program
crash). Future versions of the program will be more tolerant of close boxes.

One cause of program crashes at startup is bad a ”preferences” file. LIS-
APP is able to be configured to remember certain user-specified options such
as the location (and use) of shared libraries, default paths to your dataset, etc.
It accomplishes this through a small ”preferences file” created in your LISAPP
directory. If you have copied the installation from another user, or your data
directory disappears (is renamed, unmounted, etc.), LISAPP will fail to load
the preferences file and crash. There is a simple solution to this. Start IDL,
type .compile lisapp to compile the program, then create prefs. This will
create a new preferences file with generic ”factory” settings. You only need do
this once to repair a bad preferences file. Once you have done this, simply type
lisapp at the IDL command prompt to begin working.

4.3 Command line interface

As mentioned above, once you have read an orbit into LISAPP, it is also avail-
able for inspection at the command line. At the command line, try typing:

print , o rb i t . point . l i g h tn i ng . f l a sh (∗) . rad iance

4.3. COMMAND LINE INTERFACE 37

Neat, huh? Now try:

loadct , 39
window, 0 , xs i ze =720 , ys i ze =360 , reta in =2
map set ,/ cont inents , xmargin=[0 , 0] , ymargin=[0 , 0]
oplot , o rb i t . point . l i g h tn i ng . event (∗) . l o ca t i o n (1) , $

orb i t . point . l i g h tn i ng . event (∗) . l o ca t i o n (0) , $
psym=4 , co l o r =64

As you can see, having the data resident in a single IDL variable can be very
useful. Full details of the IDL ”orbit” variable are provided in Chapter 5 and
Appendix A.

38 CHAPTER 4. IDL INTERFACES: LISAPP

4.4 Menu options

The LISAPP interface contains seven main pull-down menus, File, Quick-
View, Analysis, Export, Verify, Tools and Help. Each controls a variety
of relevant tasks LISAPP is capable of performing. This section describes the
various LISAPP menu options in detail.

4.4.1 File menu

This menu contains all options related to HDF file input and output, and con-
figuration of the Preferences file.

Get info...

This option quickly loads and displays either a summary raster image (if avail-
able) or a summary table of the contents of a LIS or OTD HDF file. It is useful
for rapidly isolating files with interesting data, before fully loading them into
LISAPP.

Open orbit...

This option presents a dialog box which prompts the user to select a LIS or
OTD HDF file for input. By default the box expects to read LIS data files,

4.4. MENU OPTIONS 39

for which it uses the character filter ”SC” (which is embedded in all LIS HDF
file names). If you wish to filter on OTD HDF file names, change the filter to
”mlab*”.

Note that reading OTD files will take slightly longer (and temporarily use
more memory) as LISAPP must internally convert the old OTD data structure
to a new LIS/OTD data structure for compatibility.

We recommend never renaming LIS or OTD HDF files, as these naming con-
ventions allow the software to make initial guesses as to the type and content
of the data files. If the file input seems painfully slow, you can either (a) tell
LISAPP to use shared libraries, if these are supported on your system, or (b)
tell LISAPP not to load individual data elements which may not be required,
such as viewtime granules or events. Both of these options are invoked from
the File...Preferences...Input Settings menu option. Note that with option
(b), some menu options may not be available once the file is loaded. A third
option is, of course, to run LISAPP on a faster computer!

Add more vdata

If you have chosen not to load certain data elements (such as viewtimes) but
find in your analysis that you actually need them, you can use this option to
add the needed elements into your loaded orbit. LISAPP will activate any ad-
ditional menu options it can once the requested data have been loaded.

Save orbit as...

This menu option is currently active and working on some systems but unsup-
ported. We do not recommend altering and resaving LIS/OTD HDF files at

40 CHAPTER 4. IDL INTERFACES: LISAPP

this time.

Preferences

Some LISAPP behaviors are configurable, and the changes are able to be re-
membered between IDL sessions. This is accomplished with a ”preferences” file,
which lives in the same directory as LISAPP. The options under this heading
allow these preferences to be altered and/or saved. The preferences currently
available for alteration are:

• Input Settings control which data elements are loaded when you read
in a LIS or OTD orbit. If you are not using shared libraries, file input can
sometimes be slow. If you do not need the viewtime, one-second or event
data in your analysis, you might consider deselecting these elements in
this control panel. This panel is also the location where you may activate
use of the shared libraries (if your platform supports them).

• Paths control where LISAPP looks, by default, for LIS/OTD HDF data
and other files. The ”Data” path is the default path which will appear
when the Open orbit option is first selected from the File menu. After
the first file is loaded, LISAPP will default to whichever was the most
recent directory used to load an HDF file. The ”Background” path is
similar to the ”Data” path, but if you choose to keep background image
HDF files in a separate directory, this allows you to specify that directory.
The ”Output” path is the default path for exported ASCII files, images
and movie frames.

4.4. MENU OPTIONS 41

• Graphics controls several plotting and animation related parameters,
such as whether to use hi-res maps, shaded continents and coastlines,
how large to make certain plots, and how fast to run certain animations.
Note that this panel may be used while other windows are open to inter-
actively refine the appearance of some plots.

Should your preferences file ever become corrupted (e.g., if a default data disk
goes away, etc.), you can restore the default settings by starting IDL and typing:

. compi le l i sapp
c r ea t e p r e f s
l i sapp

Quit

This option quits LISAPP and frees all allocated memory.

42 CHAPTER 4. IDL INTERFACES: LISAPP

4.4.2 QuickView menu

This menu contains options to quickly examine a file’s contents to see if they
are interesting enough for further analysis.

Browse image

This option displays either a raster summary image (if available) or a text sum-
mary table of the currently loaded file’s contents. It is essentially the same as
the Get Info option of the File menu.

Pixel array

This option generates a simple composite plot in pixel coordinates of all events
observed during this orbit. This is a quick way of determining if there were high
flash rate storms, large flashes, odd artifacts, etc. in the data file. The events
are color coded by their relative time within the orbit (cool to warm color table
indicating increasing time).

4.4. MENU OPTIONS 43

Backgrounds

This option generates a simple animation of all background images sampled
during the currently loaded orbit. This option is a quick way to see if any in-
teresting cloud systems such as hurricanes, frontal systems, MCS’s, etc were in
the orbit, as well as look for potential solar glint scenes.

Quicklook

The options under this heading generate quick-and-dirty geographic plots of
the areas, flashes, groups, events, viewtimes or background image locations
contained in the current file.

An ”alert summary” plot is also available showing the status (OK, warning
or fatal) of each alert flag (instrument, platform, external and processing) at
each second of the orbit. The quicklook plots are useful for searching for view-
time dropouts, problem regions during the orbit, areas of interest, etc. They
are also useful in generating summary plots for OTD HDF files which lack em-
bedded summary images.

44 CHAPTER 4. IDL INTERFACES: LISAPP

4.4. MENU OPTIONS 45

4.4.3 Analysis menu

This menu offers more advanced visualization and analysis tools. All routines in
the Analysis and Export menus first invoke a ”Bounds Selection” window, in
which users may subset the orbit data either in space or in time. This tool then
passes the subsetted data along to the requested Analysis or Export module.

46 CHAPTER 4. IDL INTERFACES: LISAPP

Navigation data

This option allows visualization of the sensor platform’s (Microlab or TRMM)
ephemeris and attitude data. This is especially useful for OTD data, if users
suspect a period of poor navigation data is ”smearing” the geolocated lightning
positions.

Noisy navigation data is readily visible in these plots, as attitude, ephemeris,
position and velocity should be more or less smoothly-varying over the course of
a given orbit. Discrete jumps, high frequency noise, etc. all indicate poor quality
navigation data. Note that the navigation data for LIS is usually excellent and
does not require detailed verification.

4.4. MENU OPTIONS 47

Pixel animation

This option provides basic visualization of lightning flashes in animation mode.
Since the animations can be quite lengthy and do not currently support in-
terrupts, a subsetting tool (pair of slide-bars) is provided to narrow down the
window chosen for animation. All lightning events in the subsetted window are
first plotted in a world map window, color coded by increasing time. The sliders
narrow the time window, with small color indicators showing the earliest and
latest events in the map plot which will be animated. The ”Preview” button
zooms the map and shows only those events within the selected window. The
”Animate” button begins the animation. The animation is sequential in frames
with groups; i.e., each successive animation frame is the next 2 ms sensor ob-
servation frame in which a lightning group was observed. ”Dead time” with no
observed groups is not included in the animation, so this is not a ”real-time”
movie. The base frames for creating a ”real time” movie may be generated using
the Make Movie Frames module in the Export menu.

Note that preferences for this module may be set under the File... Prefer-
ences... Graphics menu option.

48 CHAPTER 4. IDL INTERFACES: LISAPP

Thresholds and glint

This option provides a detailed interface for examination of the background ra-
diance properties of a given storm scene. The module works in pixel coordinates.
Four subwindows are provided: the background scene in raw amplitude counts,
the background scene in calibrated radiance, an event window, and a multipur-
pose plot window. The background scene is selected with a slider bar. The event
window is also controlled by a slider bar; this sets the time window around each
background scene during which to consider events. Since background images
are only saved every 30 seconds or so, and the array translates considerably
during the inter-image time, keeping this event window set to 1-3 seconds will
guarantee that any events plotted in this window correspond to the rendered
scene. Setting the window to a longer interval may help identify scene-related
noise anomalies such as solar glint, contrast effects, etc.

The remaining two slider bars control the ”masking” applied to the back-
ground plots. Normally, the background scenes are plotted completely in greyscale.
Any values above the thresholds selected with these sliders will, however, be
plotted in color. This is a convenient method for isolating very bright back-
grounds, or for gauging the maximum background radiance for a given scene.

The multipurpose plot has three options. The first displays the (analytically
derived) solar glint angle at the time of this background scene. The plot runs
in a ”warm-to-cool” color table, with ”warmer” (redder) values indicating a
higher likelihood of solar glint. Most solar glint is automatically removed from
the dataset by the LIS/SCF production code, however the occasional anomaly

4.4. MENU OPTIONS 49

may still introduce some false events. Note that these may also occur at off-peak
glint angles from 30-45 degrees; this may be due to a secondary ice scatterig
peak. The second plot option displays the applied thresholds for this scene.
With OTD, this plot is uniform, as the sensor does not support variable thresh-
olding. With LIS, this will vary discretely with the background scene radiance.
It may be useful to examine a storm of interest for threshold changes across the
cloud if a detailed case study is being performed. The final plot option shows a
histogram of all background radiances, and a histogram of the background val-
ues at which lightning events within the chosen time window occurred. In any
given scene, most events should fall on the brightest (cloud) pixels. If they do
not (i.e., if the event histogram is biased towards the low end of the background
scene values), it may be an indication that false events are present.

Note also that each window is ”active”; i.e., labels in the left-hand column
update continuously as the cursor is moved across the various images. Finally,
note that any events occurring in the chosen time window can be passed directly
to the Export...Vdata...Event table view module.

50 CHAPTER 4. IDL INTERFACES: LISAPP

Flash analysis

This option provides an interface for a detailed analysis of lightning flashes or
storm regions. It is designed to operate on small geographic regions (not the
entire orbit), so be sure to select a reasonably-sized geographic boundary in the
subsetting window. The Flash Analysis window has several subcomponents.
On the left is a list of flashes (and eventually groups) which fall within the se-
lected spatial bounds. On the right and bottom are several plot windows. From
bottom to top, these include a ”time series” plot, an ”event histogram” plot, a
”pixel space” plot and a ”geographic plot” of the subsetted data.

The ”time series” plot shows the occurrence of lightning groups within the
chosen flashes, indicated as vertical, colored bars (gray bars denote ”dead time”
with no observed groups). The y-axis in this plot represents cumulative radiance
for the subsetted data, so the plot may be used to isolate very bright groups
and flashes (rapid jumps in y). The fiduciary marks are either dotted (100 ms
intervals) or dot-dashed (1 sec intervals); the 100 ms tics are dropped if the
time window chosen is very long. Running horizontally across this plot are four
bars indicating the status (OK, warning, fatal) of the four alert flags (platform,
instrument, external, processing), for quick identification of potential hazards
and viewtime dropouts.

The ”event histogram” by default shows a histogram of all event raw ampli-
tudes contained in the subsetted flash data. For real lightning, this plot should

4.4. MENU OPTIONS 51

look roughly lognormal; other distributions suggest false data which was missed
by our production code filters. Note that with LIS data, a small ”hump” near
75-80 counts is normal; this is a result of our piecewise-linear calibration (gain)
designed into the sensor. Several other plots are available from the pulldown
menu to view the event distribution as various combinations of log and linear
PDFs and CDFs.

The ”pixel space” plot shows all subsetted events plotted in pixel array
space. The events are color coded and sorted in amplitude, so the plot shows
the brightest event at each (x,y) location in the array. The ”geographic plot” is
very similar but plots in actual (geolocated or lat/lon) coordinates. This plot
has three suboptions; a quick-plot (1 point per event) mode, a footprint mode
(each actual pixel polygon is filled in), and a footprint+background scene mode
(same as footprint but with the background scenes overlaid). Note that each suc-
cessive option is increasingly more CPU-intensive; the ’footprint+background’
option should only be used once the data has been subsetted to the desired level.

Note that the flash and group lists are interactive; users can user either the
toggle buttons or can double click on the list entries to select and deselect indi-
vidual flashes and groups in the list (the window initially plots with everything
selected, then reverts to ”all deselected” to allow interactive subsetting).

Note that the time-series plot may be very useful for isolating ”FIFO full”,
or ”sensor blinding” conditions which users may have missed by ignoring the
lightning data or one-second alert flags. Very active storms with unusual 10
second dropouts are quite likely storms in which the amount of optical pulse
(event) data flooded the sensor FIFO buffers, resulting in a loss of viewtime.
Again, this may be confirmed by examining the alert flags available in the light-
ning point data and one-second data elements. Remember - viewtime cannot
be assumed constant, and must be verified!

Finally, note that all subsetted lightning event data may be passed directly
to the Export...Vdata...Event table view module for more detailed analysis.

52 CHAPTER 4. IDL INTERFACES: LISAPP

4.4.4 Export menu

This menu contains options to examine and visualize the HDF file contents in
more detail, as well as export data and visualizations to external files.

Vdatas

The menu options under this heading allow users to view and export tabular
summaries of some of the data elements in the HDF file, including areas, flashes,
groups, events, viewtimes and one-second data:

Note that since these tables may be very large (and IDL must format them),
they may take a while to appear. Be patient ... unless it tells you so, IDL has
not crashed, it is merely formatting lots of data. Also note that on some desk-
top (PC or Mac) systems with limited memory, these options may consume too
much memory and cause the application to crash. We recommend only using
these options if you have adequate memory on your desktop computer system
(see Chapter 3 for recommended values).

Each table window contains the buttons Save as ASCII... and Save in
global struct. The former button exports the table data into an ASCII file of
your choosing, formatted as in the table window. The latter button stores the
subsetted data visible in the window in an IDL global structure variable, named
subset areas, subset viewtimes, subset one seconds, etc. This is useful if
you have used the bounds selection tool to subset your data, and now wish to
use the IDL command line to quickly calculate some statistics, such as extrema,
or quickly create your own plots with the subsetted data. Details on the IDL
LIS/OTD structure variables can be found in Chapter 5.

4.4. MENU OPTIONS 53

Location plot

This option allows a custom geographic plot to be generated with map overlays,
background images, lightning overlays, and platform summary information all
on the same plot. Once apporpriate bounds have been selected, this option
creates a second ”selection” window in which users may further refine which
background images / geographic regions to plot:

The scrolling window lists the times and nadir points of the available back-
ground images. Initially, only those backgrounds falling within your chosen
bounds are highlighted in the large map window. You may select (or unselect)
additional backgrounds from the list.

Once selected, a ”base” plot is generated and lightning and platform data
overlays are interactively available. A final ”save as GIF” option is available,
as well as a slightly slower ”Edit and Print” option which uses IDL’s built-in
object tools to send the image to a printer.

54 CHAPTER 4. IDL INTERFACES: LISAPP

Note that the settings in the Edit-Preferences-Graphics menu option
control the appearance of the resultant plots, such as size, map overlay, etc.
These may be changed when the selection window is open

4.4. MENU OPTIONS 55

Density map

This option creates a presentation-quality lightning ”density map” with a field-
of-view and geographic overlay. The map spans twenty degrees of latitude and
longitude for LIS, thirty degrees for OTD. It will be centered based upon the
geographic region you have chosen in the bounds selection window.

The map renders total group density on a log scale, and is adjusted for view-
time (i.e., viewtime dropouts due to sensor buffer overflows are considered). At
this time, it is presented on a ”relative” (low, medium,high) scale; as we become
more confident of the LIS calibration and sensitivity, we will eventually change
this to an ”absolute” scale.

The map is shown at half-size in the default window; users with large moni-
tors can use the Show Full Size button to view it at full scale. The Edit and
Print and Save Full GIF buttons offer two ways of exporting the rendered
image. Support for other output graphic formats may be added at a later date.

56 CHAPTER 4. IDL INTERFACES: LISAPP

Density map with backgrounds

This option is very similar to the Density Map described above, but adds
overlays of the geolocated background images. This option is somewhat more
time-consuming but yields the best quality presentation plots.

Note that two images are created; one with only the background scenes and
one with both backgrounds and the lightning density. This may be useful if the
lightning hides too much of the background scene detail. The Edit and Print,
Show Full Size and Save Full GIF buttons function as described above.

4.4. MENU OPTIONS 57

Make movie frames

This option allows you to generate a series of GIF images which can be later
composited into an animation of a specific storm overpass. A number of con-
figuration controls help you constrain the size, frame rate and time-to-process
of the resulting sequence. Note that this module does not actually create the
final movie; it merely generates the frames. You are responsible for finding a
suitable third-party application to composite the frames into a single movie.

The window for this module is shown above. A simple ”time series” plot of
event amplitudes is found at the top of the window. By default, the bounds se-
lection tool passes a short ”lead in” and ”lead out” time window to this module
to improve the movie quality, thus the ”dead time” usually found at the begin-
ning and end of this plot. Beneath this are a number of configuration sliders
and pull-down menus on the left; to the right is the main rendering window and
a status bar.

The configuration sliders are interlinked to enable you to tune your movie
generation to meet a particular constraint, be it movie size, time-to-process,
frame rate, etc. For example, changing the start and stop times updates the
Number of frames label, as well as the Movie Size and Estimated Pro-
cessing Time sliders. The options, in detail, are as follows:

58 CHAPTER 4. IDL INTERFACES: LISAPP

• Start/Current/End These sliders control the relative start and stop
times of your movie. The units are 1-second intervals; the selected interval
is highlighted in the time-series plot at the top of the window. Reducing
the movie interval of course will help you minimize your movie size and
time-to-process.

• Frame Step (ms) This is the interval at which movie frames will be
generated, in milliseconds. For example, a 200 ms (the default) interval
plots all events occurring in each 200 ms time step. Reducing this will
obviously cause your movie size and time-to-process to grow, but give
you more interesting animations. If you want your final movie to run at
a known fraction of real-time, remember this setting and, in your third-
party movie generation software, configure the desired frames-per-second
setting accordingly (e.g., 5 fps would be real-time for a 200 ms time step).

• Movie Size This is the estimated movie size, in megabytes, based on your
selected rendering window, frame step, compression settings (see below),
and choice of whether or not to plot background images. The value is
based on typical scenes, and probably valid to within about 10%.

• Estimated Processing Time This is the estimated time to finish render-
ing and saving all the movie frames, based on your selected time window
and frame interval. This is of course highly dependent on your CPU speed
and load. The bar is initially greyed out, with ”default” settings based on
a 200 MHz PowerPC machine. The ”Speed Test” button performs a short
run-through of about a dozen frames to try and gauge what the actual
processing time will be on your system. Once the speed test has been
performed, the Est Proc Time slider will be enabled and you can use it
to further constrain your movie settings. Note that this estimate is prob-
ably only good to about 25%, as the actual processing time is somewhat
dependent on the amount of lightning data actually in your movie.

• Compression, Quality, Bit Depth These pull-down menus don’t ac-
tually set any of these options in the rendered frames; rather, they are
used to describe the eventual characteristics of your final movie, in order
to estimate the final movie size. You are responsible for configuring your
third-party movie generation utilities to use the options you specify here.

• Plot BGs This option toggles the plotting of background images in your
movie frames. Note that this is very CPU-intensive and will greatly
lengthen your total processing time (as well as increase the final movie

4.4. MENU OPTIONS 59

size somewhat). Be sure that your scene is actually in daylight and that
you definitely want background images before selecting this option.

• Status, Time Remaining These labels show the current module status
and estimated time remaining (in HH:MM:SS) for the current speed test
or movie frame build. Note that the Time Remaining information is
probably not terribly accurate until about a quarter to a third of the way
through the build.

• Output Path, File Prefix These specify the output directory (path)
and file prefix of your movie frames. For example, specifying the path
/usr/me/ and prefix frm will result in files named /usr/me/frm 0000.gif,
/usr/me/frm 0001.gif, etc. The numerically-increasing file names are a
fairly standard convention used by image compositing software. Some
notes: you must have write-permission to the output directory, and the
entry here must contain a directory separator as its last character (e.g.,
’/’ on Un*x, ’:’ on MacOS, ’ón Windows). An easy way to set this is to
change the output file path in the File... Preferences... Paths window.

This tool works well for both LIS and OTD files. The image rendering
has been optimized as much as possible under IDL; we apologize for the long
processing time but there’s not much more we can do to speed it up.

60 CHAPTER 4. IDL INTERFACES: LISAPP

4.4.5 Verify menu

This menu is disabled in the end-user distribution of LISAPP. It contains diag-
nostic tools primarily used by the LIS/SCF staff to guarantee data file integrity,
and should not be relevant to end-users.

4.4.6 Tools menu

This menu provides several utilities which may be helpful to end-users in their
analysis of LIS/OTD data.

Date/Time conversions

This is a simple module for converting between the UTC, GPS and TAI93 time
systems. The module is fairly flexible, and will attempt to populate as many
missing fields as it can with the information it is given. See Chapter X for
an IDL procedure which performs these functions and can be invoked from the
command-line or from within a user’s IDL program.

Alert flag decoder

This is a simple calculator which translate bit-masked alert flag summaries and
alert flags in lightning point data and one-second data into human-language

4.4. MENU OPTIONS 61

alert descriptions. See also the options under the Help menu.

This tool is not available in the initial (prerelease) version of the LIS/OTD
software suite.

4.4.7 Help menu

This menu will eventually contain detailed online help for LISAPP.

Flags

This option displays tables containing the bit interpretations for the various
bit-masked alert summary flags and alert flags in the LIS/OTD lightning point
data and one-second data.

62 CHAPTER 4. IDL INTERFACES: LISAPP

4.5 Adding modules

Although the LISAPP IDL code is quite lenghty, it is actually fairly easy to
add custom modules to the program. A basic knowledge of IDL widgets and
IDL event-driven programming is, of course, required. Beyond that, developers
need only be familiar with the IDL-flavord LIS/OTD data structure, and any
necessary IDL analysis, plotting or data export routines needed for the custom
data module.

4.5.1 Widget interface

Basically, module developers need only worry about six steps in their modifica-
tion of the LISAPP code:

1. Create your own common block containing the menu IDs of the modules
you wish to add to LISAPP (see item 2, below). These common blocks will
need to be added to the procedures small lisapp, lisapp menu eventand
new sensitize menus.

2. Create the new menu buttons in the main LISAPP window. Templates for
menu items can found in the main widget creation routine in the lisapp
procedure.

3. Add a trap for your procedure in the LISAPP event handler (a simple
addition to the main case statement in the event handler which invokes
your module when the appropriate menu item is selected).

4. Write your module! The datafiles common block can be used to access
the loaded orbit data. The lisbase common block provides the widget id
of the main LISAPP window, which should be the group leader for your
new widgets (if your module creates a new widget hierarchy; if it is just
a plot or export routine, this is not needed). The sensor read common
block reports which sensor (LIS or OTD) and which file format (OTD or
LIS/OTD) corresponds with the loaded data, if this information is needed.
Finally, the lisapp colors common block contains the main color table
used in the program (see below).

5. Determine which data (areas, flashes, groups, events, one-seconds, view-
times, background image summaries and/or background images) are used
by your module. Modify the procedure new sensitize menus to sensitize
or desensitize your menu option, depending on what subset of LIS/OTD
data has been read in from an HDF file. Since users have the option of

4.6. FUTURE PLANS 63

partially loading HDF files to save time, this procedure is used to decide
which menu options are relevant for each subset of data. Details on how
to do this are found in the comments within the new sensitize menus
procedure.

That’s it! It should be fairly straightforward if you follow the outline above.
The LIS/SCF can help developers with specific details of the LISAPP code,
but cannot provide tutorials on basic IDL widget/event programming - please
consult the IDL online or printed documentation for the latter.

4.5.2 Color tables

Handling color in IDL is not a trivial matter. Remember that at its best, LIS-
APP should be fully cross-platform deployable. Effectively, this means that we
have to live with the lowest-common denominator graphics device, which today
means 256 colors. Further, since IDL is often run over X windows, even fewer
than 256 colors are likely to be available. We have found that color tables with
220 elements should be adequate for most of today’s IDL environments.

As shipped, LISAPP uses two different color tables. The default table con-
tains 63 grayscale values, followed by 63 ”rainbow values” and a few special-
purpose colors (this table is accessed via the lisapp colors common block. A
second table is used in the Density Map and Make Movie Frames modules;
this contains 220 colors including some ”land” gradations, ”ocean” gradations,
”rainbow” values and grayscale values.

You are free to use any 220-or-fewer length color table you can think of,
however, we strongly suggest that your module store the previous color table
before it begins (via tvlct,oldr,oldg,oldb,/get) and restore it when it is
finished (via tvlct,oldr,oldg,oldb). Note that this of course means your
module must be widget-based and have an event-handler which traps for a
”done” or ”cancel” condition. If your module simply creates a new plot window
and doesn’t include widgets and event-handling, we can’t guarantee the rest of
LISAPP will function properly (color-wise) after your module is called. This
requirement will be relaxed over time as we work to ensure that all of LISAPP ’s
modules handle all their colors internally.

4.6 Future plans

Future plans for LISAPP functionality may include:

• More sophisticated scene animation

64 CHAPTER 4. IDL INTERFACES: LISAPP

• Extension of the Flash Analysis module to include areas and groups

• More sophisticated (formal-looking) plot formats

• Shared library (DLL) support for Windows95/NT

• Import and concurrent rendering of other (NLDN, NEXRAD, GOES,
TRMM) data

While there is no specific timetable for these improvements, most should be
available by Q3-Q4 1998.

Chapter 5

IDL Interfaces: API

The IDL language high-level LIS/OTD API consists of several main compo-
nents: a set of IDL structure variable definitions to hold LIS/OTD data, a sim-
ple procedure for LIS/OTD HDF file access and several useful utility routines.
Together, they should facilitate rapid development of custom IDL analysis and
visualization code by LIS/OTD end-users. To use the API, familiarity with the
basic LIS/OTD data structure (Chapter X) and the IDL programming language
is required.

5.1 Data Structures

Structure variables in IDL are quite similar to structure variables in C, at least
in terms of their calling reference and syntax. Users not familiar with IDL
structures should not be intimidated; all the details of structure declaration
and allocation are handled transparently by the LIS/OTD API; users need only
know how to reference the variables. As in C, structures may be nested (i.e.,
one may create ”structures of structures”); we utilize this feature to develop
IDL structures which almost exactly parallel the data organization in the HDF
files and the C high-level API data structures.

Users need only be familiar with three data structures:

• An ”orbit” data structure (an anonymous IDL structure, for those inter-
ested) which contains the science data contents of an entire HDF file. The
science data (typically 1-3 Mb per file) is loaded using the READ ORBIT
procedure (see below), and items referenced directly, e.g.:

print , o rb i t . one second [∗] . a lert summary

x = moment(o rb i t . point . l i g h tn i ng . f l a sh [∗] . rad iance)

65

66 CHAPTER 5. IDL INTERFACES: API

plot , o rb i t . point . l i g h tn i ng . event [∗] . l o ca t i o n [1] , $
orb i t . point . l i g h tn i ng . event [∗] . l o ca t i o n [0]

The orbit data structure mirrors the generic LIS/OTD data hierarchy, i.e.:

someOrbit . orbit summary .∗
someOrbit . one second [] . ∗
someOrbit . point .∗

someOrbit . point . point summary .∗
someOrbit . point . viewtime [] . ∗
someOrbit . point . bg summary [] . ∗
someOrbit . point . l i g h tn ing .∗

someOrbit . point . l i g h tn ing . area [] . ∗
someOrbit . point . l i g h tn ing . f l a sh [] . ∗
someOrbit . point . l i g h tn ing . group [] . ∗
someOrbit . point . l i g h tn ing . event [] . ∗

The complete data elements for each substructure (e.g., radiance, loca-
tion, etc) are summarized in Appendix X.

• A ”UTC” data structure containing the subfields of a UTC date/time
identifier:

someUTC. year
someUTC. month
someUTC. day
someUTC. hour
someUTC. minute
someUTC. second
someUTC. doy

(Note doy is the ”day of year”, useful in sequential ordering applications).

• a ”DateTime” data structure containing various notations for the same
date/time:

someDateTime . TAI93
someDateTime . GPS
someDateTime .UTC.∗
someDateTime . Local .∗

(Note UTC and Local are ”UTC” format structures; see above).

5.2. INTERFACE ROUTINES 67

5.2 Interface Routines

The primary interface routine in the IDL API are the READ ORBIT and READ OLD ORBIT
procedures. These load LIS/OTD HDF data files into the ”Orbit” data struc-
ture described above. The calling interfaces are described below.

5.2.1 READ ORBIT

The READ ORBIT procedure loads an entire orbit’s science data
from a LIS/OTD (new format) HDF file. The data is returned in a
single IDL ”structure of structures” variable (see above). A dialog
window monitors the progress of the file input.

Calling Sequence

READ ORBIT, FILENAME, ORBIT

Arguments

FILENAME
The HDF data file full file name (i.e., path + name).

ORBIT
A named variable in which the orbit science data will be
returned. This need not be declared beforehand.

Keywords

NATIVE
Set this keyword to the full path and name of the shared
libraries to be used to accelerate file input, if these are
available on your platform.

QUIET
Set this keyword to suppress the status window updates
during the orbit load; this is useful for background (batch)
processing.

NO VIEWTIMES
Set this keyword to neglect input of viewtime granules, if
shared libraries are not available for your platform, view-
time data is not needed (i.e., lightning rate computations
are not being performed) and you wish to reduce the file
input time.

68 CHAPTER 5. IDL INTERFACES: API

NO ONE SECONDS
Set this keyword to neglect input of one-second data, if
shared libraries are not available for your platform, one-
second data is not needed (i.e., you do not wish to check
alert flags or plot geolocated background images) and you
wish to reduce the file input time.

NO AREAS
NO FLASHES
NO GROUPS
NO EVENTS
Set one or more of these keywords to neglect input of the
associated lightning point data, if shared libraries are not
available for your platform, the specific point data is not
needed and you wish to reduce the file input time.

Examples

Load an orbit using shared libraries. Suppress the status
window:

sh l i b = $
”/ usr /me/LISOTD/IDL/LISOTD Irix . so ”

fn = $
”/ data /1998 . 070 /TRMM LIS SC. 03 . 5 1998 . 070 . 1640”

READ ORBIT, fn , o rb i t , NATIVE=sh l i b , / QUIET

Load an orbit using native IDL libraries, neglecting view-
times to speed things up:

fn = $
”/ data /1998 . 070 /TRMM LIS SC. 03 . 5 1998 . 070 . 1640”

READ ORBIT, fn , o rb i t , / NO VIEWTIMES

5.2. INTERFACE ROUTINES 69

5.2.2 READ OLD ORBIT

The READ OLD ORBIT procedure loads an entire orbit’s science
data from an OTD (old format) HDF file. The data is returned in a
single IDL ”structure of structures” variable (see above) which con-
forms to the new LIS/OTD data format. A dialog window monitors
the progress of the file input.

Calling Sequence

READ OLD ORBIT, FILENAME, ORBIT [, OLD ORBIT]

Arguments

FILENAME
The HDF data file full file name (i.e., path + name).

ORBIT
A named variable in which the orbit science data will be
returned. This need not be declared beforehand.

OLD ORBIT
An optional named variable in which the orbit science data
will be returned in its original (”old OTD”) format. Struc-
ture definitions for this format can be determined via the
HELP, /STRUCT, OLD ORBIT command.

Keywords

NATIVE
Set this keyword to the full path and name of the shared
libraries to be used to accelerate file input, if these are
available on your platform.

NO VIEWTIMES
Set this keyword to neglect input of viewtime granules, if
shared libraries are not available for your platform, view-
time data is not needed (i.e., lightning rate computations
are not being performed) and you wish to reduce the file
input time.

NO ONE SECONDS
Set this keyword to neglect input of one-second data, if
shared libraries are not available for your platform, one-
second data is not needed (i.e., you do not wish to check
alert flags or plot geolocated background images) and you
wish to reduce the file input time.

70 CHAPTER 5. IDL INTERFACES: API

NO AREAS
NO FLASHES
NO GROUPS
NO EVENTS
Set one or more of these keywords to neglect input of the
associated lightning point data, if shared libraries are not
available for your platform, the specific point data is not
needed and you wish to reduce the file input time.

Examples

Load an old OTD orbit using shared libraries:

l i b s = $
”/ usr /me/LISOTD/IDL/LISOTD Irix . so ”

fn = $
”/ data / 95 194 /mlab . otd . 1 1 . 1995 . 194 . 0003 ”

READ OLD ORBIT, fn , o rb i t , NATIVE=l i b s

Load an old OTD orbit using native IDL libraries, neglect-
ing viewtimes to speed things up. Also return the data in
old OTD structure format:

fn = $
”/ data / 95 194 /mlab . otd . 1 1 . 1995 . 194 . 0003”

READ OLD ORBIT, fn , new , old , / NO VIEWTIMES

5.3. DATE/TIME UTILITIES 71

5.3 Date/Time Utilities

5.3.1 NEW DATETIME STRUCTURE

The NEW DATETIME STRUCTURE function creates a single in-
stance or an array of instances of the DateTime structure described
in (ref) above. These are primarily useful in conjunction with the
CALC DATETIME routine, described below.

Calling Sequence

Result = NEW DATETIME STRUCTURE(N)

Arguments

N
The size of the returned DateTime structure array. Set-
ting N=1 returns a single DateTime variable.

Keywords

None

Examples

Create an array of DateTime structures, one for each flash
in a loaded orbit file. Load it with the flash TAI93 times:

numfl = orb i t . point . point summary . f l a sh coun t
dates = NEW DATETIME STRUCT(numfl)
dates [∗] . TAI93 = $

orb i t . point . l i g h tn ing . event [∗] . TAI93 time

72 CHAPTER 5. IDL INTERFACES: API

5.3.2 CALC DATETIME

The CALC DATETIME procedure takes a partially loaded Date-
Time structure variable (or array of structure variables) and at-
tempts to populate the empty fields for other date/time conven-
tions. E.g., if the UTC year, month and day fields are initially
set, CALC DATETIME will calculate the day-of-year field (since no
hour/minute/second data are available for the other fields). If the
TAI93 field is set, CALC DATETIME will populate the complete
UTC and GPS fields, as TAI93 is a complete date/time variable.

Calling Sequence

CALC DATETIME,DATETIME

Arguments

DATETIME
A date/time structure or array of structures returned from
the routine NEW DATETIME STRUCTURE, and par-
tially loaded with some date/time information. On return
this procedure fills as many empty fields in DATETIME
as possible given the input information.

Keywords

LONGITUDE
An optional longitude or array of longitudes from which
to compute local times. If DATETIME is passed as an
array and LONGITUDE as a scalar, the single longitude
will be used for all calculations.

Examples

Compute the day of year from year/month/day:

DT = NEW DATETIMESTRUCTURE(1)
DT.UTC.YEAR = 1997
DT.UTC.MONTH= 7
DT.UTC.DAY = 1
CALC DATETIME, DT
PRINT, DT.UTC.DOY

Convert TAI93 times to UTC and local date/times. The
times are assumed measured at 84 W, 132 W, and 95 E:

5.3. DATE/TIME UTILITIES 73

DT = NEW DATETIMESTRUCTURE(3)
DT[∗] . TAI93 = $

[47174402 . 000D , 94608003 . 000D , 141868804 . 000D]
CALC DATETIME, DT, LONGITUDE=[−84 . 0,−132 . 0 , 95 . 0]
PRINT, DT[∗] . UTC.YEAR, DT[∗] . UTC.MONTH, $

DT[∗] . UTC.DAY, DT[∗] . UTC.HOUR, $
DT[∗] . UTC.MINUTE, DT[∗] . UTC.SECOND

PRINT, ’ ’
PRINT, DT[∗] . LOCAL.YEAR, DT[∗] . LOCAL.MONTH, $

DT[∗] . LOCAL.DAY, DT[∗] . LOCAL.HOUR, $
DT[∗] . LOCAL.MINUTE, DT[∗] . LOCAL. SECOND

Calculate the UTC and local date/times for all flashes in
a LIS/OTD orbit:

numfl = orb i t . point . point summary . f l a sh coun t
dates = NEW DATETIME STRUCT(numfl)
dates [∗] . TAI93 = $

orb i t . point . l i g h tn ing . event [∗] . TAI93 time
lons = orb i t . point . l i g h tn i ng . f l a sh [∗] . l o ca t i o n [1]
CALC DATETIME, dates , LONGITUDE=lons

74 CHAPTER 5. IDL INTERFACES: API

5.4 Geolocation Utilities

The geolocation utilities described below all assume that some LIS/OTD orbit
data is loaded, and stored in a global common block of the form:

common d a t a f i l e s , o rb i t , fname
where orbit is the name of the currently loaded orbit variable and fname is

the orbit’s file name (not used by these routines). Note the ”One Second” data
values must have been included in the loaded orbit for these routines to work.

5.4.1 GET NADIR LOCATION

The GET NADIR LOCATION and GET NADIR LOCATIONS pro-
cedures are fast routines to calculate the Microlab-1 or TRMM nadir
points (on the Earth’s surface) for a selected TAI93 time or array of
TAI93 times.

Calling Sequence

GET NADIR LOCATION,TAI93 TIME,LOCATION
GET NADIR LOCATIONS,TAI93 TIMES,LOCATIONS

Arguments

TAI93 TIME
TAI93 TIMES
A scalar TAI93 value or array of TAI93 values specify-
ing the times at which the satellite nadir locations are
required.

LOCATION
LOCATIONS
A 2x1 or 2xn array of computed lat/lon values returned
by the routines.

Keywords

None

Examples

Compute and plot satellite nadir locations for each second
of an orbit:

5.4. GEOLOCATION UTILITIES 75

GET NADIR LOCATIONS, $
orb i t . one second [∗] . TAI93 time , $
l o ca t i o n s

plot , l o ca t i o n s [1 , ∗] , l o ca t i o n s [0 , ∗]

76 CHAPTER 5. IDL INTERFACES: API

5.4.2 GET POINTING VECTOR

The GET POINTING VECTOR, GET VECTOR POINTING VECTOR
and GET ARRAY POINTING VECTOR procedures are routines
to calculate the scaled pointing vector of a pixel, vector of pixels, or
the full array of pixels in the OTD/LIS sensor arrays. The scalar
version of the routine is meant for single pixel use. The vector ver-
sion is most useful for a list of pixels. The array version is most
useful for geolocating background images. These routines are meant
to be used in conjunction with the GET EARTH INTERSECTION
family of routines, described below.

Calling Sequence

GET POINTING VECTOR,SENSOR,X,Y,LOOK VECTOR
GET VECTOR POINTING VECTOR,SENSOR,X,Y,LOOK VECTOR
GET ARRAY POINTING VECTOR,SENSOR,LOOK VECTOR

Arguments

SENSOR
A string denoting which sensor the computations are rel-
evant for, e.g., ”OTD” or ”LIS”.

X
Y
The (x,y) pixel locations (0 to 127) of interest. These are
either a scalar or vector list of values. These arguments
are not used in the array version of the routine as the com-
putation is performed over the entire 128x128 array.

LOOK VECTOR
The calculated pointing vector, returned as a double pre-
cision 1x3, nx3 or 128x128x3 array. This should be passed
directly to one of the GET EARTH INTERSECTION fam-
ily of routines.

Keywords

None

Examples

See below.

5.4. GEOLOCATION UTILITIES 77

5.4.3 GET EARTH INTERSECTION

The GET EARTH INTERSECTION, GET VECTOR EARTH INTERSECTION
and GET ARRAY EARTH INTERSECTION procedures are fast
routines to calculate the LIS or OTD ground or cloud-top locations
for a selected TAI93 time or array of TAI93 times.

Calling Sequence

GET EARTH INTERSECTION,LOOK VEC,TAI93,LL,PRLX,RET
GET VECTOR EARTH INTERSECTION,LOOK VEC,TAI93,LL,PRLX,RET
GET ARRAY EARTH INTERSECTION,LOOK VEC,TAI93,LL,PRLX,RET

Arguments

LOOK VEC
A pointing vector array returned by one of the GET POINTING VECTOR
family of routines described above.

TAI93
A single TAI93 time (scalar or array routine) or array of
TAI93 times (vector routine) for which to geolocate the
requested pixel(s).

LL
A 1x2, nx2 or 128x128x2 array of geolocated lat/lon pairs
computed by the routine.

PRLX
The height, in meters, above the earth surface to compute
the geolocation. Locations precomputed in the HDF files
assume that background images are geolocated at the sur-
face and lightning events at cloud top (assumed 12000m).
Users may wish to adjust these values as they see fit and
regeolocate certain data.

RET
A status variable giving the success or failure of the ge-
olocation calculation; non-zero values indicate failure.

Keywords

None

Examples

78 CHAPTER 5. IDL INTERFACES: API

Re-geolocate all events in a file assuming 16 km cloud tops:

g e t v ec t o r po i n t i ng v ec t o r , ’ l i s ’ , $
o rb i t . point . l i g h tn ing . event [∗] . x p i x e l , $
orb i t . point . l i g h tn ing . event [∗] . y p i x e l , $
l o o k v ec t o r

g e t v e c t o r e a r t h i n t e r s e c t i o n , l o o k v ec t o r , $
orb i t . point . l i g h tn ing . event [∗] . TAI93 time , $
new locat i ons , 16000 . 0D, r e t v a l

plots , new locat i ons [1] , new locat i ons [0] , psym=3

Geolocate a background image:

th i s bg = orbi t . point . bg summary [12]
g e t a r r a y po i n t i ng v ec t o r , ’ l i s ’ , l o o k v ec t o r
g e t a r r a y e a r t h i n t e r s e c t i o n , l o o k v ec t o r , $

th i s bg . TAI93 time , a r r a y l o ca t i o n s , $
0 . 0D, r e t v a l

; You now have an array of l a t lon va lues −
; t here are many d i f f e r en t ways of creat ing
; a background image p lot from these . . .
; t r y some !

5.5. GENERAL PURPOSE UTILITIES 79

5.5 General Purpose Utilities

5.5.1 WHICH SENSOR

The WHICH SENSOR procedure probes an HDF file and deter-
mines if it is an old (OTD) or new (LIS/OTD) format file.

Calling Sequence

WHICH SENSOR,FILENAME,SENSOR

Arguments

FILENAME
A full filename (path+name) to an OTD or LIS/OTD
HDF file.

SESNOR
A variable which will be set to ’lis’, ’otd’ or ’unknown’
upon completion of this routine.

Keywords

None

Examples

Load a mystery HDF file using the correct IDL routine:

my s t e ry f i l e = ”/ data / mys t e ry f i l e . hdf ”
whi ch sensor , my s t e ry f i l e , sensor
case sensor of

” l i s ” : begin
r ead o rb i t , my s t e ry f i l e , o rb i t

end
”otd ” : begin

r ead o l d o rb i t , my s t e ry f i l e , o rb i t
end

”unknown” : begin
print , ”No clue what th i s f i l e i s !”

end
endcase

80 CHAPTER 5. IDL INTERFACES: API

5.5.2 OTD QA

The OTD QA function returns the Quality Assurance flags set by
the LIS/SCF QA inspector for OTD data. This is retrieved from
a periodically- updated database (OTD QA.dat) distributed with the
LIS/OTD software package. The current database runs through 31
December 1997. The flags are returned in a 5-value byte array.

Calling Sequence

retval = OTD QA(FILENAME,DATABASENAME)

Arguments

FILENAME
A partial or full (path+name) file name of an OTD HDF
file.

DATABASENAME
The full (path+name) file name of the QA database.

Keywords

None

Notes

The five returned values each represent a different possible
warning/error condition manually set by the LIS/SCF QA
inspector. Assuming the flags are returned in the variable
retval, then the interpretations are as follows:

• retval[0] = 1 : This file contained no usable data,
and it was removed from the data set distributed to
the user community. If you’re outside the LIS/SCF,
you should never see this flag!

• retval[1] = 1 : This file contains a large number of
events that appear not to have been caused by light-
ning.

• retval[2] = 1 : This file contains undocumented
data gaps causing view time to be incorrect. Gaps
are confirmed.

5.5. GENERAL PURPOSE UTILITIES 81

• retval[2] = 2 : This file may contain undocumented
data gaps causing view time to be incorrect. Gaps are
possible.

• retval[2] = 3 : This file appears to contain more
than one Microlab orbit due to bad production code
processing; use lightning data beyond the nominal end
of the orbit with caution, as it may not contain cor-
responding viewtimes.

• retval[3] = 1 : This file contains data beyond the
normal orbit length or the file is tagged with a bad
start or stop time.

• retval[4] = 1 : The ephemeris in this file is ques-
tionable and/or the satellite is out of control.

Examples

Check the QA flags for an OTD orbit; if no flags have been
set, go ahead and load it:

fn = $
”/ data / 95 194 /mlab . otd . 1 1 . 1995 . 194 . 0003”

qa f l ags = OTD QA(fn , ”/ data /OTD QA. dat ”)

i f (total (q a f l ag s [∗]) eq 0) then begin
READ OLD ORBIT, fn , o rb i t , / QUIET

endif

82 CHAPTER 5. IDL INTERFACES: API

Chapter 6

C Interface: High-level API

The C language high-level LIS/OTD API consists of several main components: a
set of C structure variable definitions to hold LIS/OTD data, a simple procedure
for LIS/OTD HDF file access and several useful utility routines. Together, they
should facilitate rapid development of custom C extraction and analysis code
by LIS/OTD end-users. To use the API, familiarity with the basic LIS/OTD
data structure and the basics of C programming is required.

6.1 History

When the Microlab-1 satellite was launched in 1995, a C language API for anal-
ysis of OTD data (ReadOTD) was released to the user community, supported
primarily on SGI Irix platforms. This API was designed such that users could
write entire analysis programs with just a few high-level library routines in-
cluded in the package. Over time, its functionality grew beyond mere data
extraction to include the repair of some defects in the distributed OTD data
files, custom filtering, subsetting and coincidence searches, etc. This greater
complexity made it increasingly less likely that the code would be supported on
multiple platforms, and degraded the code performance.

From the start, the high-level routines in ReadOTD were designed to be flex-
ible enough to accomodate new sensors (such as LIS) without changing the
high level interface. Rather, any necessary code changes could be made in the
low-level library routines, which users need never access. This is precisely the
approach taken now. The only major change is that users must familiarize
themselves with the new LIS/OTD data structures, which we believe are a sig-
nificant improvement over our earlier data organization.

As discussed in Chapter 1, we also are striving to make the API as cross-
platform deployable as possible. As such, the initial LIS/OTD software release

83

84 CHAPTER 6. C INTERFACE: HIGH-LEVEL API

includes only the most basic routines found in ReadOTD. The routines giving ad-
vanced functionality (e.g., filtering, subsetting, etc) will be reintroduced as they
are updated to accomodate the new data structure and be more cross-platform
deployable. Finally, since LIS format HDF files by design will not require the
same repair work performed transparently by ReadOTD, code performance (es-
pecially in file I/O) should be improved dramatically.

6.2 Compatibility

The LIS/OTD high-level C API is completely compatible with old-format (OTD)
HDF files and new-format (LIS/OTD) HDF files. The same interface routine
GetData() is used to access either file type. Old OTD data is converted to the
new LIS/OTD data format before being returned to the user.

If you have analysis programs written with the ReadOTD package and wish
to update them for use with the new API, there are several considerations:

1. You must change your program #includes and basic variable declarations
to use the new files; a basic program template may be found in Appendix
B.

2. Note that some subsetting and filtering routines are not yet functional for
LIS data (e.g., the old SetBounds() family of routines). However, they
are still functional if you use the new libraries to read old OTD format
files. Further, programs including these calls will compile even if you wish
to access the new LIS format files - it is only the subsetting functionality
which is not enabled for LIS format files. Thus your old code should be
almost completely recompilable using the new libraries.

3. However, since the basic data type returned by GetData() has changed,
any custom C code you have added (i.e., anything which doesn’t utilize
the high level routines, such as your own output, summation, gridding,
averaging, etc algorithms) will need to be updated to use the new data
format (see below). This is basically just a matter of learning where old
OTD data elements have been moved in the new format, and globally re-
placing the appropriate variable names. Appendix C is your guide to this
part of the process.

The transition won’t be completely seamless, but we hope the added benefits
of the new unified and simplified data and file formats outweigh the inconve-
nience of the upgrade process.

6.3. DATA STRUCTURES 85

6.3 Data Structures

Structure variables in C are convenient ways of organizing multiple data types
and values in single variables. Structures may also be nested; i.e., we may create
a ”structure of structures”. This capability is used to recreate almost exactly
the data organization found in LIS/OTD HDF data files, and implemented in
the IDL high-level API.

Users need only be familiar with two data structures:

• A lis orbit data structure which contains the science data of an entire
HDF file. The science data (typically 1-3 Mb per file) is loaded using the
GetData() routine (see below). The lis orbit data structure contains
several nested structures:

struct l i s o r b i t {
struct l i s o rb i t summary orbit summary ;
struct l i s p o i n t point ;
struct l i s o n e s e cond ∗ one second ;

} ;

struct l i s p o i n t {
struct l i s po int summary point summary ;
struct l i s l i g h t n i n g l i g h tn ing ;
struct l i s v i ew t ime ∗ viewtime ;
struct l i s bg summary ∗bg summary ;

} ;

struct l i s l i g h t n i n g {
struct l i s a r e a ∗ area ;
struct l i s f l a s h ∗ f l a sh ;
struct l i s g r oup ∗ group ;
struct l i s e v e n t ∗ event ;

} ;

and each data element may be accessed directly, e.g.:

/∗ Compute the t o t a l radiance of a l l f l a s h e s
in an or b i t ∗/

num fl = orb i t . point . point summary . f l a sh coun t ;
t o t a l r a d i a n c e = 0 . 0 ;

for (i=0 ; i < num fl ; i ++) {
t o t a l r a d i a n c e +=

86 CHAPTER 6. C INTERFACE: HIGH-LEVEL API

orb i t . point . l i g h tn ing . f l a sh [i] . rad iance ;
}

pr i n t f (”%f \n” , t o t a l r a d i a n c e) ;

The complete data elements for each substructure (e.g., radiance, loca-
tion, etc) are summarized in Appendix C.

• The aUTCDateTime data structure containing the subfields of a UTC date/time
identifier:

struct aUTCDateTime {
int year , doy , month , day , hour , minute ;
double second ;

} ;

(Note doy is ”day of year”, useful in sequential ordering applications).

In addition, the structure type aBoundset is used to contain filtering and
subsetting preferences and will need to appear in your program declarations.
However, variables of this type are all modified directly by high-level LIS/OTD
API routines, and users need not worry about the actual contents of aBoundset
variables.

6.4. STARTUP/SHUTDOWN ROUTINES 87

6.4 Startup/Shutdown Routines

These subroutines are necessary components of any code using the LIS/OTD C
API, and should be called at the beginning and end of each program.

6.4.1 Initialize()

NAME

Initialize

SYNOPSIS

include ”liblisotd read LISOTD.h”
void Initialize();

DESCRIPTION

Initialize is the required first statement in any user code written
with the LIS/OTD C API. It primarily initializes global variables
which are normally transparent to the user.

6.4.2 ResetAllBounds()

NAME

ResetAllBounds

SYNOPSIS

include ”liblisotd read LISOTD.h”
void ResetAllBounds (struct aBoundset *Bounds);

DESCRIPTION

The ResetAllBounds routine should be called immediately after
Initialize() to ensure that the subsetting/bounds structure is
properly initialized. It may also be called after successive orbit reads
if the bounds are to be reset to their initial state (no subsetting).
The *Bounds variable must be declared in the main block of the
code, but its elements are never directly modified by the user.

88 CHAPTER 6. C INTERFACE: HIGH-LEVEL API

6.4.3 FreeData()

NAME

FreeData

SYNOPSIS

include ”liblisotd read LISOTD.h”
void FreeData (struct lis orbit *TheData);

DESCRIPTION

The FreeData routine frees all memory allocated by GetData() for
the array portions of the *TheData orbit variable, i.e., viewtimes,
background summaries, areas, flashes, groups and events. The vari-
able may then be used to load a new orbit. This may be useful
on memory-limited systems if multiple orbits are being read by the
same code.

6.4.4 Example of startup/shutdown sequence

include ” l ib l i so td read LISOTD . h”

main(int argc , char ∗ argv []) {

struct aBoundset Bounds ;
struct l i s o r b i t TheData ;

I n i t i a l i z e () ;
ResetAl lBounds(&Bounds) ;

/∗ Main body of code goes here ∗/

FreeData (&TheData) ;

}

6.5. INTERFACE ROUTINES 89

6.5 Interface Routines

These routines are the primary I/O components of the LIS/OTD C API.

6.5.1 GetData()

NAME

GetData

SYNOPSIS

include ”liblisotd read LISOTD.h”
struct lis orbit GetData(char hdfname[], struct aBoundset *Bounds);

DESCRIPTION

The GetData routine loads an entire orbit’s science data from an
OTD or LIS/OTD format HDF file. The HDF format is currently
detected by the existence of the character sequences ”mlab” (OTD)
or ”SC” (LIS) within the HDF file name passed to GetData. Al-
though not yet implemented, the data will be subsetted and/or fil-
tered (and appropriate parameters recalculated) according to the
bounds previously specified by the user. The data is returned in
a variable of type struct lis orbit which must previously have
been declared by the user.
The GetData routine is quite fast for LIS/OTD format files, but
can be rather slow for old OTD format files. This is because of some
extensive integrity checking and repair work that is performed trans-
parently on old OTD format data. Future releases of this software
will strive to improve GetData performance with old data.

90 CHAPTER 6. C INTERFACE: HIGH-LEVEL API

6.5.2 WriteData()

NAME

WriteData

SYNOPSIS

include ”liblisotd read LISOTD.h”
void WriteData(struct lis orbit TheData, int output type, char
filename[132], int dump or, int dump ar, int dump fl, int dump gr,
int dump ev);

DESCRIPTION

The WriteData routine is a flexible mechanism for exporting LIS or
OTD data in a variety of formats. Currently, we allow data to be
rewritten in either HDF or several ASCII formats. Future releases
will allow export of background images in HDF Scientific Data Set
(SDS) format.
The output type variable determines the format of the exported
data. Currently available options are MINI HDF, ASCII SINGLE
and ASCII TREE. MINI HDF files are written in the standard LIS
/ OTD format (these may be useful for keeping track of subsetted
or filtered data, when this functionality is included in the package).
ASCII SINGLE files are separate, space-delimited column ASCII
data files, one for each point data type (area, flash, group, event;
see below) requested. ASCII TREE files are single files containing
the requested point data in a nested ”tree” format, retaining the
point data grouping hierarchy. The content and format of the col-
umn data in these files is controlled by several auxiliary routines,
described below.
The filename parameter is actually a file name ”stub”; appropriate
suffixes will be appended to this by WriteData to indicate the type
and content of the output files created.
The dump * variables are flags denoting whether or not to include
the specified point data level in the output (primarily with ASCII
format output). Predefined keys are available for use here, e.g.,
the sequence ”...!O, A, F, !G, !E... would indicate that only
Areas and Flashes (not, or ”!” Orbits, Groups and Events) are de-
sired for output.

6.5. INTERFACE ROUTINES 91

6.5.3 AddASCIIOutputField()

NAME

AddASCIIOutputField

SYNOPSIS

include ”liblisotd read LISOTD.h”
void AddASCIIOutputField (int data level, int output field, char
format[8])

Field A F G E Type Units
INDEX

√ √ √ √
long (none)

THRESH
√ √ √ √

byte 8-bit counts
TIME UTC

√ √ √ √
misc Y JD M D H M S.SSS

TIME TAI93
√ √ √ √

double seconds
TIME GPS

√ √ √ √
double seconds

LOCATION
√ √ √ √

double degrees
DURATION

√ √
double seconds

VIEW TIME
√

† † † double seconds
RADIANCE †

√ √ √
double uJ/ster/m2/ster

FOOTPRINT † √ † † double km2
NUM CHILDREN

√ √ √
long (none)

NUM GRANDCHILD † † long (none)
NUM GREATGRANDCHILD † long (none)

ALERT FLAG † † † † byte packed bits
CLUSTER INDEX † † † † byte (none)
DENSITY INDEX † † † † byte (none)

NOISE INDEX † † † † byte (none)
AMPLITUDE † byte 7-bit counts
SZA INDEX † byte -

GLINT INDEX † byte -

Table 6.1: Data available for ASCII output.
√

indicates the value is available
in the current version of the API, † indicates the value will be available in the
final API release. Not all values are available for all lightning data levels.

DESCRIPTION

This routine adds custom output fields to the files created when
WriteData is called with options of either ASCII SINGLE or ASCII TREE.
The data level parameter indicates areas, flashes, groups or events
and is specified by passing the keywords A, F, G or E. Keywords for
the available output fields are shown in the table below. The format
string may contain a custom format (C language style) or the key
DEFAULT to use formats recommended by the LIS-SCF.

92 CHAPTER 6. C INTERFACE: HIGH-LEVEL API

6.5.4 ResetASCIIOutputFields()

NAME

ResetASCIIOutputFields

SYNOPSIS

include ”liblisotd read LISOTD.h”
void ResetASCIIOutputField (int data level, char reset value[8])

DESCRIPTION

By default, the ASCII output options of WriteData() export the
UTC date/time, latitude and longitude of a given data level (Area,
Flash,Group or Event). Additional fields may be added with the
AddASCIIOutputField() routine. The ResetASCIIOutputFields()
routine restores the exported fields to their initial state. The data level
parameter is one of the A, F, G or E keys. The reset value parame-
ter may be one of two predefined keywords, DEFAULT (UTC/lat/lon
fields) or EMPTY (no fields).

6.6. SUBSETTING ROUTINES 93

6.6 Subsetting Routines

As discussed above, subsetting and/or filtering functionality is not yet sup-
ported in the LIS/OTD software package. Data subsetting/filtering technically
requires the recomputation of several value-added parameters, such as radiance
and footprint. We are currently investigating efficient ways of including this
functionality without impacting code performance for users who do not choose
to filter or subset.

You are of course free to write your own subsetting and filtering routines,
however we caution that not all lightning value-added parameters at each data
level will necessarily remain correct, including the viewtime granules. Sub-
setting and filtering routines will be re-introduced into the LIS/OTD software
package as time and resources at the LIS/SCF allow.

94 CHAPTER 6. C INTERFACE: HIGH-LEVEL API

6.7 Date/Time Utilities

These are a few useful routines we have included to convert between the UTC,
TAI93 and GPS date/time formats.

6.7.1 UTC to TAI93()

NAME

UTC to TAI93

SYNOPSIS

include ”liblisotd read LISOTD.h”

double UTC to TAI93 (struct aUTCDateTime UTC)

DESCRIPTION

This routine converts a completely specified UTC date/time to its
TAI93 time equivalent. Leap seconds are considered; the last leap
second known to these routines was on 1 July 1997.

6.7.2 TAI93 to UTC()

NAME

TAI93 to UTC

SYNOPSIS

include ”liblisotd read LISOTD.h”

struct aUTCDateTime TAI93 to UTC (double TAI93)

DESCRIPTION

This routine converts a TAI93 time (such as those associated with
the LIS/OTD point data) to a completely specified UTC date/time.
Leap seconds are considered; the last leap second known to these
routines was on 1 July 1997.

6.7.3 UTC to GPS()

NAME

UTC to GPS

SYNOPSIS

6.7. DATE/TIME UTILITIES 95

include ”liblisotd read LISOTD.h”

double UTC to GPS (struct aUTCDateTime UTC)

DESCRIPTION

This routine converts a completely specified UTC date/time to its
GPS time equivalent. Leap seconds are considered; the last leap sec-
ond known to these routines was on 1 July 1997. Note that GPS time
is specified only as a number of seconds since a reference date/time.
There is no such thing as a GPS time in year/month/day format.
Dates/times in such a format exported by GPS receivers have al-
ready been converted to UTC. Raw ”GPS seconds” are rarely used
outside of the satellite community.

6.7.4 GPS to UTC()

NAME

GPS to UTC

SYNOPSIS

include ”liblisotd read LISOTD.h”

struct aUTCDateTime GPS to UTC (double GPS)

DESCRIPTION

This routine converts a GPS time to its completely specified UTC
date/time equivalent. Leap seconds are considered; the last leap sec-
ond known to these routines was on 1 July 1997. Note that GPS time
is specified only as a number of seconds since a reference date/time.
There is no such thing as a GPS time in year/month/day format.
Dates/times in such a format exported by GPS receivers have al-
ready been converted to UTC. Raw ”GPS seconds” are rarely used
outside of the satellite community.

6.7.5 getDayOfYear

NAME

getDayOfYear

SYNOPSIS

include ”liblisotd read LISOTD.h”

int getDayOfYear (int day, int month, int year)

96 CHAPTER 6. C INTERFACE: HIGH-LEVEL API

DESCRIPTION

This routine converts a day/month/year date specification to a 3-
digit day of year, as is contained in the LIS/OTD HDF file names.

6.7.6 InvJulian

NAME

InvJulian

SYNOPSIS

include ”liblisotd read LISOTD.h”
void InvJulian (int year, int day of year, int *month, int *day)

DESCRIPTION

This routine converts a year/day of year date specification to a
month and a day.

6.8. GEOLOCATION UTILITIES 97

6.8 Geolocation Utilities

Geolocation utilities (primarily used for geolocating background images) are not
included in this prerelease but will be implemented in the official release of the
LIS/OTD software. Until then, adventurous programmers should be able to
easily port the geolocation routines included in the IDL API (see Section 5.4).
Note that unlike the earlier ReadOTD software, the LIS/OTD software utilizes
no proprietary or third-party libraries to perform geolocation functions.

98 CHAPTER 6. C INTERFACE: HIGH-LEVEL API

Part III

Low Level Interfaces

99

Chapter 7

C Interface: Low-level API

We only provide limited documentation of the LIS portion of the low level C
API in this prerelease version of the documentation. Low-level API programs
can be compiled using the make reader lowlevel option of the Makefile we
provide. The low level API is still fairly straightforward; the main differences
being:

• Certain date/time and geolocation utility functions are not accessible

• The user must handle HDF file opening and closing

• The user must handle memory allocation and deallocation for structure
variable arrays

• The returned HDF data is not cleanly assembled into a single structure
variable, but rather a number of individual structure variable arrays

• There will be no eventual support for filtering and subsetting

The primary benefit of the low-level API is that it should be extremely
portable across platforms, as it uses fairly vanilla C code and the NCSA HDF
libraries. If all vdatas in an HDF file are to be imported, there is no significant
speed benefit to using the low-level API.

The following sample program illustrates the basic structure and interfaces
of the low-level API. The individual vdata structure definitions are the same as
in the high-level API, as described in Chapter 6 and Appendix C.

101

102 CHAPTER 7. C INTERFACE: LOW-LEVEL API

/∗ Basic inc ludes you should have in any program
using the low−l e v e l API ∗/

include < std i o . h>
include <math . h>
include ”hdf . h”
include ” l i b l i s o t d e r r d e f s . h”
include ” l i b l i s o td r e a d h d f . h”

main(int argc , char ∗ argv []) {

long f i d , i ;
long l i s e v e n t s , l i s o n e s e cond s , l i s a r e a s ;
struct l i s a r e a ∗ l i s a r e a v a r ;
struct l i s e v e n t ∗ l i s e v e n t v a r ;
struct l i s o n e s e cond ∗ l i s o n e s e cond va r ;
char fname [132] ;

/∗ This i s the f i l e we’ l l access ; i t l i v e s in the
same d i r e c t o ry as the e x e cu t a b l e . ∗/

sp r i n t f (fname , ”TRMM LIS SC. 03 . 4 1998 . 028 . 00970 ”) ;

/∗ Get the f i l e ID of the LIS HDF data f i l e .
Some or b i t s may not have metadata i n s e r t e d

into them , or may l e g i t im a t e l y have no
point vdatas . Errors are encoded in the
f i l e ID’ s i f t h i s occurs . We mask them
out in order to continue . ∗/

f i d = OPEN l i s o rb i t hdf (fname) ;

i f (((f i d &0 x f f f f f f 0 0)==lis NoMetadataMiss ingVdata)) {
f i d = f id ˆ l is NoMetadataMiss ingVdata ;

} else i f (((f i d &0 x f f f f f f 0 0)==lis NoMetadata)) {
f i d = f id ˆ l is NoMetadata ;

} else i f (((f i d &0 x f f f f f f 0 0)==l i s Mi ss ingVdata)) {
f i d = f id ˆ l i s Mi ss ingVdata ;

}

/∗ Should have a va l i d f i l e ID at t h i s point .
I f not , we’ re in t r oub l e . ∗/

i f (f i d < 0) {
p r i n t f (” Unrecoverable error opening %s \n” , fname) ;
i f (CLOSE l i s o rb i t hdf (f i d)!= lis operation SUCCESSFUL)

103

p r i n t f (” c l o s e %s f i l e f a i l ed \n” , fname) ;
ex i t (−1) ;

}

/∗ Get the number of area vdata records ∗/

l i s a r e a s = lis area COUNT (f id) ;

/∗ Al locate memory according l y ∗/

l i s a r e a v a r = (struct l i s a r e a ∗)
mal loc ((s i z e t)(l i s a r e a s ∗ sizeof (struct l i s a r e a))) ;

/∗ Read the area vdata i from the f i l e . I t w i l l be
contained in the va r i a b l e l i s a r e a v a r , which
f o l l ow s the convent iona l s t r uc t u re de f i n i t i on .
See Appendix C of the documentation or the f i l e
l i b l i s o t d r e a d h d f . h for d e t a i l s . ∗/

i = READ lis areas (f i d , l i s a r e a v a r , 0 , l i s a r e a s) ;

/∗ Exact l y the same for event s ∗/

l i s e v e n t s = lis event COUNT (f id) ;
l i s e v e n t v a r = (struct l i s e v e n t ∗)

mal loc ((s i z e t)(l i s e v e n t s ∗ sizeof (struct l i s e v e n t))) ;
i = READ lis events (f i d , l i s e v e n t v a r , 0 , l i s e v e n t s) ;

/∗ And for one second data , e tc . ∗/

l i s o n e s e cond s = lis one second COUNT (f id) ;
l i s o n e s e cond va r = (struct l i s o n e s e cond ∗)

mal loc ((s i z e t)(l i s o n e s e cond s ∗ sizeof (struct l i s o n e s e cond))) ;
i = READ lis one seconds (f i d , l i s o n e s e cond va r , 0 , l i s o n e s e cond s) ;

/∗ You get the idea . Now c lose out the o r b i t n i c e l y and
f r ee the a l l o c a t e d memory . ∗/

i f (CLOSE l i s o rb i t hdf (f i d)!= lis operation SUCCESSFUL)
p r i n t f (” c l o s e %s f i l e f a i l ed \n” , fname) ;

f r e e (l i s a r e a v a r) ;
f r e e (l i s e v e n t v a r) ;
f r e e (l i s o n e s e cond va r) ;

}

104 CHAPTER 7. C INTERFACE: LOW-LEVEL API

Part IV

Appendices

105

Appendix A

HDF/C/IDL Structures

The basic LIS/OTD data file structure has already been partially documented
in Chapters 5 and 6. This Appendix provides detailed information on the indi-
vidual fields of each structure. In all cases, the field names are identical in the
HDF, C and IDL implementations of the data structure. The overall organi-
zation of the data is shown below, and the fields desribed in the sections that
follow.

A.1 Basic structure

107

108 APPENDIX A. HDF/C/IDL STRUCTURES

A.2 orbit summary

Parameter
Structure Element

Name
Type Size Description Units

Orbit ID id number int32 1
the number of this

orbit, where the orbit
count starts at launch

-

TAI93 start
time

TAI93 start float64 1
start of this orbit in

TAI93 time
sec

UTC start
time

UTC start char 28
start of this orbit in

UTC time
-

GPS start
time

GPS start float64 1
start of this orbit in

GPS time
sec

TAI93 end
time

TAI93 end float64 1
end of this orbit in

TAI93 time
sec

start
longitude

start longitude float32 1
longitude boundary
defining start of this

orbit
deg

end longitude end longitude float32 1
longitude boundary

defining end of this orbit
deg

number of
point data

records
point data count int16 1

number of point data
elements associated

with this orbit
-

point data
child record

number
point data address int16 1

address of the first
element in point data

structure
-

number of one
second records

one second count int32 1
number of elements in
the one-second data

-

one-second
child record

number
one second address int32 1

address of the first
element in the

one-second data
-

number of
summary GIF

images
summary image count int16 1

number of summary
GIF images

-

summary GIF
image record

number

sum-
mary image address

int16 1
address of the first

summary GIF image
-

inspection
code

inspection code int16 1

code indicating which
problem scenarios were

checked by the QA
inspector

-

configuration
code

config code int16 1

code indicating which
code configuration

scenario was used when
processing the data

-

Notes

• Inspection Code: This field is used to identify which QA procedure was
followed at the time of the QA inspection. It is expected that the QA
procedure will evolve as more data is collected and new ”problems” are

A.2. ORBIT SUMMARY 109

identified. As a result, each orbit must be marked so that the user (and
QA inspector) can identify which orbits were checked for specific ”prob-
lems”.

• Configuration Code: This field is used to identify when a change is
made to the code that processed the data, such as changes in the input
parameters to the processing code. Each orbit must be marked so that
the user (and QA inpector) can identify which orbits were processed using
specific input parameters.

• Start, End Longitude: The start longitude is defined as the satellite
nadir longitude (rounded to the nearest 0.5 degrees) at the time when the
satellite is at its southernmost point in the orbit. The end longitude is
calculated in the same manner, and it is the same longitude as the start
longitude for the following orbit.

• TAI93 Start, End Time: The start time corresponds with the time
which the leading edge of the instrument field-of-view crosses the start
longitude, which is BEFORE the time of the satellite nadir crossing of
this longitude. Similarly, the end time corresponds with the time that
the trailing edge of the instrument field-of-view crosses the end longitude,
which is AFTER the time of the satellite nadir crossing of this longitude.
Note that there will be some overlap in the time spans of successive orbits.

110 APPENDIX A. HDF/C/IDL STRUCTURES

A.3 one second

Parameter
Structure Element

Name
Type Size Description Units

TAI93 time TAI93 time float64 1

whole second value
starting before and

continuing beyond one
orbit

sec

Alert
summary flag

alert summary char 1
bit masked summary of
alert flags (see below)

-

Instrument
alert flag

instrument alert char 1
bit masked status of

instrument (see below)
-

Platform alert
flag

platform alert char 1
bit masked status of
platform (see below)

-

External alert
flag

external alert char 1
bit masked status of
external factors (see

below)
-

Processing
alert flag

processing alert char 1
bit masked status of
processing algorithms

(see below)
-

Platform
coordinates

position vector float32 3
location of platform in

ECR coordinates
m

Platform
velocity

velocity vecotr float32 3
velocity of platform in

ECR coordinates
m

Transform
matrix

transform matrix float32 9

components of
transform from pixel

plane-boresight
coordinates to ECR

coordinates of boresight
and pixel plane

-

Solar vector solar vector float32 3
unit vector from center
of earth to sun in ECR

coordinates

Ephemeris
quality flags

ephemeris quality flag int32 1
Bit masked status (see

below)
-

Attitude
quality flags

attitude quality flag int32 1
Bit masked status (see

below)
-

Threshold
estimate

boresight threshold char 1

Most likely threshold
value applied to the

boresight position given
the solar zenith angle,

assuming clouds present

-

8-bit
threshold

values
thresholds char 16

values of the instrument
threshold settings for

each 256 count
background interval

-

Noise index
(percent
signal)

noise index char 1
a metric that indicates

the noise level
%*100

Event count event count int16 6
raw event count and

counts surviving filters
at each processing stage

-

A.4. POINT SUMMARY 111

A.4 point summary

Parameter
Structure Element

Name
Type Size Description Units

Parent record
number

parent address int32 1 address of parent (orbit) -

Number of
events

event count int32 1
number of events in

orbit
-

Event record
number

event address int32 1 address of first event -

Number of
groups

group count int32 1
number of groups in

orbit
-

Group record
number

group address int32 1 address of first group -

Number of
flashes

flash count int32 1
number of flashes in

orbit
-

Flash record
number

flash address int32 1 address of first flash -

Number of
areas

area count int32 1 number of areas in orbit -

Area record
number

area address int32 1 address of first area -

Number of
backgrounds

bg count int32 1
number of background
image summary records

in orbit
-

Backgorund
image

summary
record number

bg address int32 1
address of first

background image
summary

-

Number of
viewtime
granules

vt count int32 1
number of viewtime

granules in orbit
-

Viewtime
granule record

number
vt count int32 1

address of first viewtime
granule in orbit

-

112 APPENDIX A. HDF/C/IDL STRUCTURES

A.5 viewtime

Parameter
Structure Element

Name
Type Size Description Units

Grid cell
position

location float32 2

lat/lon of the center of
the grid cell of

dimensions 0.5 deg x 0.5
deg

deg

Start time TAI93 start int32 1
TAI93 whole second

when loaction was first
within FOV

sec

End time TAI93 end int32 1
TAI93 whole second

when location was last
within FOV

sec

Effective
viewtime

effective obs float32 1

time of observation of
the grid cell, adjusted
by the percentage of
area in the grid cell

within the FOV

sec

Alert flag alert flag char 1

reflects status of
instrument, platform,
external factors and

processing algorithms

-

8-bit
threshold

approx thresohld char 1

threshold of instrument
corresponding with grid

cell position, proxied
from solar zenith angle

at a time halfway
between start and end

time

-

A.6. BG SUMMARY 113

A.6 bg summary

Parameter
Structure Element

Name
Type Size Description Units

TAI93 time TAI93 time float64 1
TAI93 time of the
background image

sec

Background
image number

address int32 1
image number within

orbit
-

Boresight
position

boresight float32 2
lat/lon location of
center pixel (63,64)

deg

Corner
positions

corners float32 8
lat/lon locations of

corner pixels
-

114 APPENDIX A. HDF/C/IDL STRUCTURES

A.7 area

Parameter
Structure Element

Name
Type Size Description Units

Area time TAI93 time float64 1
TAI93 time of 1st event

in area
sec

Point data
time span

delta time float32 1
time between first and
last event that compose

the area
sec

Duration of
observation

observe time int16 1
duration of observation
of the region where the

area occurred
sec

Geolocated
position

location float32 2
lat/lon

radiance-weighted
centroid

deg

Calibrated
radiance

net radiance float32 1
sum of event radiances
composing this area

uJ/ster
/m2/um

Footprint size footprint float32 1 unique areal extent sq km

Area record
number

address int32 1 area address -

Parent record
number

parent address int32 1
pointer to parent’s

address (point data)
-

Child record
number

child address int32 1
address of 1st flash in a

sequential list
-

of children child count int32 1 # of flashes in area -

of
grandchildren

grandchild count int32 1 # of groups in area -

of great-
grandchildren

greatgrandchild count int32 1 # of events in area -

8-bit
threshold

approx threshold char 1

estimated value of 8-bit
threshold for the area

determined from
background level or
solar zenith angle

-

Alert flag alert flag char 1

bit masked status of
instrument, platform,
external factors and

processing algorithms

-

Clustering
probabilit

cluster index char 1

pixel density metric;
higher numbers indicate
area is less likely to be

noise

(0-99)

Lightning
activity

density index char 1

spatial density metric;
higher if area geolocated

in a region of high
lightning activity

-

Noise index noise index char 1
signal-to-signal plus

noise ratio
%x100

Eccentricity oblong index float32 1
metric indicating how

oblong the area is
-

Time order grouping sequence int32 1
time sequence of area
used when grouping
algorithm is applied

-

Grouping
status

grouping status char 1

0=area grouped normally;

1=area split between orbits;

2=area split between orbits;

3=grouping algorithm failed

-

A.8. FLASH 115

A.8 flash

Parameter
Structure Element

Name
Type Size Description Units

Flash time TAI93 time float64 1
TAI93 time of 1st event

in flash
sec

Point data
time span

delta time float32 1
time between first and

last group that compose
the flash

sec

Duration of
observation

observe time int16 1
duration of observation
of the region where the

flash occurred
sec

Geolocated
position

location float32 2
lat/lon

radiance-weighted
centroid

deg

Calibrated
radiance

net radiance float32 1
sum of event radiances
composing this flash

uJ/ster
/m2/um

Footprint size footprint float32 1 unique areal extent sq km

Flash record
number

address int32 1 flash address -

Parent record
number

parent address int32 1
pointer to parent’s

address (area)
-

Child record
number

child address int32 1
address of 1st group in

a sequential list
-

of children child count int32 1 # of groups in flash -

of
grandchildren

grandchild count int32 1 # of events in flash -

8-bit
threshold

approx threshold char 1

estimated value of 8-bit
threshold for the flash

determined from
background level or
solar zenith angle

-

Alert flag alert flag char 1

bit masked status of
instrument, platform,
external factors and

processing algorithms

-

Clustering
probabilit

cluster index char 1

pixel density metric;
higher numbers indicate
flash is less likely to be

noise

(0-99)

Lightning
activity

density index char 1

spatial density metric;
higher if flash

geolocated in a region of
high lightning activity

-

Noise index noise index char 1
signal-to-signal plus

noise ratio
%x100

Solar glint
cosine

glint index float32 1 cosine of angle -

Eccentricity oblong index float32 1
metric indicating how

oblong the flash is
-

Time order grouping sequence int32 1
time sequence of flash
used when grouping
algorithm is applied

-

Grouping
status

grouping status char 1

0=flash grouped normally;

1=flash split between orbits;

2=flash split between orbits;

3=grouping algorithm failed

-

116 APPENDIX A. HDF/C/IDL STRUCTURES

A.9 group

Parameter
Structure Element

Name
Type Size Description Units

Group time TAI93 time float64 1
TAI93 time of 1st event

in group
sec

Duration of
observation

observe time int16 1
duration of observation
of the region where the

group occurred
sec

Geolocated
position

location float32 2
lat/lon

radiance-weighted
centroid

deg

Calibrated
radiance

net radiance float32 1
sum of event radiances
composing this group

uJ/ster
/m2/um

Footprint size footprint float32 1 unique areal extent sq km

Group record
number

address int32 1 flash address -

Parent record
number

parent address int32 1
pointer to parent’s

address (flash)
-

Child record
number

child address int32 1
address of 1st event in a

sequential list
-

of children child count int32 1 # of events in group -

8-bit
threshold

approx threshold char 1

estimated value of 8-bit
threshold for the group

determined from
background level or
solar zenith angle

-

Alert flag alert flag char 1

bit masked status of
instrument, platform,
external factors and

processing algorithms

-

Clustering
probabilit

cluster index char 1

pixel density metric;
higher numbers indicate
group is less likely to be

noise

(0-99)

Lightning
activity

density index char 1

spatial density metric;
higher if group

geolocated in a region of
high lightning activity

-

Noise index noise index char 1
signal-to-signal plus

noise ratio
%x100

Solar glint
cosine

glint index float32 1 cosine of angle -

Eccentricity oblong index float32 1
metric indicating how
oblong the group is

-

Time order grouping sequence int32 1
time sequence of group
used when grouping
algorithm is applied

-

Grouping
status

grouping status char 1

0=group grouped normally;

1=group split between orbits;

2=group split between orbits;

3=grouping algorithm failed

-

A.10. EVENT 117

A.10 event

Parameter
Structure Element

Name
Type Size Description Units

Event time TAI93 time float64 1 TAI93 time of event sec

Duration of
observation

observe time int16 1
duration of observation
of the region where the

event occurred
sec

Geolocated
position

location float32 2
lat/lon

radiance-weighted
centroid

deg

Calibrated
radiance

net radiance float32 1 radiance of this event uJ/ster
/m2/um

Footprint size footprint float32 1 unique areal extent sq km

Event record
number

address int32 1 flash address -

Parent record
number

parent address int32 1
pointer to parent’s
address (group)

-

X pixel x pixel char 1 CCD pixel column -

Y pixel y pixel char 1 CCD pixel row -

Background
illumination

bg value int16 1
level of background

illumination (16-bit) at
time of event

-

Background
radiance

bg radiance int16 1
background radiance

associated with pixel at
time of event

W/ster
/m2/um

7-bit
amplitude

amplitude byte 1
uncalibrated optical

amplitude reported by
instrument

-

Solar zenith
angle

sza index byte 1 solar zenith angle deg

Solar glint
angle

glint index byte 1
angle between line of

sight vector and direct
solar reflection vector

deg

8-bit
threshold

approx threshold char 1

estimated value of 8-bit
threshold for the event;
from bg level or solar

zenith angle

-

Alert flag alert flag char 1

bit masked status of
instrument, platform,
external factors and

processing algorithms

-

Clustering
probabilit

cluster index char 1

pixel density metric;
higher numbers indicate
event less likely to be

noise

(0-99)

Lightning
activity

density index char 1

spatial density metric;
higher if event

geolocated in a region of
high lightning activity

-

Noise index noise index char 1
signal-to-signal plus

noise ratio
%x100

Background
illumination

flag
bg value flag char 1

bg radiance has been 0:

estimated from s.z.a. 1:

interpolated from bgs

-

Time order grouping sequence int32 1
time sequence of event
used when grouping
algorithm is applied

-

118 APPENDIX A. HDF/C/IDL STRUCTURES

A.11 Alert Flags

Inside the LIS HDF files, there is a vdata called the one second data. The
purpose of this data set is to provide temporal information about the LIS instru-
ment and its data on a one-second basis for each second of the TRMM mission.
Within the one-second data structure, there are 5 bytes that are set aside for 4
alert flags and 1 summary flag. Each of these flags provides binary information
about the quality or accuracy of the data.

The four alert flags are the Instrument Alert Flag, the Platform Alert
Flag, the External Alert Flag, and the Processing and Algorithm Alert
Flag. When any of these one-second flags are non-zero, it indicates that the
LIS data quality may be compromised in some fashion during that one-second
period. Since there are 8 bits per byte, each flag is used to identify up to 8
different types of problems or situations. Each bit of the alert flags is asso-
ciated with a specific problem that could affect the quality of the data -OR-
is associated with a situation that may help in analyzing the LIS data. The
definition/meaning of each bit of each of these alert flags is summarized in the
tables below.

Each bit of the alert flags can be categorized as Fatal, Warning, or Indif-
ferent. When a bit that is categorized as fatal is set ”high” (the bit is set to
1), no data could have been obtained and/or recorded during the one-second
period because of a problem that is known to cause data loss. When a bit that is
categorized as a warning bit is set ”high”, it indicates that a problem occurred,
and some (but usually not all) of the data during that one-second interval may
have been lost. A bit categorized as indifferent is set ”high” when something
important occurred during the one-second interval, but its effect on the LIS
data is minimal or not known.

In addition to the alert flags, there is also an ”Alert Summary Flag”. The
8 bits in this flag are used to summarize the information in the four alert flags
described above. This flag is propagated to the viewtime, area, flash, group
and event records for easy reference. The TAI93 times of these point data may
be used to index the one second data to investigate the more detailed alert
flag settings.

The definition/meaning of each bit of this summary flag is provided in the
next table.

A.11. ALERT FLAGS 119

Bit Value 8 7 6 5 4 3 2 1
Alert
Level

Meaning

1 1 X Fatal
Instrument
fatal flag

2 2 X . Warning
Instrument
warning flag

3 4 X . . Fatal
Platform fatal

flag

4 8 X . . . Warning
Platform

warning flag

5 16 . . . X Fatal
External fatal

flag

6 32 . . X Warning
External

warning flag

7 64 . X Fatal
Processing
fatal flag

8 128 X Warning
Processing

warning flag

120 APPENDIX A. HDF/C/IDL STRUCTURES

A.11.1 Instrument Alert

Bit settings

Bit Value 8 7 6 5 4 3 2 1
Alert
Level

Meaning

1 1 X Fatal Instrument Off

2 2 X . Indifferent
Instrument
Command
Executed

3 4 X . .
Fatal /

Warning
FIFO Buffer

Overflow

4 8 X . . . Warning
Thresholds set

very high

5 16 . . . X Fatal
Instrument
warming up

6 32 . . X Warning
Improper
operating

temperatures

7 64 . X Fatal Packet gap

8 128 X Warning
Data handling

problem

Interpreting the settings

• Instrument off : When there is a large time gap (greater than 15 sec-
onds) between subequent intstrument data packets, then the instrument
is assumed to be ”off” during the gap (the period of ”no data” between
the two packets).

• Instrument command executed: This flag is set when the packet
header information shows that a new command has been executed. Note
that there are several commands that could be sent to the instrument,
most of which have little or no effect on the event data.

• FIFO buffer overflow: This flag is set following the period when the
FIFO overflow bit has been set in the header portion of a packet. Follow-
ing a FIFO buffer overflow, no data is recorded until the data contained
in the FIFO buffer is processed. The FIFO Buffer Overflow bit is set from
the time of the event prior to the overflow to the time of the event fol-
lowing the data gap caused by the overflow (or 30 seconds, whichever is
shorter). This problem is considered fatal during the data gap (since no
event data can be recorded during this period), and just a warning at the
second before and the second after the data gap (since some events are
recorded during at least a portion of the one second period) data .

A.11. ALERT FLAGS 121

• Thresholds set very high: The LIS instrument has 16 threshold val-
ues, where each threshold corresponds to a different background brightness
level. When 10 or more of these 16 thresholds are set at or above 63, then
this flag is set ”high”.

• Instrument warming up: This flag is set by the QA inspector since it
is too difficult for a software algorithm to detect this condition. When the
instrument is turned ”on” after being ”off” for a long period of time, it
may not operate nominally until its temperature exceeds a certain level.

• Improper operating temperatures: The temperatures of the primary
filter, secondary filter, the sensor head, the optics filter, the focal plane,
the controller board, and the power converter are reported by the instru-
ment. If any of these temperatures go above or below the ”red” levels,
this flag is set.

• Packet gap: Occasionally, a problem can occur which results in instru-
ment data packets not being recorded or processed properly. Since in-
strument data packets should be reported by the instrument every 1 to 2
seconds, this flag is set when there is a time gap greater than 3 seconds
between packets. If the time gap is longer than 15 seconds, then the in-
strument is assumed to be ”off” (see above) and this flag is not set.

• Data handling problem: When the instrument reports a ”data read
error” or a ”fifo overflow” error, this flag is set only at the time of the
instrument packet which reported the error.

122 APPENDIX A. HDF/C/IDL STRUCTURES

A.11.2 Platform alert

Bit settings

Bit Value 8 7 6 5 4 3 2 1
Alert
Level

Meaning

1 1 X Warning

No attitude or
ephemeris

quality flags
available

2 2 X . Fatal
Ephemeris not

available

3 4 X . . Warning
Ephemeris
possibly

inaccurate

4 8 X . . . Fatal
Attitude not

available

5 16 . . . X Warning
Attitude
possibly

inaccurate

6 32 . . X Fatal
Clock not
available

7 64 . X Warning
Clock possibly

inaccurate

8 128 X - (reserved)

Interpreting the settings

• No attitude or ephemeris quality flags available: The TRMM data
is provided with a set of binary information that qualifies the accuracy
of the attitude and ephemeris associated with the satellite. If this binary
information is not available, then this flag is set.

• Ephemeris not available: When no ephemeris information is available,
then this flag is set ”high”.

• Attitude not available: When no attitude information is available, then
this flag is set ”high”.

• Attitude possibly inaccurate: When the ephemeris data has a lowered
accuracy (as reported in the TRMM Quality Flags), then this flag is set
”high”.

• Clock not available: This flag is set by the QA inspector when deemed
appropriate.

A.11. ALERT FLAGS 123

• Clock possibly inaccurate: This flag is set when two or more events
have the same time stamp and are reported to have occurred in the same
pixel. When this happens, it is usually caused by the instrument failing
to properly time tag the events.

124 APPENDIX A. HDF/C/IDL STRUCTURES

A.11.3 External alert

Bit settings

Bit Value 8 7 6 5 4 3 2 1
Alert
Level

Meaning

1 1 X Warning
Satellite within
SAA - Model 1

2 2 X . Warning
Satellite within
SAA - Model 2

3 4 X . . Warning

Direct solar
reflection

possible within
FOV

4 8 X . . . Indifferent
TRMM

Microwave
Imager on

5 16 . . . X Indifferent
Precipitation

Radar on

6 32 . . X Indifferent
Visible
Infrared

Scanner on

7 64 . X Indifferent

Clouds and
Earth’s
Radiant

Energy System
sensor on

8 128 X - (reserved)

Interpreting the settings

• Satellite within SAA - Model 1: When the nadir location of the
satellite is within the boundaries of the SAA (as defined by an empirical
model), this flag is set ”high”. The SAA is a location above the earth
where there are high radiation levels are present. Since the LIS instru-
ment is sensitive to radiation, high false event rates are obtained within
the SAA.

• Satellite within SAA - Model 2: When the nadir location of the satel-
lite is within the boundaries of the SAA (as defined by another empirical
model), this flag is set ”high”.

• Direct Solar Reflection Possible Within Field-of-view: This flag is
set when the solar zenith angle is below 7 degrees. The value of this sza
threshold angle is computed using geometry based on the altitude of the
spacecraft (350 km) and the maximum observation angle from boresight
(50 deg at corner).

A.11. ALERT FLAGS 125

• TRMM Microwave Imager (TMI) ”on”: This flag is set when the
TRMM header information reports that TMI is powered up.

• Precipitation Radar (PR) ”on”: This flag is set when the TRMM
header information reports that the PR is powered up.

• Visible Infrared Scanner (VIRS) ”on”: This flag is set when the
TRMM header information reports that the VIRS is powered up.

• Clouds and Earth’s Radiant Energy System Sensor (CERES)
”on”: This flag is set when TRMM header information reports that the
CERES sensor is powered up.

126 APPENDIX A. HDF/C/IDL STRUCTURES

A.11.4 Processing and algorithm alert

Bit settings

Bit Value 8 7 6 5 4 3 2 1
Alert
Level

Meaning

1 1 X Warning
QA inspector’s
warning flag

2 2 X . Fatal
QA inspector’s

fatal flag

3 4 X . . Fatal

Data too
garbled for
software to

read

4 8 X . . . Fatal
Data set too

large to
process

5 16 . . . X
Fatal /

Warning

Unforseen
software error

caused
improper

reporting of
data

6 32 . . X Warning

Grouping
algorithm

buffer
limitation
problem

7 64 . X Warning

Viewtime
algorithm
failure to
accurately
determine

FOV

8 128 X - (reserved)

Interpreting the settings

• QA Inspector’s Warning Flag: This flag is set by the QA Inspector
when he/she feels the quality of the data may have been compromised and
no other alert flags were set ”high” to indicate the reason for the lowered
expectation of data quality.

• QA Inspector’s Fatal Flag: This flag is set by the QA Inspector when
he/she feels the quality of the data is very poor, and no other alert flags
were set ”high” to indicate the reason for the bad data.

• Data too Garbled for Sofware to Read: This flag is set by the QA
inspector when the production software cannot complete the processing

A.11. ALERT FLAGS 127

because the data has been corrupted by something external to the instru-
ment.

• Data Set Too Large to Process: This flag is set by the QA inspector
when the production software cannot complete the processing because the
data is too full of noise, and processing the ”nominal” data that follows
the noisy data is too difficult or not possible.

• Unforseen Software Error Caused an Improper Reporting of the
Data: This flag is set by one of the production software programs when
something prevents the proper calculation or reporting of any part of the
data.

• Grouping Algorithm Buffer Limitation Problem: When there are
too many events per group, too many groups per flash, or too many flashes
per area, for the grouping algorithm to handle, this flag flag is set ”high”.

• Viewtime Alogrithm Failure to Accurately Determine Field-of-
View: When the viewtime algorithm has problems determining the cor-
rect field-of-view (usually due to the satellite pointing several degrees off
nadir), then this flag is set.

128 APPENDIX A. HDF/C/IDL STRUCTURES

Appendix B

Sample Code

This chapter provides some simple, complete programs illustrating the usage
of the LIS/OTD software. For each example, samples of IDL and C code are
provided which perform the same tasks. Note especially the appropriate C or
IDL includes and declarations contained in these sample programs.

129

130 APPENDIX B. SAMPLE CODE

B.1 Read an orbit

Using the IDL API

; Sample IDL code to read an or b i t and
; do nothing with i t .

@l i so td . pro
@lisapp DateTime . pro

PRO sample1

READ ORBIT, ”TRMM LIS SC. 03 . 4 1998 . 026 . 00933” , $
orb i t , / QUIET

END
.

Using the C API

/∗ Sample C code to read an or b i t and
do nothing with i t .∗/

include < std i o . h>
include <math . h>
include ” l ib l i so td read LISOTD . h”

main(int argc , char ∗ argv [])
{

struct l i s o r b i t TheData ;
struct anOTDBoundset Bounds ;

I n i t i a l i z e () ;
ResetAl lBounds(&Bounds) ;

TheData = GetData (”TRMM LIS SC. 03 . 4 1998 . 026 . 00933 ” ,
&Bounds) ;

FreeData (&TheData) ;

}

B.2. EXPORT SOME DATA TO ASCII 131

B.2 Export some data to ASCII

Using the IDL API

; Sample IDL code to read an or b i t and
; expor t the f l a s h e s ’ UTC date / time ,
; l a t i t ude , l ong i t ude and radiance to
; an ASCII f i l e .

@l i so td . pro
@lisapp DateTime . pro

PRO sample2

READ ORBIT, ”TRMM LIS SC. 03 . 4 1998 . 026 . 00933 ” , $
orb i t , / QUIET, / NO AREAS, / NO GROUPS, $
/NO EVENTS, / NO VIEWTIMES, / NO ONE SECONDS

; Define the ouput format , MM/DD/YYYY HH:MM: SS . SSS LL LL R

f l a sh f o rma t = ’ ((I2 . 2) , ”/” , (I2 . 2) , ”/” , (I4) , ” ” , ’ + $
’ (I2 . 2) , ”:” , (I2 . 2) , ”:” , (F6 . 3) , ” ” , ’ + $
’ (F7 . 2) , ” ” , (F7 . 2) , ” ” , (F8 . 0)) ’

; Always use longs when re ferenc ing point data . . .
; t here can be a l o t of point data in an HDF f i l e !

num f la shes = orb i t . point . point summary . f l a sh coun t−1L

; Convert the f l a s h TAI93 times to UTC

f l a sh t imes = NEW DATETIMESTRUCTURE(num f la shes)
f l a sh t imes [∗] . ta i 93 = $

orb i t . point . l i g h tn i ng . f l a sh [∗] . ta i 93 t ime
CALC DATETIME, f l a sh t imes

; Now wr i t e to an ASCII f i l e

OPENW, lun , ” orb i t . out . f ” , / GET LUN

FOR i=0L , num f la shes−1L , 1L DO BEGIN

PRINTF, lun , $
f l a sh t imes [i] . utc . month , $
f l a sh t imes [i] . utc . day , $
f l a sh t imes [i] . utc . year , $

132 APPENDIX B. SAMPLE CODE

f l a sh t imes [i] . utc . hour , $
f l a sh t imes [i] . utc . minute , $
f l a sh t imes [i] . utc . second , $
orb i t . point . l i g h tn ing . f l a sh [i] . l o ca t i on [0] , $
orb i t . point . l i g h tn ing . f l a sh [i] . l o ca t i on [1] , $
orb i t . point . l i g h tn ing . f l a sh [i] . rad iance

ENDFOR

CLOSE, lun
FREE LUN, lun

END

B.2. EXPORT SOME DATA TO ASCII 133

Using the C API

/∗ Sample C code to read an or b i t and
expor t the f l a s h e s ’ UTC date / time ,
l a t i t ude , l ong i t ude and radiance to
an ASCII f i l e ∗/

include < std i o . h>
include <math. h>
include ” l ib l i so td read LISOTD . h”

main(int argc , char ∗ argv [])
{

struct l i s o r b i t TheData ;
struct anOTDBoundset Bounds ;

I n i t i a l i z e () ;
ResetAl lBounds(&Bounds) ;

TheData = GetData (”TRMM LIS SC. 03 . 4 1998 . 026 . 00933 ” ,
&Bounds) ;

/∗ UTC, l a t and lon are expor ted by de f au l t .
Add the radiance in manual ly . ∗/

AddASCIIOutputField(F, RADIANCE, DEFAULT) ;

WriteData(TheData , ASCII SINGLE , ” orb i t . out ” ,
!O, ! A, F , ! G, E!) ;

FreeData (&TheData) ;

}

134 APPENDIX B. SAMPLE CODE

B.3 Flash rate climatology

Using the IDL API

/∗ Sample IDL code to read s e v e r a l
o r b i t s and sum them to form a
mini−”f l a s h rate c l imato log y ” ∗/

@l i so td . pro
@lisapp DateTime . pro

PRO sample3

; Create the gr ids

f l g r i d = FLTARR[360] [180]
vtgr id = FLTARR[360] [180]
f l r a t e g r i d = FLTARR[360] [180]

; We assume there are 32 HDF f i l e names
; l i s t e d in an ex t e r na l ASCII f i l e c a l l e d ” f i l e l i s t ”

num f i l es = 32
t h e f i l e s = STRARR(num f i l es)

OPENR, lun , ” f i l e l i s t ” ,/GET LUN
READF, lun , t h e f i l e s
CLOSE, lun
FREE LUN, lun

FOR n = 0 , num f i l es−1 , 1 DO BEGIN

READ ORBIT, t h e f i l e s [n] , o rb i t , $
/QUIET, / NO AREAS, / NO GROUPS, $
/NO EVENTS, / NO ONE SECONDS

num fl = orb i t . point . point summary . f l a sh coun t
num vt = orbi t . point . point summary . vt count

FOR k=0L , num fl−1L , 1L DO BEGIN
i = FIX(o rb i t . point . l i g h tn i ng . f l a sh [k] . l o ca t i o n [1]+180 . 0)
j = FIX(o rb i t . point . l i g h tn i ng . f l a sh [k] . l o ca t i o n [0]+90 . 0)
f l g r i d [i , j] = f l g r i d [i , j] + 1 . 0

ENDFOR

FOR k=0L , num vt−1L , 1L DO BEGIN

B.3. FLASH RATE CLIMATOLOGY 135

i = FIX(o rb i t . point . viewtime [k] . l o ca t i on [1]+180 . 0)
j = FIX(o rb i t . point . viewtime [k] . l o ca t i on [0]+90 . 0)
vtgr id [i , j] = vtgr id [i , j] + $

orb i t . point . viewtime [k] . e f f e c t i v e o b s
ENDFOR

ENDFOR

; The f l a s h rate i s j u s t the f l a s h count div ided by
; the e f f e c t i v e viewtimes which are > 0

hasbeenseen = WHERE(vtgr id gt 0 , hasbeenseen count)

IF (hasbeenseen ct gt 0) THEN BEGIN
f l r a t e g r i d [hasbeenseen] = $

f l g r i d [hasbeenseen] / vtgr id [hasbeenseen]
ENDIF

; f l r a t e g r i d now contains the f l a s h rates . Do with i t
; as you p l ease !

END

136 APPENDIX B. SAMPLE CODE

Using the C API

/∗ Sample C code to read s e v e r a l
o r b i t s and sum them to form a
mini−”f l a s h rate c l imato log y ” ∗/

include < std i o . h>
include <math . h>
include ” l ib l i so td read LISOTD . h”

main(int argc , char ∗ argv [])
{

struct l i s o r b i t TheData ;
struct anOTDBoundset Bounds ;
FILE ∗ l i s t f i l e ;
char a f i l ename [132] ;
f loat vtgr id [360] [180] , f l g r i d [360] [180] ,

f l r a t e g r i d [360] [180] ;
long i , j , k , num fl , num vt ;

I n i t i a l i z e () ;
ResetAl lBounds(&Bounds) ;

/∗ Zero out the gr ids ∗/

for (i=0 ; i<360 ; i ++) {
for (j=0 ; j<180 ; j ++) {

vtgr id [i] [j] = 0 . 0 ;
f l g r i d [i] [j] = 0 . 0 ;
f l r a t e g r i d [i] [j] = 0 . 0 ;

}
}

/∗ We assume the l i s t of HDF f i l e
names i s in an ex t e r na l ASCII f i l e
c a l l e d ” f i l e l i s t ” ∗/

l i s t f i l e = fopen (” f i l e l i s t ” , ” r ”) ;

while (f g e t s (a f i l ename , 132 , l i s t f i l e) != NULL) {

TheData = GetData (a f i l ename ,&Bounds) ;

num fl = TheData . point . point summary . f l a sh coun t ;
num vt = TheData . point . point summary . vt count ;

B.3. FLASH RATE CLIMATOLOGY 137

for (k=0 ; k<num fl ; k++) {
i = (int)

(TheData . point . l i g h tn i ng . f l a sh [k] . l o ca t i o n [1]+180 . 0) ;
j = (int)

(TheData . point . l i g h tn i ng . f l a sh [k] . l o ca t i o n [0]+90 . 0) ;
f l g r i d [i] [j] = f l g r i d [i] [j] + 1 . 0 ;

}
for (k=0 ; k<num vt ; k++) {

i = (int)(TheData . point . viewtime [k] . l o ca t i o n [1]+180 . 0) ;
j = (int)(TheData . point . viewtime [k] . l o ca t i o n [0]+90 . 0) ;
v tgr id [i] [j] = vtgr id [i] [j] +

TheData . point . viewtime [k] . e f f e c t i v e o b s ;
}

FreeData (&TheData) ;

}

f c l o s e (l i s t f i l e) ;

/∗ The f l a s h rate i s j u s t the f l a s h count div ided by
the e f f e c t i v e viewtimes which are > 0 ∗/

for (i=0 ; i<360 ; i ++) {
for (j=0 ; j<180 ; j ++) {

i f (vtgr id [i] [j] > 0)
f l r a t e g r i d [i] [j] =

f l g r i d [i] [j]/ vtgr id [i] [j] ;
}

}

/∗ f l r a t e g r i d now contains the f l a s h rates . Do with i t
as you p l ease ! ∗/

}

138 APPENDIX B. SAMPLE CODE

Appendix C

Software Strategy

This appendix briefly summarizes the current and possible future directions of
the LIS/OTD production and analysis code. The basic goals and a key to the
diagrams is presented below; the roadmaps are shown for today (1998), the near
future (1999) and a possible LMS scenario (2003).

OTD/LIS/LMS
Production & Analysis

Paradigm Goals

¥ Unified production code, file format

¥ Maintain backwards compatibility with old OTD files
¥ Allow same code base to be use for OTD, LIS & LMS
¥ Maximize number of analysis paths available

¥ Maximize cross-platform deployment
¥ Offer both standalone and batch data tools
¥ Offer at least one direct data-to-visualization path

¥ Offer at least one path with no platform or commercial
software limitations

¥ Offer high level programming APIs

Key:

Data Files

Libraries or
programming APIs

Software

Goal

Commercial
software Platform

limited

Complete

In development / beta

Not yet begun

139

140 APPENDIX C. SOFTWARE STRATEGY

Current OTD/LIS
Production & Analysis

Paradigm (1998)

Old OTD
Raw Data

LIS
Raw Data

OTD
Production Code

LIS
Production Code

OTD HDF Files LIS HDF Files

HDF APIs (C, Java, FORTRAN, IDL)

Low-level C
OTD/LIS API

Low-level IDL
OTD/LIS API

OTD/LIS
shared libs

High-level IDL
OTD/LIS API

LISAPP User IDL
Programs

User C
Programs

3rd-Party
Software

Extracted Data

Analysis &
Visualization

Extracted
 Data

Low-level C
OTD API

High-level C
OTD API

User C
Programs

(obsolete)

High-level C
OTD/LIS API

HDF API

141

Target OTD/LIS
Production & Analysis

Paradigm (1999)

Old OTD
Raw Data

New OTD
Raw Data

LIS
Raw Data

OTD/LIS
Production Code

OTD/LIS HDF Files

Low-level C
OTD/LIS API

Low-level IDL
OTD/LIS API

OTD/LIS
shared libs

High-level IDL
OTD/LIS API

High-level C
OTD/LIS API

LISAPP User IDL
Programs

User C
Programs

User C
Programs

3rd-Party
Software

Extracted Data

Analysis &
Visualization

(reprocessing)

Old OTD HDF Files

HDF APIs (C, Java, FORTRAN, IDL)

142 APPENDIX C. SOFTWARE STRATEGY

Possible OTD/LIS/LMS
Production & Analysis

Paradigm (2003)

LMS
Raw Data

OTD/LIS HDF Files

Low-level C
OTD/LIS/LMS API

Low-level IDL
OTD/LIS/LMS API

OTD/LIS/LMS
shared libs

High-level IDL
OTD/LIS/LMS API

High-level C
OTD/LIS/LMS API

LISAPP User IDL
Programs

User C
Programs

User C
Programs

3rd-Party
Software

Extracted Data

Analysis &
Visualization

LMS Archival
Production Code

LMS Archival HDF Files

LMS RealTime
Production Code

LMS RealTime Data

HDF APIs (C, Java, FORTRAN, IDL)

	--
	Table of Contents
	I. Introduction
	1. Introduction
	1.1 Background
	1.2 Software Strategy
	1.3 The Tools

	2. OTD/LIS/LMS Lightning Data
	2.1 The Instruments
	2.1.1 Optical Transient Detector (OTD)
	2.1.2 Lightning Imaging Sensor (LIS)

	2.2 Data Organization
	2.3 Data Usage

	3. Installation
	3.1 Macintosh PowerPC
	3.1.1 System Requirements
	3.1.2 Installation

	3.2 Windows 95/NT
	3.2.1 System Requirements
	3.2.2 Installation

	3.3 Unix
	3.3.1 System Requirements
	3.3.2 Installation
	3.3.3 X Terminals/Windows

	3.4 Other

	II. High Level Interfaces
	4. IDL Interfaces: LISAPP
	4.1 General Usage
	4.2 Recovering from Crashes
	4.3 Command Line Interface (CLI)
	4.4 Menu Options
	4.4.1 File Menu
	4.4.2 QuickView Menu
	4.4.3 Analysis Menu
	4.4.4 Export Menu
	4.4.5 Verify Menu
	4.4.6 Tools Menu
	4.4.7 Help Menu

	4.5 Adding Modules
	4.5.1 Widget Interface
	4.5.2 Color Tables

	4.6 Future Plans

	5. IDL Interfaces: API
	5.1 Data Structures
	5.2 Interface Routines
	5.2.1 READ_ORBIT
	5.2.2 READ_OLD_ORBIT

	5.3 Date/Time Utilities
	5.3.1 NEW_DATETIME_STRUCTURE
	5.3.2 CALC_DATETIME

	5.4 Geolocation Utilities
	5.4.1 GET_NADIR_LOCATION
	5.4.2 GET_POINTING_VECTOR
	5.4.3 GET_EARTH_INTERSECTION

	5.5 General Purpose Utilities
	5.5.1 WHICH_SENSOR
	5.5.2 OTD_QA

	6. C Interface: High Level API
	6.1 History
	6.2 Compatibility
	6.3 Data Structures
	6.4 Startup/Shutdown Routines
	6.4.1 Initialize()
	6.4.2 ResetAllBounds()
	6.4.3 FreeData()
	6.4.4 Example of startup/shutdown

	6.5 Interface Routines
	6.5.1 GetData()
	6.5.2 WriteData()
	6.5.3 AddASCIIOutputField()
	6.5.4 ResetASCIIOutputField()

	6.6 Subsetting Routines
	6.7 Date/Time Utilities
	6.7.1 UTC_to_TAI93()
	6.7.2 TAI93_to_UTC()
	6.7.3 UTC_to_GPS()
	6.7.4 GPS_to_UTC()
	6.7.5 getDayOfYear()
	6.7.6 InvJulian()

	6.8 Geolocation Utilities

	III. Low Level Interfaces
	7. C Interface: Low Level API

	IV. Appendices
	A. HDF / C / IDL Structures
	A.1 Basic Structure
	A.2 orbit_summary
	A.3 one_second
	A.4 point_summary
	A.5 viewtime
	A.6 bg_summary
	A.7 area
	A.8 flash
	A.9 group
	A.10 event
	A.11 Alert Flags
	A.11.1 Instrument Alert
	A.11.2 Platform Alert
	A.11.3 External Alert
	A.11.4 Processing/Algorithm Alert

	B. Sample Code
	B.1 Read an orbit
	B.2 Export some data to ASCII
	B.3 Flash rate climatology

	C. Software Strategy

	Color Pages
	Pg 12
	Pg 38
	Pg 42
	Pg 44
	Pg 45
	Pg 46
	Pg 47
	Pg 48
	Pg 49
	Pg 53
	Pg 54
	Pg 55
	Pg 56
	Pg 57
	Pg 139
	Pg 140
	Pg 141
	Pg 142
