EOSDIS Core System Project # Interface Control Document Between EOSDIS Core System (ECS) and ASTER Ground Data System January 1997 # Interface Control Document Between EOSDIS Core System (ECS) and ASTER Ground Data System January 1997 Prepared Under Contract NAS5-60000 CDRL Item 029 SUBMITTED BY Paul Fingerman, ECS CCB Chairman EOSDIS Core System Project Date **Hughes Information Technology Systems** Upper Marlboro, Maryland #### **Preface** This document is a formal contract deliverable with an approval code 1. It requires Government review and approval prior to acceptance and use. This document is under ECS contractor configuration control. Once this document is approved, Contractor approved changes are handled in accordance with Class I and Class II change control requirements described in the EOS Configuration Management Plan, and changes to this document shall be made by document change notice (DCN) or by complete revision. Any questions should be addressed to: Data Management Office The ECS Project Office Hughes Information Technology Systems 1616 McCormick Drive Upper Marlboro, MD 20774-5372 #### **Abstract** This Interface Control Document (ICD) defines the functional and physical design of each interface between ECS and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Ground Data System (GDS), and includes the precise data contents and format for each interface. All modes (options) of data exchange for each interface are described as well as the conditions required for each mode or option. Additionally, data rates, duty cycles, error conditions, and error handling procedures are included. Communications protocols and physical media are detailed for each interface. This ICD is consistent with the ECS/ASTER GDS interface requirements, as described in the ASTER Memoranda of Understanding (MOU), the ASTER Project Implementation Plan (PIP), the Earth Science Data and Information System (ESDIS) Project -- Level 2 Requirements, the Functional and Performance Requirements Specification for the Earth Observing System Data and Information System (EOSDIS) Core System (ECS Level 3 requirements), and the Interface Requirement Document (IRD) Between ECS and MITI ASTER GDS. Keywords: ASTER, Japan, ICD, interface, EDC, EBnet, International Partner, AM-1, DAR, IST, interoperability, EOC, ICC, DCE, SNMP # **Change Information Page** | List of Effective Pages | | |-------------------------|-----------------| | Page Number | Issue | | Title | Baselined Final | | iii through xvi | Baselined Final | | 1-1 and 1-2 | Baselined Final | | 2-1 through 2-6 | Baselined Final | | 3-1 through 3-4 | Baselined Final | | 4-1 through 4-20 | Baselined Final | | 5-1 through 5-30 | Baselined Final | | 6-1 through 6-34 | Baselined Final | | 7-1 and 7-2 | Baselined Final | | 8-1 through 8-6 | Baselined Final | | 9-1 through 9-6 | Baselined Final | | Appendix A | Baselined Final | | Appendix B | Baselined Final | | Appendix C | Baselined Final | | Appendix D | Baselined Final | #### **Document History** | Document Number | Status/Issue | Publication Date | CCR Number | |-----------------|-------------------------------|------------------|------------| | 209-CD-002-001 | Preliminary | November 1994 | 94-0166 | | 209-CD-002-002 | Final
(FOS-AOS Interfaces) | October 1995 | 95-0643 | | 209-CD-002-003 | Submitted as Final | March 1996 | 96-0167 | | 209-CD-002-004 | Baselined Final | September 1996 | 96-1027 | | 209-CD-002-005 | Baselined Final | January 1997 | 96-1462 | | | | | | # **Contents** | 1.1 Identification | | |--|-----| | 1.2 Scope | 1-1 | | 1.3 Purpose and Objectives | 1-1 | | 1.4 Status and Schedule | 1-2 | | 1.5 Organization | 1-2 | | 1.6 Document Change Procedure | 1-3 | | 2. Related Documentation | | | 2.1 Parent Documents | 2-1 | | 2.2 Applicable Documents | 2-1 | | 2.3 Information Documents | 2-4 | | 3. Interface Overview | | | 3.1 Interface Context | 3-3 | | 3.2 Pre-Mission Phase Interfaces | 3-: | | 3.2.1 AOS-FOS Pre-Mission Phase Interfaces | 3- | | 3.3 Mission Phase Interface | 3- | | 3.3.1 AOS-FOS Mission Phase Interfaces | 3-2 | | 4. Data Exchange Framework | | | 4.1 Overview | 4- | | 4.2 Physical Network Topology | 4- | | 4.3 Internetworking Protocols | 4-2 | | 4.3.1 Internet Protocol (IP) | 4-/ | | | 4-2 | |---|---------------------------------| | 4.3.3 File Transfer Protocol (FTP) | 4-2 | | 4.3.4 Simple Mail Transfer Protocol (SMTP) | 4-3 | | 4.3.5 Network News Transfer Protocol (NNTP) | 4-3 | | 4.4 Distributed Computing Environment (DCE) and Security | 4-3 | | 4.5 Data Exchange Between the ECS FOS and the ASTER GDS AOS | 4-3 | | 4.5.1 Automated File Transfers Between ECS IST and ASTER AOS | 4-4 | | 4.5.2 Interfaces Supported by Operator Interaction with the ECS IST | 4-5 | | 4.5.3 Email Exchange Between the ASTER ICC and the EOC | 4-6 | | 4.6 Data Exchange Between the ECS SDPS and the ASTER GDS SDPS | 4-7 | | 4.6.1 ASTER Gateway: Information Manager | 4-7 | | 4.6.2 Data Acquisition Requests (DARs) | 4-9 | | 4.6.3 Delivery of ASTER Level 1A and Level 1B Products | 4-9 | | 4.7 Data Exchange Between the ECS CSMS and the ASTER GDS AOS | 4-19 | | 4.8 Data Exchange Between the ECS CSMS and the ASTER GDS CSMS | 4-19 | | 5. Interfaces Between the ECS FOS and the ASTER GDS | | | 5.1 Overview | ي سر | | 5000 | | | 5.2 Planning and Scheduling Message Overview | 5-1 | | 5.2.1 Planning and Scheduling Data Exchange Protocols | 5-1
5-1 | | 5.2.1 Planning and Scheduling Data Exchange Protocols | 5-1
5-1
5-1 | | 5.2.1 Planning and Scheduling Data Exchange Protocols5.2.2 Planning and Scheduling Message Data Conventions5.2.3 Planning and Scheduling Data Header | 5-1
5-1
5-2 | | 5.2.1 Planning and Scheduling Data Exchange Protocols 5.2.2 Planning and Scheduling Message Data Conventions 5.2.3 Planning and Scheduling Data Header. 5.3 Schedule Messages | 5-1
5-1
5-2
5-3 | | 5.2.1 Planning and Scheduling Data Exchange Protocols 5.2.2 Planning and Scheduling Message Data Conventions 5.2.3 Planning and Scheduling Data Header 5.3 Schedule Messages 5.3.1 ASTER Short Term Schedule (STS) | 5-1
5-1
5-1
5-2
5-3 | | 5.2.1 Planning and Scheduling Data Exchange Protocols 5.2.2 Planning and Scheduling Message Data Conventions 5.2.3 Planning and Scheduling Data Header 5.3 Schedule Messages 5.3.1 ASTER Short Term Schedule (STS) 5.3.2 ASTER One Day Schedule (ODS) | 5-1
5-1
5-2
5-3
5-4 | | 5.2.1 Planning and Scheduling Data Exchange Protocols 5.2.2 Planning and Scheduling Message Data Conventions 5.2.3 Planning and Scheduling Data Header. 5.3 Schedule Messages 5.3.1 ASTER Short Term Schedule (STS) 5.3.2 ASTER One Day Schedule (ODS) 5.3.3 Preliminary Resource Schedule | 5-15-15-15-25-35-45-5 | | 5.2.1 Planning and Scheduling Data Exchange Protocols 5.2.2 Planning and Scheduling Message Data Conventions 5.2.3 Planning and Scheduling Data Header 5.3 Schedule Messages 5.3.1 ASTER Short Term Schedule (STS) 5.3.2 ASTER One Day Schedule (ODS) 5.3.3 Preliminary Resource Schedule 5.3.4 Activity Schedule | | | 5.2.1 Planning and Scheduling Data Exchange Protocols 5.2.2 Planning and Scheduling Message Data Conventions 5.2.3 Planning and Scheduling Data Header 5.3 Schedule Messages 5.3.1 ASTER Short Term Schedule (STS) 5.3.2 ASTER One Day Schedule (ODS) 5.3.3 Preliminary Resource Schedule 5.3.4 Activity Schedule 5.3.5 Detailed Activity Schedule | | | 5.2.1 Planning and Scheduling Data Exchange Protocols 5.2.2 Planning and Scheduling Message Data Conventions 5.2.3 Planning and Scheduling Data Header. 5.3 Schedule Messages 5.3.1 ASTER Short Term Schedule (STS) 5.3.2 ASTER One Day Schedule (ODS) 5.3.3 Preliminary Resource Schedule 5.3.4 Activity Schedule 5.3.5 Detailed Activity Schedule 5.4 Schedule Data Record Formats | | | 5.2.1 Planning and Scheduling Data Exchange Protocols 5.2.2 Planning and Scheduling Message Data Conventions 5.2.3 Planning and Scheduling Data Header 5.3 Schedule Messages 5.3.1 ASTER Short Term Schedule (STS) 5.3.2 ASTER One Day Schedule (ODS) 5.3.3 Preliminary Resource Schedule 5.3.4 Activity Schedule 5.3.5 Detailed Activity Schedule | | | 6.3.2 Data Acquisition Request Input Parameters | 6-26 | |--|------| | 6.3.3 DAR Submit/Results | 6-27 | | 6.3.4 XAR Modify Request/Results | 6-27 | | 6.3.5 XAR Query | 6-27 | | 6.4 Data Products Delivered Via Physical Media | 6-29 | | 6.4.1 ASTER Level 1A and 1B Products | 6-29 | | 6.4.2 Data Shipping Notice | | | 6.4.3 ECS Standard Data Products | | | 6.5 Science Software Development and Delivery | 6-29 | | 6.5.1 ASTER GDS Science Software | | | 6.5.2 ECS Science Software for ASTER Standard Products | | | 6.6 Valids Exchange | 6-30 | | 6.6.1 Format for ASTER GDS Valids for ECS | | | 6.6.2 Format for ECS Valids for ASTER GDS | 6-32 | | 6.7 Guide and Guide Searches | 6-33 | | 7. Interfaces Between the ECS CSMS and the ASTER GDS AOS | | | | | | 7.2 Long Term Plans | /-1 | | 8. Interfaces Between the ECS CSMS and the ASTER GDS CSMS GSMS | 3 | | 8.1 General | 8-1 | | 8.2 ECS System Management Data | 8-1 | | 8.3 Detailed Description of the System Management Data | 8-1 | | 8.4 DAR User Profile | 8-2 | | 9. Interface Between ECS GSFC DAAC and GDS ADN/DADS | | | 9.1 Overview | 9-1 | | 9.2 FDS Subscription | 9-2 | | 9.3 EDS Notification/Request | 9-7 | 2 | |-------------------------------------|-----|---| | 9.4 EDS Transmission/Authentication | 9-: | 5 | | 9.5 Non-Receipt of EDS | 9- | 5 | #### Appendix A. Work-Off Plan # Appendix B.
ODL Message Keywords (Objects) ## Appendix C. DAR Client API List # Appendix D. ASTER Level 1 Data Products Specification (GDS Version) ## **List of Figures** | 3-1. ECS/ASTER GDS Context Diagram | 3-2 | |--|------| | 4-1. High Level Network Topology for Mission Critical Communications | 4-2 | | 4-2. Data Files Transferred via Automated FTP | 4-4 | | 4-3. ECS IST Operator Interfaces | 4-6 | | 4-4. ECS/ASTER GDS IMS Interoperability via ASTER Gateway: Context Diagram | 4-8 | | 4-5. ASTER Level 1 Product Structure in D3 Tape | 4-10 | | 4-6. Structure of Physical Media PDR (level 1 cassette) | 4-13 | | 4-7. Sample Product Delivery Record PVL (1 of 2) | 4-14 | | 4-7. Sample Product Delivery Record PVL (2 of 2) | 4-15 | | 4-8. Structure of Data Shipping Notice | 4-16 | | 4-9. Standard GDS E-mail Header | 4-17 | | 4-10. Bar Code Format used for Media for delivery to EDC | 4-18 | | 5-1. Sample Short Term Schedule File Layout | 5-6 | | 5-2. Sample Preliminary Resource Schedule File Layout | 5-9 | | 5-3. ATC Load Report File Layout | 5-24 | |---|------| | 5-4. Integrated Report File Layout | 5-20 | | 6-1. Example of ODL Normalization Form Illustrating Conventions | 6-2 | | 6-2. Interfaces Between ECS Earth Science Search Tool and ASTER SDPS | 6-3 | | 6-3. Multi-file Integrated Browse | 6-1 | | 6-4. Interfaces Between ASTER SDPS and ECS Servers for Catalog Interoperability | 6-20 | | 8-1. ECS-ASTER GDS Event Notification Message Format | 8-2 | | 8-2. Standard E-mail GDS Header | 8-6 | | 9-1. EDS Data Transmission Diagram | 9-1 | | 9-2. Standard E-mail Header | 9-4 | | | | | List of Tables | | | 4-1. Level 1 Products | 4-10 | | 4-2. Format of Product Delivery Record | 4-12 | | 4-3. Format of Data Shipping Notice | 4-16 | | 4-4. File Naming Convention. | 4-18 | | 4-5. Definition of Bar Code Format for Media Delivery to EDC | 4-19 | | 5-1. Planning and Scheduling Data Header Format | 5-2 | | 5-2. Short Term Schedule Format | 5-4 | | 5-3. One Day Schedule Format | 5-7 | | 5-4. Preliminary Resource Schedule Format | 5-8 | | 5-5. Activity Schedule Format | 5-10 | | 5-6. Detailed Activity Schedule Format | 5-11 | | 5-7. Orbit Event Mnemonics | 5-13 | | 5-8. Activity Record Format | 5-13 | | 5-9. Parameter Record Format | 5-16 | | 5-10. DAR ID Record | 5-17 | | 5-11. Mode Record Format | 5-18 | | 5-12. Constraint Record | 5-19 | | 5-13. Error/Constraint Codes | 5-2 | |---|------| | 5-14. Comment Record Format | 5-2 | | 5-15. Request for EOC Schedules Format | 5-2 | | 5-16. Real Time Command Request Instructions | 5-2 | | 5-17. Instrument Command Uplink Status Information | 5-29 | | 8-1. ECS-ASTER GDS Event Notification Message Schema Fields | 8-3 | | 8-2. Domain Site to Domain ID Mapping | 8-4 | | 8-3. Affected Service Identification Table | 8-5 | | 9-1. EDS Data Notification (EDN) Format | 9-2 | | 9-2. EDS Data Notification (EDN) Format | 9-3 | | 9-3. EDS Data Request (EDR) Format | 9-3 | | R-1 Server States | E 2' | # **Abbreviations and Acronyms** #### 1. Introduction #### 1.1 Identification This Interface Control Document (ICD), Contract Data Requirement List (CDRL) item 029, whose requirements are specified in Data Item Description (DID) 209/SE1, is a required deliverable under the Earth Observing System (EOS) Data and Information System (EOSDIS) Core System (ECS), Contract (NAS5-60000). #### 1.2 Scope This ICD defines all of the system interfaces that exist between ECS and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Ground Data System (GDS). ECS Releases are keyed to mission support: Release Ir1 provides support to the Tropical Rainfall Measuring Mission (TRMM) Early Interface Testing and Science Algorithm I&T. Release A provides support to TRMM Science Operations and TRMM Ground Systems Certification Testing. Release A also provides the functional capabilities needed to support early ESDIS Ground System Testing for the EOS AM-1 and Landsat 7 missions. Release B provides support to ESDIS Ground System Certification Testing for the EOS AM-1 and Landsat 7 missions. Release B also provides archive and distribution services for the Landsat 7 mission. Releases C and D provide evolutionary enhancements to the ECS services provided in the earlier Releases. The ESDIS Project has joint responsibility with the ASTER GDS Project for the development and maintenance of this ICD. Any changes in the interface must be agreed to by the relevant participating parties, and then assessed at the ESDIS Project Level. This ICD will be approved under the signatures of the ESDIS and the Earth Remote Sensing Data Analysis Center (ERSDAC) ASTER GDS Project Managers. This document reflects the technical baseline maintained by the ECS Configuration Control Board in accordance with ECS technical direction (see Section 2.2). #### 1.3 Purpose and Objectives This document is written to formalize the interpretation and general understanding of the interface between ECS and the ASTER GDS. This document provides clarification and elaboration of the ECS-ASTER GDS interfaces to the extent necessary to assure hardware, software, and operational service compatibility within the end-to-end system. This document provides a point of mutual control of external interface definitions by ESDIS and the ASTER GDS Project. #### 1.4 Status and Schedule This is the final baseline version of the ICD for the definition of interfaces between the ECS and the ASTER GDS. A Work-Off Plan for any TBD, TBR, and TBS items associated with the ECS implementation has been included in Appendix A. This Work-Off Plan provides the following information: - a. ICD I/F Issue Number - b. ICD Reference Paragraph - c. ICD Issue Priority - d. ICD Issue Type Description - e. Work-off Plan Task(s) - f. Projected Resolution Date - g. Risk Assessment Appendix B contains the ODL Message Keywords (Objects) Appendix C contains the ASTER-GDS IMS DAR Client API List. Appendix D contains the ASTER Level 1 Data Product Specification (GDS Version) This ICD will now be submitted as a Configuration Control Board (CCB) approval Code 1 document. At the option of the ESDIS Project, this document may be designated to be under full ESDIS CCB control. Changes may be submitted for consideration by Contractor and ESDIS CCBs under the normal change process at any time. #### 1.5 Organization This document is organized in 9 sections plus appendices. Section 2 contains information about documentation relevant to this ICD, including parent, applicable, and information documents. Section 3 provides an overview of the ECS-ASTER GDS interfaces, with a brief description of the interfaces involved. Section 4 provides an overview of the data exchange framework. Sections 5 through 9 contain descriptions of ECS-ASTER GDS data flows, including data format and content, the data transfer method(s), and error handling. Appendix A provides the Work-Off Plan supporting resolution of issues and closures of TBD, TBR and/or TBS items. Appendix B identifies and defines ODL Message Keywords (Objects), Appendix C provides the ASTER DAR Client API List, and Appendix D contains the ASTER Level 1 Data Products Specifications (GDS Version). Acronyms and abbreviations are also included. #### 1.6 Document Change Procedure Changes to the terms and conditions of this document can be initiated by either party and changed only by mutual agreement of both parties. Proposed changes to this document must be approved by both the NASA ESDIS Project and ASTER Project CCBs. The EDIS Project CCB responsibility for this document is established in accordance with the requirements of the Earth Observing System Configuration Management Plan, 420-02-02. The ASTER Project CCB responsibility for this document is established in accordance with the requirements of the document, ERSDAC AG-E-S-0004. #### 2. Related Documentation #### 2.1 Parent Documents The following documents are the parents from which this document's scope and content derive: | | • | |-----------------|--| | 193-208-SE1-001 | Methodology for Definition of External Interfaces for the ECS Project | | 304-CD-001-003 | Flight Operations Segment (FOS) Requirements Specification for the ECS Project, Volume 1: General Requirements | | 304-CD-004-003 | Flight Operations Segment (FOS) Requirements Specification for the ECS Project, Volume 2: AM-1 Mission Specific | | 304-CD-005-001 | Release B SDPS/CSMS System Requirements for the ECS Project | | 423-41-01 | Goddard Space Flight Center, EOSDIS Core System (ECS) Statement of Work | | 423-41-02 | Goddard Space Flight Center, Functional and Performance
Requirements Specification for the Earth Observing System Data and
Information System (EOSDIS) Core System (ECS) | | 423-41-18 | Goddard Space Flight Center, Interface Requirements Document
Between Earth Observing System Data and Information System
(EOSDIS) and MITI ASTER GDS Project | | None | Memorandum of Understanding Between the United States National Aeronautics And Space Administration and the Ministry of International Trade and Industry of Japan concerning Cooperation in the Flight of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on the NASA Polar Orbiting Platform and Related Support for an International Earth Observing System | | None | Project Implementation Plan, Volume II - Ground Data System,
Advanced Spaceborne Thermal Emission and Reflection
Radiometer
and ESDIS and EOS-AM Projects | | | | #### 2.2 Applicable Documents The following documents are referenced herein and are directly applicable to this document. In the event of conflict between any of these documents and this document, this document shall take precedence. 209-CD-001-003 Interface Control Document Between the EOSDIS Core System (ECS) and the NASA Science Internet (NSI) | 505-10-35 | Data Format Control Document for the Earth Observing System (EOS) AM-1 Project Data Base | |----------------|--| | 209-CD-005-005 | Interface Control Document Between the EOSDIS Core System (ECS) and Science Computing Facilities (SCF) | | 220-CD-001-004 | Communications Requirements for the ECS Project | | 305-CD-004-001 | Overview of Release A SDPS and CSMS System Design Specification for the ECS Project | | 305-CD-012-001 | Release A CSMS Communications Subsystem Design Specification for the ECS Project | | 305-CD-020-002 | Overview of Release B SDPS and CSMS System Design Specification for the ECS Project | | 305-CD-021-002 | Release B SDPS Client Subsystem Design Specification for the ECS Project | | 305-CD-022-002 | Release B SDPS Interoperability Subsystem Design Specification for the ECS Project | | 305-CD-023-002 | Release B SDPS Data Management Subsystem Design Specification for the ECS Project | | 305-CD-024-002 | Release B SDPS Data Server Subsystem Design Specification for the ECS Project | | 305-CD-025-002 | Release B SDPS Ingest Subsystem Design Specification for the ECS Project | | 305-CD-026-002 | Release B SDPS Planning Subsystem Design Specification for the ECS Project | | 305-CD-028-002 | Release B CSMS Communications Subsystem Design Specification for the ECS Project | | 305-CD-029-002 | Release B CSMS System Management Subsystem Design Specification for the ECS Project | | 305-CD-030-002 | Release B GSFC Distributed Active Archive Center Design Specification for the ECS Project | | 305-CD-033-002 | Release B EDC Distributed Active Archive Center Design Specification for the ECS Project | | 305-CD-034-002 | Release B ASF Distributed Active Archive Center Design Specification for the ECS Project | | 305-CD-035-002 | Release B NSIDC Distributed Active Archive Center Design
Specification for the ECS Project | | | | | 305-CD-036-002 | Release B JPL Distributed Active Archive Center Design Specification for the ECS Project | |--------------------|---| | 305-CD-037-002 | Release B ORNL Distributed Active Archive Center Design
Specification for the ECS Project | | 305-CD-038-002 | Release B System Monitoring and Coordination Center Design
Specification for the ECS Project | | 305-CD-040-001 | Flight Operations Segment (FOS) Design Specification for the ECS Project (Segment Level Design) | | 305-CD-041-001 | Flight Operations Segment (FOS) Planning and Scheduling Design Specification for the ECS Project | | 305-CD-042-001 | Flight Operations Segment (FOS) Command Management Design Specification for the ECS Project | | 305-CD-043-001 | Flight Operations Segment (FOS) Command Design Specification for the ECS Project | | 305-CD-048-001 | Flight Operations Segment (FOS) User Interface Design Specification for the ECS Project | | 305-CD-049-001 | Flight Operations Segment (FOS) Data Management Design
Specification for the ECS Project | | 311-CD-002-004 | Science Data Processing Segment (SDPS) Database Design and Database Schema Specifications for the ECS Project | | 210-TP-001-006 | Technical Baseline for the ECS Project, 2/14/96 | | none | Goddard Space Flight Center, ECS Technical Direction No. 11, "PDR Technical Baseline," 12/6/94 | | CCSDS 301.0-B-2 | Consultative Committee for Space Data Systems (CCSDS), Time Code Formats, Blue Book, Issue 2 | | CCSDS 641.0-B-1 | Consultative Committee for Space Data Systems (CCSDS), Parameter Value Language Specification (CCSD0006), Blue Book | | CCSDS 641.0-G-1 | Consultative Committee for Space Data Systems (CCSDS), Report Concerning Space Data System Standards, Parameter Value Language - A Tutorial, Green Book | | ISBN 1-884133-12-6 | Jamsa Press, Internet Programming, K. Jamsa, Ph.D. and K. Cope | | ISO 7498 | International Organization for Standardization, Basic Reference Model for Systems Interconnection | | RFC791 | Internet Protocol, J. Postel | | RFC793 | Transmission Control Protocol, J. Postel | |---------------------|---| | RFC821 | Simple Mail Transfer Protocol (SMTP), J. Postel | | RFC959 | File Transfer Protocol, Internet Standards, J. Postel and J. Reynolds | | RFC977 | Network News Transfer Protocol: A Proposed Standard for the Stream-Based Transmission of News, B. Kantor, P. Lapsley | | RFC1157 | A Simple Network Management Protocol (SNMP), J. Case, M. Fedor, M. Schoffstall, J. Davin | | RFC1213 | Management Information Base for Network Management of TCP/IP-based Internets: MIB-II, K. McCloghrie and M. Rose | | RFC1510 | The Kerberos Network Authentication Service (V5), J. Kohl and B. Neuman | | 552-FDD-96/010R0UD0 | Goddard Space Flight Center, Earth Observing System (EOS) - AM1 Flight Dynamics Facility (FDF)/ECS Interface Control Document | | None | Fujitsu, Ltd., ASTER Level 1 Data Products Specification (Science Version) | | 609-CD-005-001 | EOSDIS Core System Project, Flight Operations Segment (FOS) Operations Tools Manual for the ECS Project | #### 2.3 Information Documents The following documents, although not directly applicable, amplify or clarify the information presented in this document, but are not binding. | 194-201-SE1-001 | Systems Engineering Plan for the ECS Project | |-----------------|---| | 194-202-SE1-001 | Standards and Procedures for the ECS Project | | 205-CD-001-002 | Science Users Guide and Operations Procedure Handbook | | 333-CD-003-002 | SDP Toolkit Users Guide for the ECS Project | | 604-CD-001-004 | Operations Concept for the ECS Project: Part 1 ECS Overview | | 604-CD-002-003 | EOSDIS Core System Project, Operations Concept for the ECS
Project: Part 2 Release B | | 604-CD-004-001 | EOSDIS Core System Project, Operations Concept for the ECS
Project: Part 2 FOS | | 814-RD-003-002 | SDP Toolkit 5 Version Description Document (VDD) for the ECS Project | | 175-WP-001-001 | HDF-EOS Primer for Version 1 EOSDIS for the ECS Project (White Paper) | | | | 194-TP-285-001 ECS Glossary of Terms 420-TP-001-005 Proposed ECS Core Metadata Standard, Release 2.0 343-TP-001-001 IST Capabilities Document for the ECS Project None ASTER Science Team, ASTER Functional Requirements for Mission Operations None Committee on Earth Observations Satellites (CEOS) Working Group on Data, Guidelines for an International Interoperable Catalogue System, Catalogue Subgroup Issue 2.1 None Goddard Space Flight Center, Earth Observing System Mission **Operations Concept Document** None Operations Interface Control Document, Earth Observing System AM Spacecraft to Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) #### 3. Interface Overview #### 3.1 Interface Context The ECS and the ASTER GDS work together to provide ground support for mission operations and science data processing for the ASTER instrument onboard the EOS AM-1 spacecraft. This support includes spacecraft and instrument mission operations (planning, scheduling, control, monitoring, and analysis), science data processing (data processing, distribution, and archival), and ground system communications and management. In addition, the ASTER GDS will be interoperable with ECS so that an EOSDIS user or ASTER GDS user will be able to view the data holdings and order production data of the other system. Figure 3-1 presents a high level context diagram for the ECS/ASTER GDS interfaces. Note that the user interfaces for Data Search and Request and Data Product delivery in this diagram depict only the interfaces related to ECS/ASTER GDS data interoperability. #### 3.2 Pre-Mission Phase Interfaces Some of the ECS-ASTER GDS interfaces described in this ICD occur during the pre-mission phase. These interfaces are primarily concerned with setup and configuration of the ground system data bases and interfaces prior to use in mission operations. #### 3.2.1 AOS-FOS Pre-Mission Phase Interfaces For AOS-FOS interfaces, pre-mission interfaces begin after the delivery of the ECS IST software by NASA to ERSDAC, and subsequent installation of this software on an ASTER Operations Segment (AOS) host computer at the ASTER ICC. After the ICC is operational, the ASTER Instrument Operations Team (IOT) at the ASTER ICC uses the ECS IST interface to the EOC to submit ASTER Data Base Updates for Activity Definitions, Activity Constraint Definitions, Relative Time Command Sequences (RTCSs), and Command Procedures. These interfaces are described in Section 5 of this ICD. (Note that the ASTER instrument team delivers command and telemetry data base definitions directly to the AM-1 spacecraft vendor for pre-mission check-out. During the pre-mission phase, FOS will obtain this ASTER command and data base information from the AM-1 spacecraft vendor. The FOS will provide pre-mission PDB files to the AOS for verification prior to mission operations.) #### 3.3 Mission Phase Interface Most of the ECS-ASTER GDS interfaces described in this ICD occur during the mission phase. These interfaces are concerned with day-to-day mission and science operations within ECS and ASTER GDS. Note that the interfaces concerned with setup and configuration of the ground configuration updates may occur throughout the lifetime of the AM-1 mission.
Figure 3-1. ECS/ASTER GDS Context Diagram #### 3.3.1 AOS-FOS Mission Phase Interfaces AOS-FOS mission phase interfaces are described in Section 5 of this ICD. As during the pre-mission phase, the AOT may submit ASTER Data Base Updates for Activity Definitions, Activity Constraint Definitions, Relative Time Command Sequences (RTCS), and Command Procedures. Updated ASTER command and telemetry definitions also may be submitted to FOS using the ECS IST interface. FOS will make the approved command and telemetry definitions for the AM-1 spacecraft and ASTER available to the AOS. The ASTER AOS may access EOC Project Data Base (PDB) either via the ECS IST interface (displays, reports) or via PDB text files that may be transmitted from the ECS IST to an ASTER AOS host. Procedures for coordination of PDB updates will be defined in the Operations ICD EOS AM Spacecraft to ASTER. Mission phase interfaces include the exchange of planning and scheduling products for the ASTER instrument and the AM-1 spacecraft. The products exchanged include ASTER Short Term Schedules (STS), ASTER One Day Schedules (ODS), Preliminary Resource Schedules, Activity Schedules, Detailed Activity Schedules, Requests for EOC Schedules, and Planning Aids. The ASTER Instrument Operations Team (IOT) also may use the ECS IST to access Absolute Time Command (ATC) Load Reports and Integrated Reports from FOS. These reports provide insight into the AM-1 stored command load and upcoming activities and commands that are planned for AM-1 operations. The ASTER Instrument Operations Team (IOT) and the EOC Flight Operations Team (FOT) exchange products including Real Time Command Requests (submitted by the ASTER IOT to the EOC FOT) and instrument, spacecraft, and overall AM-1 mission status reports. During the real time contact, FOS generates instrument real-time command notifications and instrument command uplink status (via event messages) whenever the EOC issues a real real time and historical event messages.time ASTER command to the AM-1 spacecraft. The IOT may use the ECS IST capabilities to access real time and historical event messages. # 4. Data Exchange Framework #### 4.1 Overview Section 4 defines the data exchange framework for the network interfaces, message flows, and file transfers between ECS and the ASTER GDS. Section 4.2 describes the network topology. Section 4.3 describes the internetworking protocol standards that are used for data and information exchange. Section 4.4 addresses interface security. Sections 4.5 through 4.9 identify the protocols and handshaking control messages exchanged between ECS and ASTER GDS to accomplish the required data exchanges. #### 4.2 Physical Network Topology In the U.S., the EOSDIS Backbone Network (EBnet) supports all network-communications between EOSDIS and the ASTER GDS. In Japan, the ASTER Data Network (ADN) supports all network communications between EOSDIS and the ASTER GDS. EBnet will develop the following ICDs to describe the details of the EBnet interfaces with ECS and ASTER GDS: - a. ICD Between EBnet and the EOS Operations Center (EOC) - b. ICD Between EBnet and the EOSDIS Distributed Active Archive Centers (DAACs) - c. ICD Between EBnet and the ASTER Ground Data System EBnet and the ADN will each connect to a trans-Pacific link to provide connectivity for network communications between EOSDIS and the ASTER GDS. The ICD Between EBnet and the ASTER GDS will describe the EBnet interface to the trans-Pacific link. Internal ASTER GDS design documentation will describe the ADN interface to the trans-Pacific link. Operation and maintenance responsibility for the trans-Pacific link will be mutually agreed between the U.S. and Japan. The ECS CSMS and DAAC Design Specifications describe the topology of ECS local networks (e.g., refer to Section 2.2 for a complete listing of ECS design specifications). The ICD Between EBnet and the EOC, and the ICD Between EBnet and EOSDIS DAACs will define EBnet's connectivity with the ECS. A high-level network topology diagram for ECS-ASTER GDS mission critical communications is shown in Figure 4-1. Figure 4-1. High Level Network Topology for Mission Critical Communications #### 4.3 Internetworking Protocols Internetworking protocols supporting ECS-ASTER GDS data exchange are based on protocols and standards corresponding to the Open Systems Interconnection (OSI) reference model. These specifications are published in the International Organization for Standardization, Basic Reference Model of Systems Interconnection (Reference ISO 7498). These layered protocols also are described in "Internet Programming; Jamsa Press, 1995." #### 4.3.1 Internet Protocol (IP) The Internet Protocol (IP), specified in RFC791, supports network layer data exchanges between ECS and the ASTER GDS. The network layer provides transparent transfer of data between transport entities. The IP addresses for ECS and ASTER GDS network nodes and workstations are determined at the time of installation. #### 4.3.2 Transmission Control Protocol (TCP) Transmission Control Protocol (TCP) provides connection-oriented transport services between host computers. TCP, specified in RFC793, is a reliable end-to-end protocol designed to fit into a layered hierarchy of protocols which support multi-network applications. TCP provides for guaranteed delivery of data between host computers, as opposed to User Data Protocol (UDP), which is a connectionless-oriented transport service with no guaranteed delivery. #### 4.3.3 File Transfer Protocol (FTP) File transfers between the ECS IST and ASTER GDS host computers are accomplished through the use of standard File Transfer Protocol (FTP). EDS file transfer between GSFC DAAC in ECS and ADN in ASTER GDS CSMS is accomplished through the use of standard FTP. Standard FTP services are described in RFC959. #### 4.3.4 Simple Mail Transfer Protocol (SMTP) The protocol for e-mail transfer is the Simple Mail Transfer Protocol (SMTP). SMTP is described in RFC821. E-mail message formats are defined in RFC822. #### 4.3.5 Network News Transfer Protocol (NNTP) ECS bulletin board services use the Network News Transfer Protocol (NNTP) for sending and receiving messages. ECS bulletin board services are a standard Internet application where messages are directed to all readers of a named group. NNTP is defined in RFC977. #### 4.4 Distributed Computing Environment (DCE) and Security Network communications between ECS and the ASTER GDS will be accomplished via the EBnet. Neither ASTER GDS nor its host computers will provide external access to EOSDIS. EBnet, ECS, and the ASTER Data Network (ADN) will provide the packet filtering function. In addition, ECS also will perform port filtering. The detailed implementation is described in the EBnet ICD. End-to-end hosts will implement the respective security method as follows: A standardized processing environment, Open System Foundation's (OSF) Distributed Computing Environment (DCE) services, will be used to maintain the security of the interfaces between ECS and ASTER GDS. DCE Security Services make use of configuration-controlled Access Control Lists (ACLs) and Kerberos authentication tools to maintain security for communications between ECS and ASTER GDS. ECS and ASTER GDS will use OSF DCE Version 1.1. The ECS IST will host DCE client host software and will be configured as part of the EOC cell. The ASTER GDS will host a copy of the ECS IST toolkit software on an ASTER GDS-provided workstation at the ASTER Instrument Control Center (ICC). Some data exchanges between the ASTER ICC and the EOC will be accomplished through the use of the ASTER ICC's ECS IST. The use of DCE and Kerberos security services in the EOC and the ASTER ICC's ECS IST toolkit supports reliable user authentication and ensures the security of the mission critical interfaces between the ECS EOC and the ASTER ICC. DCE security services are not used for data transferred using e-mail services. #### 4.5 Data Exchange Between the ECS FOS and the ASTER GDS AOS Some electronic data exchange between the ECS FOS and the ASTER GDS AOS will be accomplished through an ECS IST Toolkit hosted on an ASTER GDS-provided workstation at the ASTER ICC. The handshaking and higher level communications protocols for transferring data between the EOC and the ASTER ICC's ECS IST Toolkit are documented in ECS FOS design specifications (refer to Section 2.2 for a complete listing of applicable FOS design specifications). Network connectivity between the ASTER ICC's ECS IST and the EOC will be accomplished via mission-critical communications (EBnet) circuits. The ASTER ICC may obtain the most recent versions of EOC schedules by sending a Request for EOC Schedules file to the ECS IST. The Request for EOC Schedules file results in the automatic delivery of an Activity Schedule file to the ASTER AOS. This Activity Schedule file covers the time frame requested in the Request for EOC Schedules file. The ASTER AOS may send a Request for EOC Schedules file to the ECS IST at any time during the scheduling process. FOS automatically delivers Detailed Activity Schedule files to the ASTER AOS whenever these products are generated or updated by the FOS. #### 4.5.1.2 Message Sequence for Automated FTP A generic message sequence applies for all automated FTP transfers between the FOS and the ASTER AOS. In this transfer sequence, the sender of the data initiates the communications session with the receiver. Using standard FTP, the sender transfers the data file to a specified directory on the receiving host computer. Immediately upon completion of the FTP of the data file, the sender sends a 'signal file' to the same directory on the receiving host computer. The 'signal file' is used by the receiving host to identify the completion of the file transfer of the data file. The file name of the 'signal file' will be the same as the file name of the data file, except that the 'signal file' will have the additional extension
field of "XFR". For example, if the ASTER AOS sends a data file named "ASTER_STS_1999028001.txt", the corresponding 'signal file' is named "ASTER_STS_1999028001.txt.XFR". Similarly, if the ECS IST sends a data file named "EOC_PRS_1999028003.txt", the corresponding 'signal file' is named "EOC_PRS_1999028003.txt.XFR". #### 4.5.2 Interfaces Supported by Operator Interaction with the ECS IST Through use of the ECS IST's user interface, the ASTER IOT will have access to other FOS tools and capabilities for submitting PDB updates for ASTER (e.g., command, telemetry, activity, and constraint definitions), building command procedures, relative time command sequences, and real time command requests. These products are submitted to the FOS through the ECS IST user interface. (Refer to Figure 4-3.) The ASTER AOS may access EOC Project Data Base (PDB) files either via the ECS IST interface (displays, reports) or via PDB text files that may be transmitted (by operator-initiated FTP) from the ECS IST to an ASTER AOS host. (Note: Files transferred via operator-initiated FTP do not use the special message sequencing protocol that is used for automated FTP (i.e., 'signal files' are not used). The IOT and other AOS host operators also will have access to ECS IST displays and EOC reports through the ECS IST user interface. This allows the ASTER IOT to use the ECS IST to access to EOC event messages for command notification and command load reports. The ECS IST user interface also may be used by the IOT and other AOS operators to view EOC plans and schedules and to access FOS tools for requesting and viewing the results of command-level constraint analyses performed on 'what-if' analysis schedules by the FOS Command Management Subsystem. Figure 4-3. ECS IST Operator Interfaces Details of the ECS IST user interface will be documented in the FOS Operations Manual for the ECS Project. #### 4.5.3 Email Exchange Between the ASTER ICC and the EOC Operations status reports and inter-instrument coordination messages are exchanged between the ASTER IOT and the FOT via email. Two paths exist for the exchange of email between the ASTER ICC and the EOC. (Refer to Figure 4-3). The ASTER IOT may use the ECS IST to exchange email (over EBnet circuits) with the FOT at the EOC. In this case, the email exchange is between the ASTER ICC's ECS IST and the FOT's EOC User Stations. Optionally, the ASTER IOT use email services provided on an ASTER AOS host to exchange mail with the FOT via the Internet. In this case, the email exchange is between an ASTER AOS host computer and the FOT's off-line computers in the EOC. Policies for email exchange will be documented in the Operations ICD EOS AM Spacecraft to ASTER. ## 4.6 Data Exchange Between the ECS SDPS and the ASTER GDS SDPS ## 4.6.1 ASTER Gateway: Information Manager The interface between the ECS and the ASTER GDS Information Manager Subsystem (IMS), via the ASTER Gateway IM, supports two-way catalog interoperability to provide an exchange of data and information. Specifically, this interface supports the search, location and acquisition of data between ECS and the ASTER GDS IMS, providing ECS and ASTER GDS IMS users with ready access to the data and services provided by the other system. Figure 4-5 displays a high level context diagram for the catalog interoperability interfaces between ECS and the ASTER GDS. The specific catalog interoperability interfaces supported via the ASTER Gateway include the following: - a. directory search request/results for finding data sets - b. inventory search request/results for locating specific granules within a dataset - c. acknowledge to acknowledge reception of inventory search results chunk - d. browse requests/responses for enabling the user to retrieve/view "representative images, as well as non-image data. - e. product requests/results placement of orders for full resolution data sets - f. quit notification of premature termination of a session due to problems; also used at the normal termination of inventory results exchanges of chucks. - g. price estimate request/result confirmation of price prior to product request. - h. product status request/information confirmation of product processing status. - i. product Cancel request/response cancellation by users. The interface between the ASTER GDS IMS, and ECS, via the ASTER Gateway, uses Object Description Language (ODL) to implement the messaages shown in Figure 4-4. - a. The ASTER Gateway translates the ASTER GDS user's ODL service request into Object Oriented Distributed Computing Environment (OODCE); in addition, Illustra's version of SQL is used as the Earth Science Query Language (ESQL) for ECS. - b. Using OODCE/SQL, the ECS interfaces via the ASTER Gateway to the ASTER SDPS. To accommodate the interface to the ASTER SDPS, the ASTER Gateway first translates the ECS user's service request into ODL. ^{*} Earth Science Query Language (Illustra's version of SQL) Figure 4-4. ECS/ASTER GDS IMS Interoperability via ASTER Gateway: Context Diagram ### 4.6.1.1 ASTER Gateway: Communications Gateway The ASTER Communications Gateway is the software that is used to support all communications infrastructure necessary for two-way protocol conversion between TCP/IP sockets and DCE RPC to accommodate communications between the ASTER GDS IMS and ECS. ### 4.6.1.2 ASTER Gateway: Management Subsystem The ASTER Gateway Management Subsystem (MSS) includes the management support functions needed within the ASTER Gateway to support the ECS-ASTER GDS IMS interfaces. ## 4.6.2 Data Acquisition Requests (DARs) Data exchange between the ASTER GDS SDPS and the ECS SDPS for DARs will be accomplished via Application Programming Interfaces (APIs) to a DAR Client application which is integrated into the ECS SDPS Client. This DAR Client application will be developed by the ASTER GDS and provided to NASA for use in the ECS SDPS Client. The APIs provide the interface between the DAR Gateway and ASTER IMS DAR Server. The DAR Client API List is provided as Appendix C to this document. The communications layer application between the DAR Client Application and the ASTER GDS DAR Server will consist of the ASTER GDS DAR Server communicating with the ASTER Gateway using existing protocol; the ASTER Gateway communicates via RPCs to ECS DAR clients. Network connectivity for communications between the ECS and the ASTER GDS for DAR communications will be accomplished via EBnet circuits. **Note:** All DAR network traffic passes through an EBnet router in GSFC Building 32.. #### 4.6.3 Delivery of ASTER Level 1A and Level 1B Products The ASTER GDS will store Level 1A and Level 1B products on separate tapes. A total of three tapes will be shipped to EDC on a daily basis. #### 4.6.3.1 Level 1A Product File ASTER Level 1A Product File Format is defined in the ASTER Level 1 Data Products Specification (GDS Version). Products will be shipped to EDC in the form of D3 tapes without any additional processing. Contents of Level 1A Product file are as follows: - a. The Product File and a Browse File will be produced for each scene. - b. The Product File will contain image data, ancillary data, supplement data, Generic Header, and a Specific Header. #### 4.6.3.2 Level 1B Product File ASTER Level 1B Product File Format is defined in the ASTER Level 1 Data Products Specification (GDS Version). Products will be shipped to EDC in the form of D3 tapes without any additional processing. Contents of Level 1B Product file are as follows: - a. The Product File and Browse File (including Image) data, will be produced for each scene. - b. The Product File will contain Generic Header, and Specific Header. Table 4-1 summarizes the contents of ASTER Level 1A and 1B Products for delivery. Table 4-1. Level 1 Products | Product
Category | Product | |---------------------|--| | L1A | L1A products scheduled using L0 data as the source. | | | Re-processed L1A Products | | L1B | L1B products scheduled using L1A products which have been created on the previous production unit. | | | L1B products scheduled in response to DPRs using existing L1A products. | | | Re-processed L1B products | ## 4.6.3.3 Data Shipping Notice Prior to a delivery of ASTER Level 1A and 1B Products to EDC, ASTER GDS will e-mail a Data Shipping Notice to the EDC DAAC when the tapes for delivery have been completed. ### 4.6.3.4 D3 Tape Delivery ASTER GDS will create a total of three D3 tapes daily. The total data stored on all three tapes will not exceed 158 GB (This is the uncompressed size). Since tapes may not be shipped by ASTER daily, ECS may receive none, or more than three tapes on any given day. The ASTER Level 1 Product Structure in D3 Tape is shown in Figure 4-5. (*) The total size of all files in a tar archive does not exceed 2 GB. Figure 4-5. ASTER Level 1 Product Structure in D3 Tape 4-10 ## 4.6.3.4.1 D3 Tape Storing Rules The following storing rules apply to all ASTER Level 1A and Level 1B products delivered by the ASTER GDS to EDC on D3 tapes: - a. Files will be stored into D3 tapes by use of the UNIX tar command. The UNIX tar command will not use absolute path. To unpack all files in a TAR file, the following UNIX command can be used: mt fsf <archive file offset> + TAR xf <device> * - b. Files in D3 tape will be stored without any file directories. - c. The TAR archival unit for L1A Products will be the same as the processing unit of the PGS, which is a strip unit of observation. The archival unit for ECS is a Product FileIBrowse file pair. The Product File is for a scene of data. - d. The Product Delivery Record will contain the number of archives and the number of EOF skips for each file. Product Delivery Record will be contained in the first archive of the tape. The first archive will contain only the Product Delivery Record File. - e. Files will be stored on the D3 tape in chronological order
within an archive. The storage order between tar archives can be of any order. - f. Level 1A and 1B Products will be stored on separate media. - g. D3 Tapes are always compressed by hardware. - h. All L1 re-processed products in a production unit (1 day) will be shipped. ## 4.6.3.5 Physical Media Format ## 4.6.3.5.1 Product Delivery Record File The format of the Physical Media Product Delivery Record (PDR) is shown in Table 4-2. The structure of Physical Media Product Delivery Record (PDR) is shown in Figure 4-6. An example of a Product Delivery Record PVL is shown in Figure 4-7. #### 4.6.3.6 Metadata Product-Core Metadata and Product-Specific Metadata of ASTER-Level 1A and 1B products are defined in the ASTER Level 1 Data Product Specification (GDS Version). Each Metadata will be stored in the Product File. In addition to the Metadata in the Product File, XAR information (XAR ID, XAR Type) will be stored in the Product Delivery Record as described in Table 4-2. #### 4.6.3.7 Browse Browse data of the ASTER-Level 1A and 1B products will be defined in the ASTER Level 1 Data Products Specification (GDS Version). Table 4-2. Format of Product Delivery Record | Parameter | Contents | PVL Data Type | Max Length
(Bytes)t | Value | |---------------------------|---|------------------------------------|------------------------|--| | ORIGINATING_
SYSTEM | PDR originator | ASCII | 20 | Identifier of the processing facility in the ASTER GDS. | | TOTAL_TAPE_FILE_
COUNT | The total number of TAR files included in the shipped tapes. | Integer | 4 | 1-9999 | | TOTAL_FILE_COUNT | Total number of Productl8rowseFiles | ASCII | 4 | 1-9999 | | OBJECT | Start of ProductIBrowse File Pair Definition | ASCII | 20 | FILE_GROUP* | | ARCHIVE_FILE_
OFFSET | Offset to the tar archive file which contains the target file (i.e., the number of EOFs to be skipped). | Integer ASCII | 4 | 1-9999 | | DATA_TYPE | Data type. Registered ESDT short name for data. | ASCII | 20 | AST_L1'A, AST_L'1B | | OBJECT | Start of File Parameters. Repeat for each File in the Product/Browse File Pair | ASCII | 9 | 'FILE_SPEC' | | DIRECTORY_ID | Directory name | ASCII | 256 | Blank Since TAR files
on D3 tape do not
unpack into
subdirectories. | | FILE_ID | File name follows ASTER GDS File Naming convention. | ASCII | 256 | The File ID of a
ProductlBrowse File | | FILE_TYPE | File data type. | ASCII | 7 | Science, Browse | | FILE_SIZE | File size in Byte | ASCII
Unsigned 32bit
Integer | 10 | <4.295 * 10 * | | END_OBJECT | End of parameters for each file. | - | | 'FILE_SPEC' | | OBJECT | Start of XAR Info Entry. | ASCII | 9 | 'XAR_ENTRY' | | GRANULE_ID** | Granule ID defined by ASTER GDS (1) Newly processed Level 1A, (2) Updated Level 1 | ASCII | TBD | тво | | XAR_INFO_COUNT | Number of XAR Information Objects | ASCII | TBD | TBD | | OBJECT | Beginning of XAR Information, repeat for XAR_INFO_COUNT | ASCII | 8 | 'XAR_INFO' | | XAR_ID | XAR_ID | ASCII | TBD | TBD | | XAR_TYPE | XAR_TYPE | ASCII | TBD | TBD | | END_OBJECT | End of XAR Information | ASCII | 9 | XAR_INFO | | END_OBJECT | End of XAR Information Entry | ASCII | 9 | XAR_ENTRY | | END_OBJECT | End of parameters for each file group | - | - | 'FILE_GROUP' | #### Legend: - * A File Group represents an ECS Granule. (A Granule is the smallest aggregation of data that can be inventoried with ECS and ordered from ECS). An ASTER Granule is a single Product File. - ** There is no relationship between the XAR_GRANULE_ID and the Granule included in the D3 Tape. 4-12 Figure 4-6. Structure of Physical Media PDR (level 1 cassette) ``` ORIGINATING_SYSTEM = ASTERGDS; TOTAL_TAPE_FILE_COUNT = 3; TOTAL_FILE_COUNT = 9; OBJECT = FILE_GROUP; DATA_TYPE = AST_LIA , AST_LIB ARCHIVE_FILE_OFFSET = 1; OBJECT = FILE_SPEC: DIRECTORY_ID = ; FILE_ID = <aster HDF EOS file name>; FILE_TYPE = SCIENCE; FILE_SIZE = 242120; END_OBJECT = FILE_SPEC; OBJECT = FILE_SPEC: DIRECTORY_ID = : FILE_ID = <aster browse file name>; FILE_TYPE = BROWSE; FILE_SIZE = 2098; END_OBJECT = FILE_SPEC; OBJECT = XAR_ENTRY; GRANULE_ID = <aster xar granule id>; XAR_INFO_COUNT = 2 OBJECT = XAR_INFO; XAR_ID = <aster xar id>; XAR_TYPE = OBJECT = XAR INFO: XAR_ID = <aster xar id>; XAR_TYPE = END_OBJECT = XAR_INFO; END_OBJECT = XAR_ENTRY; END_OBJECT = FILE_GROUP; OBJECT = FILE_GROUP; DATA_TYPE = AST_LIA, AST_LIB ARCHIVE_FILE_OFFSET = 1; OBJECT = FILE_SPEC: DIRECTORY_ID = ; FILE_ID = <aster HDF EOS file name>; FILE_TYPE = SCIENCE; FILE_SIZE = 242120; END_OBJECT = FILE_SPEC; ``` Figure 4-7. Sample Product Delivery Record PVL (1 of 2) ``` OBJECT = FILE_SPEC: DIRECTORY_ID = ; FILE_ID = <aster browse file name>; FILE_TYPE = BROWSE; FILE_SIZE = 2098; END_OBJECT = FILE_SPEC; OBJECT = XAR_ENTRY; GRANULE_ID = <aster xar granule id>; XAR_INFO_COUNT = <aster xar id>; OBJECT = XAR_INFO; XAR_ID = <aster xar id>; XAR_TYPE = <aster xar type>; END_OBJECT = XAR_INFO; END_OBJECT = XAR_ENTRY; END_OBJECT = FILE_GROUP; OBJECT = FILE_GROUP; DATA_TYPE = AST_LIA, AST_LIB ARCHIVE_FILE_OFFSET = 2; OBJECT = FILE_SPEC: DIRECTORY_ID = ; FILE_ID = <aster HDF file name>; FILE_TYPE = SCIENCE; FILE_SIZE = 2589510; END_OBJECT = FILE_SPEC; OBJECT = FILE_SPEC: DIRECTORY_ID = ; FILE_ID = <aster browse file name>; FILE_TYPE = BROWSE; FILE_SIZE = 3020; END_OBJECT = FILE_SPEC; OBJECT = XAR_ENTRY; GRANULE_ID = <aster granule id>: XAR_INFO_COUNT = 1 OBJECT = XAR_INFO; XAR_ID = \langle aster xarid \rangle. XAR_TYPE = <aster xar type>; END_OBJECT = XAR_INFO; ``` END_OBJECT = XAR_ENTRY; END_OBJECT = FILE_GROUP; Figure 4-7. Sample Product Delivery Record PVL (2 of 2) ## 4.6.3.8 Data Shipping Notice Prior to a delivery of ASTER Level 1A and 1B Products to EDC, ASTER GDS SDPS DADS will send a Data Shipping Notice by e-mail to the EDC DAAC when the tapes for delivery have been completed. The ASTER GDS SDPS DADS will transmit the Data Shipping Notices by e-mail to the ECS DAAC Operations Supervisor at EDC. In the event that an expected Data Shipping Notice is not received, the DAAC Operations Supervisor at EDC will inform the ASTER GDS SDPS DADS Operations Supervisor by telephone. The structure and format of Data Shipping Notice to be used at DADS are depicted in Figure 4-8 and Table 4-3. Figure 4-9 contains the standard E-mail Header to be used. Figure 4-8. Structure of Data Shipping Notice Table 4-3. Format of Data Shipping Notice | Parameter | Data
Type | Byte | Content | |------------------|--------------|------|---| | VOLUME_ID | ASCII | - | Bar Code Follows ASTER standard Table 4-4 | | CREATE_DATE/TIME | ASCII | 1 | Date (GMT) Date/Time when tape generation began; yyyy-mm-ddThh:mm:ssZ, where T indicates start of time information and Z indicates "Zulu" time. | E-mail Contents Header BEGIN_OBJECT=GDS_Header; Message_Number=123456789; ReEntrantCheck=Yes; Sender_ID=GDS; Receiver_ID=ECS Mode=Operation; Data_Number=0; EndData_Flag=E; Send_Date=1998-08-01; Send_Time=06:56:12.056; END_OBJECT=GDS_Header; /* End of GDS Header */ BEGIN_OBJECT=DATA /* Data Descriptin Area */ END_OBJECT=DATA /* Message Sequential Number 0 ~ 999999999(dec) */ /* Re-entarant Check Flag "Yes", "No" */ /* Sender ID ECS, GDS */ /* Receiver ID ECS, GDS */ /* Operation Mode "Operation", "Test" */ /* Data Sequential Number 0-999999999(dec) */ /* End-data Flag "E" or "" */ /* User ID */ /* Send Date yyyy-mm-dd */ /* Send Time hh:mm:ss.msc */ | No. | Key | Contents | Value | |-----|----------------|--|---| | 1 | Message_Number | Message serial number in seder segment. A series of Interface sequence is set same number. | "000000000"
~"99999999"(dec)
Values are used cyclically. | | 2 | ReEntrantCheck | If this flag is "Yes", same " Message_Number" message can be skipped in Receiver. | "Yes": Check
"No": No Check | | 3 | Sender_ID | Identifier of Sender's
Segment/Subsystem. | ECS, GDS | | 4 | Receiver_ID | Identifier of Receiver's
Segment/Subsystem | Same as Sender_ID | | 5 | Mode | Identifier of Operation Mode / Test Mode. | "Operation" or "Test" | | 6 | Data_Number | Serial Number in the case there are plural data. | "000000000"
~"99999999" (dec) | | 7 | EndData_Flag | Identifier of End data in the case there are plural data. | ASCII Blank (20hex): all data except end one "E": Last data (including in the case of there is only 1 data) | | 8 | Send_Date | Date to send message. Display with yyyy-mm-dd. Use GMT. yyyy: Year mm: Month dd: Day | yyyy:0000~9999
mm:01~12
dd:01~28,29,30,31 | | 9 | Send_Time | Time to send message. Display with hh:mm:ss.msc. Use GMT. hh: Hour (24hour system) mm: Minute ss: Second msc: Milli Second | hh:00~23
mm:00~59
ss:00~59
msc:000~999
Use MSCif necessary. Set 000
if not necessary. | Figure 4-9. Standard GDS E-mail Header ## 4.6.3.9 File Naming Convention Naming convention of L1 Product File for delivery to EDC is shown in Table 4-4. Table 4-4. File Naming Convention | radio 4 4r i no italining contention | | | | | |--|-------|--|------------------|--| | Field | Bytes | Content | Value | | | Creator | 2 | Characters representing the file creator.
Specify PGS(SDPS2) as the data creator. | "pg" | | | Delimiter | 1 | | et e | | | Data Type | 2 | Characters representing the data type (Product). | "PR" | | | Product Level | 4 | Alpha-numerics representing the Product Processing Level. | L1A
and L1B | | | Supplemental Information | 2 | Alpha-numerics. Usage includes to identify the sensor. | | | | Delimiter | 1 | | n_n | | | Sequential Number | 18 | Sequential number given in the product generation process. | | | | Production Plan ID | 10 | | 999999999 | | | Delimiter | 1 | | 65 \$7
****** | | | Production Request ID | 3 | | 999 | | | Delimiter | 1 | | 65 79
water | | | Sequential Number of
Product in Production
Request | 3 | | 999 | | #### 4.6.3.10 Bar Code Convention Figure 4-10 and Table 4-5 represent the bar-code format of L1 product media to be shipped to EDC. Figure 4-10. Bar Code Format used for Media for delivery to EDC Table 4-5. Definition of Bar Code Format for Media Delivery to EDC | Field Name | Bytes | Content | Value | |---|-------|---|--| | (a)Media Creator | 4 | A character representing
Media Creator. | "A"=ASTER | | (b)Media Type | | An alpha-numeric representing Media Type. | "E"=For shipping Reprocessed and resent D3 Cassette tape is different from "E". This value is TBD. | | (c)Sequential
Number in each
Media Type | 4 | A sequential number in each Media Type (in Hex) | 0-`FFFF X'
(0-65535 in decimal) | ## 4.7 Data Exchange Between the ECS CSMS and the ASTER GDS AOS Network communications for ECS bulletin board access will use standard Internet NNTP. Membership to ECS bulletin board groups is coordinated with ECS System Monitoring and Control Center (SMC) operations personnel. Network connectivity for bulletin board communications will be accomplished via the EBnet. ## 4.8 Data Exchange Between the ECS CSMS and the ASTER GDS CSMS Network communications for the exchange of management data will use SMTP electronic mail (email) and will be formatted in a machine-parsable form. More detailed information describing the interfaces between the ECS CSMS and the ASTER GDS CSMS GSMS is contained in Section 8 of this ICD. ## 4.9 Expedited Data From The ECS GSFC DAAC to the ASTER GDS CSMS ADN/DADS ECS will provide Expedited Data Sets (EDS) to the ASTER GDS for use in evaluating the operation of the instrument. Refer to Section 9 of this document for EDS overview and information related to EDS protocols, formats, authentication, etc. This page intentionally left blank. # 5. Interfaces Between the ECS FOS and the ASTER GDS AOS #### 5.1 Overview This section describes the interfaces for data and information exchange between ECS FOS and the ASTER GDS AOS, including the transmission of planning and scheduling messages, planning aid files, instrument command information, reports, and coordination messages. ## 5.2 Planning and Scheduling Message Overview ## 5.2.1 Planning and Scheduling Data Exchange Protocols All of the instrument planning and scheduling data flows identified in this section are transmitted between the ASTER ICC's ECS IST and an AOS Instrument Control Operations Subsystem (ICOS) host via the ICC LAN using FTP. The operational timeline associated with the generation and exchange of planning and scheduling messages will be defined in the Operations ICD EOS AM Spacecraft to ASTER. ## 5.2.2 Planning and Scheduling Message Data Conventions The data items in the instrument planning and scheduling messages are in standard 8-bit ASCII format, unless stated otherwise. All data fields are fixed length fields. Data within the data fields shall be left-justified; if the data does not fill the entire length of the data field, the remaining bytes shall be filled with ASCII blanks. Unused data fields shall be filled with ASCII blanks. Date and time fields are expressed in Universal Time Coordinated (UTC), unless stated otherwise. Planning and Scheduling data files are limited in size to a maximum of 2 GB (the maximum size of a UNIX file). Planning and Scheduling data files will be uniquely identified by the following file naming convention: ASTER Short Term Schedule (Scheduling Mode = Schedule): ASTER_STS_yyyydddnnn.txt ASTER Short Term Schedule (Scheduling Mode = Analysis): ASTER_STA_yyyydddnnn.txt ASTER One Day Schedule (Scheduling Mode = Schedule): ASTER_ODS_yyyydddnnn.txt ASTER_ODA_yyyydddnnn.txt Preliminary Resource Schedule (Scheduling Mode = Schedule): EOC_PRS_yyyydddnnn.txt Preliminary Resource Schedule (Scheduling Mode = Analysis): EOC_PRA_yyyydddnnn.txt Activity Schedule (Scheduling Mode = Schedule): EOC_ACS_yyyydddnnn.txt Activity Schedule (Scheduling Mode = Analysis): EOC_ACA_yyyydddnnn.txt Detailed Activity Schedule: EOC_DAS_yyydddnnn.txt Request for EOC Schedules: ASTER_REQ_yyyydddnnn.txt #### where: yyyyddd = the year and the three digit day-of-year of the generation of the message nnn = a unique number (reset to 001 at the start of each day) assigned by the originator of the message. Section 5.3 identifies the contents of each of these Planning and Scheduling data files. Sections 5.2.3 and 5.4 describe the format of the records contained within these files. ## 5.2.3 Planning and Scheduling Data Header All of the instrument planning and scheduling messages exchanged between the ECS IST and the ASTER AOS will use the standard Planning and Scheduling Data Header shown in Table 5-1. Table 5-1. Planning and Scheduling Data Header Format (1 of 2) | Field | Description | Type
(Length in Bytes) | Values | |--------------------|--|---------------------------|--| | Message
Type | Identifies the type of message being transmitted | ASCII (3 B) | STS: ASTER Short Term Schedule PRS: Preliminary Resource Schedule ODS: ASTER One Day Schedule ACS: Activity Schedule DAS: Detailed Activity Schedule REQ: Request for EOC Schedule Transmission to the ASTER ICC | | Message ID | The message ID is formatted as "yyyydddnnn", where "yyyyddd" represents the four digit year and three digit day of year that the message was sent. The "nnn" portion of the ID is an incrementing sequence number identifying the scheduling message that was sent on that day. The incrementing sequence number shall begin with "001". The Message ID and the Message Type uniquely identify the Planning and Scheduling Message that is being sent. | ASCII (10 B) | yyyy: 1995 - 2100
ddd: 001 - 366
nnn: 001 - 999 | | Source | Identifies the sender of the message | ASCII (3 B) | AST: ASTER Instrument
Control Center
EOC: EOS Operations
Center | | Destination | Identifies the intended receiver of the message | ASCII (3 B) | AST: ASTER Instrument
Control Center
EOC: EOS Operations
Center | | Spacecraft
Name | Identifies the spacecraft name | ASCII (3 B) | AM1: EOS AM-1 Spacecraft | Table 5-1. Planning and Scheduling Data Header Format (2 of 2) | Field | Description | Type
(Length in Bytes) | Values | |--------------------------------------|--|---------------------------|--| | Instrument
Name | Identifies the instrument name | ASCII (3 B) | AST: ASTER | | Scheduling
Mode | Specifies whether the activities identified in the message are to be scheduled on the EOC master schedule (SCHEDULE), or checked for constraints only for "what-if" analysis (ANALYSIS). For Message Type = "REQ" or "DAS", Scheduling Mode will always = "SCHEDULE". | ASCII (8 B) | SCHEDULE: Schedule on
master EOC schedule
ANALYSIS: Constraint-check
only | | Number of
Days in File | The number of days in file is an integer that identifies the number of days of schedule data contained in this file. Partial days will be rounded up (e.g. 0.4 days will be represented as 1). For Message Type = REQ, this value should be "00". | ASCII (2 B) | 00 - 99 | | Schedule
Start Time | The Schedule Start Time represents the earliest activity start time contained in this schedule. The start time will be identified with the following format: yyyydddhhmmss. For Message Type = REQ, this field should contain the start time of the schedule to be transmitted to the ASTER ICC. | ASCII (13 B) | yyyy: 1995 - 2100
ddd: 001 - 366
hh: 00 - 23
mm: 00 - 59
ss: 00 - 59 | | Schedule
Stop Time | The Schedule Stop Time represents the latest activity start time contained in the message contents. The stop time will be identified with the following format: yyyydddhhmmss. For Message Type = REQ, this field should contain the latest activity start time in the schedule to be sent to the ASTER ICC. | ASCII (13 B) | yyyy: 1995 - 2100
ddd: 001 - 366
hh: 00 - 23
mm: 00 - 59
ss: 00 - 59 | | Number of
Scheduling
Resources | The number of ASTER scheduling resources affected by this schedule. This field only applies to the STS and the ODS. This field will be set to zero for Request for EOC Schedules, Preliminary Resource Schedule, Activity Schedule, and Detailed Activity Schedule. | ASCII (28) | 00 - 99 | | Scheduling
Resources | This field repeats (occurrences = "Number of Scheduling Resources" [previous field]). These
fields contain the ASTER scheduling resource names that are affected by this schedule. | ASCII (40 B) | Valid Resource Names as defined in the EOS AM-1 PDB. | | Number of
Records in
File | The number of records in file is an integer that identifies the number of records contained within this file (including the Planning and Scheduling Data Header). | ASCII (8 B) | 00000001 -
99999999 | | Record
Terminator | Identifies the end of the Planning and Scheduling Data
Header | ASCII (1 B) | \n (new line character) | ## 5.3 Schedule Messages Section 5.3 describes the ASTER Short Term Schedule (STS), the ASTER One Day Schedule (ODS), the Preliminary Resource Schedule, Activity Schedule, and Detailed Activity Schedule. The ASTER STSs and ASTER ODSs are sent from the ASTER AOS to the ECS IST. The Preliminary Resource Schedules, Activity Schedules, and Detailed Activity Schedules are sent from the ECS IST to the AOS. The Preliminary Resource Schedule is generated and sent in response to the ASTER STS. The Activity Schedule is generated and sent in response to the ASTER ODS. The Detailed Activity Schedule is the conflict-free schedule that is used within the EOC to generate the integrated command load and the ground script. Schedule Data Record formats for Activity Records, Parameter Records, DAR ID Records, Mode Records, Constraint Records, and Comment Records are described in Section 5.4. ## 5.3.1 ASTER Short Term Schedule (STS) #### 5.3.1.1 General The ASTER STS is sent from the ASTER AOS to the ECS IST via the ICC LAN. The purpose of the STS is to provide initial activities, with specific timing, to the EOC for use in planning of AM-1 spacecraft resources and Tracking and Data Relay Satellite System (TDRSS) contact times. The STS identifies the resources required by the ASTER instrument during the period of time covered by the STS. The Planning and Scheduling Data Header contains fields that indicate the number of scheduling resources and scheduling resource names that are affected by this STS. For STSs where the "Scheduling Mode" field is set to "SCHEDULE", the activities specified in the STS replace those activities on the affected resources on the EOC master schedule where the activity start times are between the "Start Time" and "Stop Time" fields in the Planning and Scheduling Data Header. Note that a STS that contains no activity records will result in the deletion of all ASTER activities on the affected resources whose Start Times fall within the inclusive window identified by the Schedule Start Time and Schedule Stop Time fields in the Planning and Scheduling Data Header. When the "Scheduling Mode" field is set to "ANALYSIS", the activities are checked for constraints only (i.e., the EOC master schedule is not modified) and the analysis results data format is the same as the SCHEDULE data format (with Scheduling Mode = ANALYSIS). ## 5.3.1.2 Detailed Data Description The STS is described in Table 5-2. The Planning and Scheduling Data Header is the first record of the STS. The Planning and Scheduling Data Header specifies the Scheduling Mode of the STS as well as the Start Time and Stop Time of the activities that are included in the STS. Values Description Type (Length Field in Bytes) ASCII (variable) See Table 5-1 Identifies the type of message being Planning and Scheduling transmitted, the scheduling mode, and the Data Header time frame covered by the STS ASCII (variable) See Tables 5-8 Short Term Schedule Data. Activity Records, Parameter through 5-10 and 5-14 Records, DAR ID Records, Comment Records. Table 5-2. Short Term Schedule Format The Planning and Scheduling Data Header is followed by a list of Activity Records, Parameter Records, DAR ID Records, and Comment Records. Activity Records are in ascending start time order. The STS contains Activity Records for valid Data Base Defined Activities only. (Refer Section 5.4.1 for more information about Activity Records). If an Activity Record specifies that the number of parameters is greater than zero, then the Activity Record is immediately followed by one or more Parameter Records identifying all of the necessary parameters. If an Activity Record specifies that the number of DAR IDs is greater than zero, then the Activity Record is Comment Records may be inserted anywhere in the STS after the Planning and Scheduling Data Header, except between an Activity Record and its associated Parameter Record(s) or DAR ID Record(s). A sample of the ASTER STS file layout is shown in Figure 5-1. ## 5.3.2 ASTER One Day Schedule (ODS) #### 5.3.2.1 General The ASTER ODS is sent from the ASTER AOS to the ECS IST via the ICC LAN. The purpose of the ODS is to provide the EOC with the schedule of planned ASTER activities (including scheduled times and resource needs) for a target day. The Planning and Scheduling Data Header contains fields that indicate the number of scheduling resources and scheduling resource names that are affected by this ODS. For ODSs where the "Scheduling Mode" field is set to "SCHEDULE", the activities specified in the ODS replace those activities on the affected resources on the EOC master schedule where the activity start times are between the "Start Time" and "Stop Time" fields in the ODS Planning and Scheduling Data Header. Note that a ODS that contains no activity records will result in the deletion of all ASTER activities on the affected resources whose Start Time falls within the inclusive window identified by the Schedule Start Time and Schedule Stop Time fields in the Planning and Scheduling Data Header. When the "Scheduling Mode" field is set to "ANALYSIS", the activities are checked for constraints only (i.e., the EOC master schedule is not modified) and the analysis results data format is the same as the SCHEDULE data format (with Scheduling Mode = ANALYSIS). Note: "Late change" ODSs received after the FOT has locked the Detailed Activity Schedule are automatically processed as "ANALYSIS". The FOT may apply the "Late Change" ODS to the EOC master schedule after verification that the ODS will result in a conflict-free Detailed Activity Schedule. If the late change ODS is applied to the Master Schedule, the ASTER AOS will be notified by automated ftp of the new detailed schedule. If the late change ODS is not applied to the Master Schedule the FOT will notify the AOS either verbally or via e-mail. #### 5.3.2.2 Detailed Data Description The ODS is described in Table 5-3. The Planning and Scheduling Data Header is the first record of the ODS. The Planning and Scheduling Data Header specifies the Scheduling Mode of the ODS as well as the Start Time and Stop Time of the activities included in the ODS. ``` 00000009 STS1999003001ASTEOCAM1ASTSCHEDULE481999024000000199907223595901ASTER #This example shows the layout of sample records within an ASTER Short Term Schedule #The following record is a sample Data Base Defined Activity Record scheduled by absolute time. ACTABSASTER TIR ACTIVITY A 1234567 1999024013015 1999024013115 0000 #The following records are an example of a Data Base Defined Activity scheduled by orbital event (EVT), #including DAR ID records. ACTEVTASTER VNIR1_ACTIVITY_Z 1234570 0001222201-0200 0001222201+0700 Node_Ascending Node_Ascending 0006 DARASTER_DAR_ID_22334455, ASTER_DAR_ID66497358, ASTER_DAR_ID_94329764, ASTER_DAR_ID_56977777, ASTER_DAR_ID_65034674, DARASTER DAR ID 00000001 #The following records are another example of a data base defined activity scheduled by orbital event (EVT), #including Activity, Parameter Records and a DAR ID record. ACTEVTASTER SWIR_ACTIVITY_XYZ 1234571 Node_Descending 0001222201-0200 Node_Descending 0001222201+0700 0401 PRMCMD_MNEMONIC_1[1]PARAMETER_NAME_1=PARAMETER_VALUE, CMD_MNEMONIC_1[1]/PARAMETER_NAME_2=PARAMETER_VALUE; PRMCMD_MNEMONIC_1(1)PARAMETER_NAME_3=PARAMETER_VALUE, CMD_MNEMONIC_2[2]/PARAMETER_NAME_1=PARAMETER_VALUE DARASTER DAR ID 000008001 #Without the comment records, the STS records in the above examples would appear as: STS1999003001ASTEOCAM1ASTSCHEDULE481999024000000199907223595901ASTER 00000009 ACTABSASTER TIR_ACTIVITY_A 1234567 1999024013015 1999024013115 0000 ACTEVTASTER VNIR1_ACTIVITY_Z 1234570 Node_Ascending 0001222201-0200 Node_Ascending 0001222201+0700 0006 DARASTER_DAR_ID_22334455, ASTER_DAR_ID66497358, ASTER_DAR_ID_94329764, ASTER_DAR_ID_56977777, ASTER_DAR_ID_65034674, DARASTER_DAR_ID 00000001 ACTEVTASTER SWIR_ACTIVITY_XYZ 1234571 Node_Descending 0001222201-0200 0001222201+0700 Node_Descending PRMCMD_MNEMONIC_1 [1] PARAMETER_NAME_1 = PARAMETER_VALUE, CMD_MNEMONIC_1 [1] / PARAMETER_NAME_2 = PARAMETER_VALUE, PRMCMD_MNEMONIC_1[1]PARAMETER_NAME_3 = PARAMETER_VALUE, CMD_MNEMONIC_2[2]/PARAMETER_NAME_1 = PARAMETER_VALUE DARASTER_DAR_ID_000008001 ``` Figure 5-1. Sample Short Term Schedule File Layout Table 5-3. One Day Schedule Format | Field | Description | Type (Length in Bytes) | Values | |---|--|------------------------|--| | Planning and Scheduling
Data Header | Identifies the type of message being transmitted, the scheduling mode, and the time frame covered by the ODS | ASCII (variable) | See Table 5-1 | | Activity Records, Parameter
Records, DAR ID Records,
Comment Records. | One Day Schedule Data. | ASCII (variable) | See Tables 5-8
through 5-10
and 5-14 | The Planning and Scheduling Data Header is followed by a list of Activity Records, Parameter Records, DAR ID Records, and Comment Records. Activity Records are in ascending start time order. The ODS contains Activity Records for valid Data Base Defined Activities only. If an Activity Record specifies that the number of parameters is greater than zero, then the Activity Record is immediately followed by one or more Parameter Records identifying all of the necessary
parameters. If an Activity specifies that the number of DAR IDs is greater than zero, then the Activity Record is followed by one or more DAR ID records identifying all of the relevant DAR IDs. If an Activity Record specifies both parameters and DAR IDs, the Parameter Record(s) appear first, followed by the DAR ID record(s). Comment Records may be inserted anywhere in the ODS after the Planning and Scheduling Data Header, except between an Activity Record and its associated Parameter Record(s) or DAR ID Record(s). ## 5.3.3 Preliminary Resource Schedule #### 5.3.3.1 General The Preliminary Resource Schedule is automatically sent from the ECS IST to the ASTER AOS via automated FTP over the ICC LAN. The purpose of the Preliminary Resource Schedule is to provide all scheduled spacecraft and instrument activities, including TDRSS contact activities, to the ASTER AOS for the target week. The Preliminary Resource Schedule is generated in response to the ASTER STS. ## 5.3.3.2 Detailed Data Description The Preliminary Resource Schedule is described in Table 5-4. The Planning and Scheduling Data Header is the first record of the Preliminary Resource Schedule. The Planning and Scheduling Data Header specifies the Scheduling Mode of the Preliminary Resource Schedule as well as the Start Time and Stop Time of the activities included in the Preliminary Resource Schedule. A Preliminary Resource Schedule with Scheduling Mode = SCHEDULE is sent in response to a STS with Scheduling Mode = SCHEDULE. A Preliminary Resource Schedule with Scheduling Mode = ANALYSIS is sent in response to a STS with Scheduling Mode = ANALYSIS. 5-7 Table 5-4. Preliminary Resource Schedule Format | Field | Description | Type (Length in Bytes) | Values | |---|---|------------------------|--| | Planning and Scheduling Data
Header | Identifies the type of message being transmitted, the scheduling mode, and the time frame covered by the Preliminary Resource Schedule. | ASCII (variable) | See Table 5-1 | | Activity Records, Parameter
Records, DAR ID Records,
Mode Records, and
Constraint Records. | Preliminary Resource Schedule
Data. | ASCII (variable) | See Tables 5-8
through 5-12
and 5-14 | The Planning and Scheduling Data Header is followed by a list of Activity Records, Parameter Records, DAR ID Records, Mode Records, then Constraint Records. Activity Records are in ascending start time order. The Activity Records (with their associated Parameter Records and DAR ID Records) appear first, followed by Mode Records, then Constraint Records. If an Activity Record specifies that the number of parameters is greater than zero, then the Activity Record is immediately followed by one or more Parameter Records identifying all of the necessary parameters. If an Activity Record specifies that the number of DAR IDs is greater than zero, then the Activity Record is followed by one or more DAR ID records identifying all of the relevant DAR IDs. If an Activity Record specifies both parameters and DAR IDs, the Parameter Record(s) appear first, followed by the DAR ID record(s). Mode Records appear in ascending instrument mode time order. The mode characterizes an instrument or subsystem's operational state. Mode Records are generated by the FOS as a result of scheduling activities into the mission plan. Mode Records are followed by a listing of Constraint Records. Constraint Records appear in ascending constraint start time order. Constraint Records appear as needed to identify constraint violations between activities. Constraints are identified as either "hard" or "soft" constraints. Hard constraints must be resolved prior to generation of the Detailed Activity Schedule. For soft constraints, the necessary coordination for constraints resolutions will be performed between the AOS and the EOC. The process for this coordination will be covered in the Operations ICD EOS AM Spacecraft to ASTER. A sample of the Preliminary Resource Schedule file layout is shown in Figure 5-2. #### 5.3.4 Activity Schedule #### 5.3.4.1 General The Activity Schedule is automatically sent from the ECS IST to the ASTER AOS via automated FTP over the ICC LAN. The purpose of the Activity Schedule is to provide the ASTER AOS with the EOC schedule of activities, including TDRSS contact activities, after receipt and processing of the ASTER ODS. PRS1999003034EOCASTAM1ASTSCHEDULE48199902400000019990722359590000001342 ACTEVTCERES CERES-ACTIVITY-12354 87656787 S/C_Night/Day 0001117401+00001999024000000S/C_Day/Night 0001117401+0130 1999024004745 0000 ACTABSMODIS MODIS_ACTIVITY_676 81234589 1999024000015 1999024000115 0000 ACTABSASTER TIR_ACTIVITY_A 123456778654389 1999024013015 199902401311500010.00100.0000000 ACTEVTASTER VNIR1_ACTIVITY_Z 123457078655400 0001222201-02001999030024530Node_Ascending Node_Ascending 0001222201+0700 199903002543000007.50050.00000006 DARASTER_DAR_ID_22334455, ASTER_DAR_ID66497358, ASTER_DAR_ID_94329764, ASTER_DAR_ID_56977777, ASTER_DAR_ID_65034674, DARASTER_DAR_ID_0000001 **ACTABSAM1** TDRSS-CONTACT 46474888 1999030024645 1999030025645 0000 ACTEVTASTER SWIR_ACTIVITY_XYZ 123457078685400 0001222201-02001999030014500Node_Descending Node_Descending 0001222201+0700 1999030014700 0401 PRMCND_MNEMONIC_1 [1] PARAMETER_NAME_1 = PARAMETER_VALUE, CMD_MNEMONIC_1 [1] / PARAMETER_NAME_2 = PARAMETER_VALUE, PRMCMD_MNEMONIC_1 [1] PARAMETER_NAME_3 = PARAMETER_VALUE, CMD_MNEMONIC_2 [2] / PARAMETER_NAME_1 = PARAMETER_VALUE DARASTER_DAR_ID_000008001 MODCERES STDBY 1999024164000199902416590000015.00 000.0000 MODCERES SOLARCAL 1999024165900199902423000000015.00 000,0000 MODCERES BIAXIAL 1999024230000 00045.00 000.0009 CONMODIS MOD ACTIVITY X 86344617 MOPITT MOP_ACTIVITY_XYZ 998765671999026013025 19990260130300268 Figure 5-2. Sample Preliminary Resource Schedule File Layout ## 5.3.4.2 Detailed Data Description The Activity Schedule is described in Table 5-5. The Planning and Scheduling Data Header is the first record of the Activity Schedule. The Planning and Scheduling Data Header specifies the Scheduling Mode of the Activity Schedule as well as the Start Time and Stop Time of the activities included in the Activity Schedule. An Activity Schedule with Scheduling Mode = SCHEDULE is sent in response to a ODS with Scheduling Mode = SCHEDULE. An Activity Schedule with Scheduling Mode = ANALYSIS is sent in response to a ODS with Scheduling Mode = ANALYSIS. The Planning and Scheduling Data Header is followed by a list of Activity Records, Parameter Records, DAR ID Records, Mode Records, and Constraint Records. The Activity Records (with their associated Parameter Records and DAR ID Records) appear first, followed by Mode Records, then Constraint Records. Activity Records appear in ascending start time order. If an Activity Record specifies that the number of parameters is greater than zero, then the Activity Record is immediately followed by one or more Parameter Records identifying all of the necessary parameters. If an Activity Record specifies that the number of DAR IDs is greater than zero, then the Activity Record is followed by one or more DAR ID records identifying all of the relevant DAR IDs. If an Activity Record specifies both parameters and DAR IDs, the Parameter Record(s) appear first, followed by the DAR ID record(s). Mode Records appear in ascending instrument mode time order. The mode characterizes an instrument or subsystem's operational state. Mode Records are generated by the FOS as a result of scheduling activities into the mission plan. Mode Records are followed by a listing of Constraint Records. Constraint Records appear in ascending constraint start time order. Constraint Records appear as needed to identify constraint violations between activities. Constraints are identified as either "hard" or "soft" constraints. Hard constraints must be resolved prior to generation of the Detailed Activity Schedule. Table 5-5. Activity Schedule Format | Field | Description | Type (Length in Bytes) | Values | |---|---|------------------------|--| | Planning and Scheduling Data
Header | Identifies the type of message being transmitted, the scheduling mode, and the time frame covered by the Activity Schedule. | ASCII (variable) | See Table 5-1 | | Activity Records, Parameter
Records, DAR ID Records,
Mode Records, and
Constraint Records. | Activity Schedule Data. | ASCII (variable) | See Tables 5-8
through 5-12 and
5-14 | ## 5.3.5 Detailed Activity Schedule #### 5.3.5.1 General The Detailed Activity Schedule is automatically sent from the ECS IST to the ASTER AOS via automated FTP over the ICC LAN. The purpose of the Detailed Activity Schedule is to provide the ASTER AOS with the conflict-free schedule that is used by the EOC to generate the AM-1 Spacecraft Control Computer (SCC) stored command loads and ground script. The Detailed Activity Schedule for a target day becomes available at the ECS IST when the Detailed Activity Schedule is generated for the EOC to prepare the operations day products (ground script and command loads). The Detailed Activity Schedule contains activities for all AM1 subsystems and instruments, including TDRSS contact activities. ## 5.3.5.2 Detailed Data Description The Detailed Activity Schedule is described in Table 5-6. The Planning and Scheduling Data Header is the first record of the Detailed Activity Schedule. The Scheduling Mode of the Detailed Activity Schedule, as defined in the Planning and Scheduling
Data Header is always set to "SCHEDULE". The Planning and Scheduling Data Header also identifies the Start Time and Stop Time of the activities included in the Detailed Activity Schedule. The Planning and Scheduling Data Header is followed by a list of Activity Records, Parameter Records, DAR ID Records, Mode Records, and Constraint Records. The Activity Records (with their associated Parameter Records and DAR ID Records) appear first, followed by Mode Records, then Constraint Records. Activity Records appear in ascending start time order. If an Activity Record specifies that the number of parameters is greater than zero, then the Activity Record is immediately followed by one or more Parameter Records identifying all of the necessary parameters. If an Activity Record specifies that the number of DAR IDs is greater than zero, then the Activity Record is followed by one or more DAR ID records identifying all of the relevant DAR IDs. If an Activity Record specifies both parameters and DAR IDs, the Parameter Record(s) appear first, followed by the DAR ID record(s). Table 5-6. Detailed Activity Schedule Format | Field | Description | Type (Length in Bytes) | Values | |---|---|------------------------|--| | Planning and Scheduling
Data Header | Identifies the type of message being transmitted, the scheduling mode, and the time frame covered by the Detailed Activity Schedule. For Detailed Activity Schedule messages, the scheduling mode field is always = "SCHEDULE". | ASCII (variable) | See Table 5-1 | | Activity Records, Parameter
Records, DAR ID Records,
Mode Records, and
Constraint Records. | Detailed Activity Schedule Data. | ASCII (variable) | See Tables 5-8
through 5-12
and 5-14 | Mode Records appear in ascending instrument mode time order. The mode characterizes an instrument or subsystem's operational state. Mode Records are generated by the FOS as a result of scheduling activities into the mission plan. Mode Records are followed by a listing of Constraint Records. Constraint Records appear in ascending constraint start time order. Constraint Records appear as needed to identify soft constraint violations between activities. Activities with hard constraint violations must be resolved prior to generation of the Detailed Activity Schedule, therefore hard constraint violations will not appear in the Detailed Activity Schedule Constraint Records. ## 5.4 Schedule Data Record Formats #### 5.4.1 Activity Records The EOC performs scheduling of spacecraft and instrument operations through the use of data constructs called activities. Planning and Scheduling inputs (e.g., the ASTER STS and ODS) and the resulting EOC schedules (e.g., Preliminary Resource Schedule, Activity Schedule, and Detailed Activity Schedule) include lists of Activity Records which describe planned and scheduled spacecraft and instrument operations. Data Base Defined Activities are applicable for any of the AM-1 instruments or subsystems. Data Base Defined Activities reference pre-defined, pre-validated, configuration-controlled activities which are stored in the EOC and ASTER ICC Data Bases. A Data Base Defined Activity which does not have any commands associated with it is called a Label Activity. Label Activities may be used to annotate events. Data Base Defined Activities, may be scheduled with respect to Absolute Time or Orbit Events. Table 5-7 provides the list of valid scheduling Orbit Events. The desired scheduling method for each activity is identified by the "Scheduling Type" field (ABS or EVT) of the Activity Record. The Activity Record is described in Table 5-8. Refer to Figures 5-1 and 5-2 for examples of Activity Records. #### 5.4.2 Parameter Records If an Activity Record specifies that the number of parameters is greater than zero, then the Activity Record is immediately followed by one or more Parameter Records identifying all of the necessary parameters. If all of the required parameter specifications do not fit within a single Parameter Record, additional Parameter Records are used. The number of Parameter specifications must equal the Number of Parameters field from the Activity Record. A Parameter specification (mnemonic/parameter name = value) cannot be split across different Parameter Records. If a given mnemonic/parameter name occurs multiple times in the Activity definition, then a Parameter specification must include the command occurrence number of the command mnemonic whose parameter is being specified. Command occurrence numbers are assigned sequentially within an activity definition beginning with 1. The Parameter Record is described in Table 5-9. Refer to Figures 5-1 and 5-2 for examples of Parameter Records. | Event Mnemonic | Event | Definition | |------------------------|--|--| | (refer to ECS/FDD ICD) | Spacecraft sunrise | The time that the spacecraft passes into daylight | | (refer to ECS/FDD ICD) | Spacecraft sunset | The time that the spacecraft passes into night | | (refer to ECS/FDD ICD) | Night/Day boundary of earth nadir crossing | The time that the spacecraft nadir track crosses the day/night terminator (from night to day) on the earth's surface | | (refer to ECS/FDD ICD) | Day/Night boundary of earth nadir crossing | The time that the spacecraft nadir track crosses the day/night terminator (from day to night) on the earth's surface | | (refer to ECS/FDD ICD) | Ascending node crossing time | The time that the spacecraft crosses the equator while traveling from South to North | | (refer to ECS/FDD ICD) | Descending node crossing time | The time that the spacecraft crosses the equator while traveling from North to South | | (refer to ECS/FDD ICD) | Eclipse Entry time | The time that the spacecraft nadir passes into a shadow region defined on the earth's surface | | (refer to ECS/FDD ICD) | Eclipse Exit time | The time that the spacecraft nadir passes out of a shadow region defined on the earth's surface | | (refer to ECS/FDD ICD) | South Atlantic Anomaly (SAA)
Entry time | The time that the spacecraft enters the South Atlantic Anomaly region | | (refer to ECS/FDD ICD) | SAA Exit time | The time that the spacecraft exits the South Atlantic Anomaly region | | Apogee | Apogee time | The time that the spacecraft reaches the farthest point from Earth in the orbit | | Perigee | Perigee time | The time that the spacecraft reaches the closest point to Earth in the orbit | | (refer to ECS/FDD ICD) | Spacecraft noon | The time of spacecraft noon. | | (refer to ECS/FDD ICD) | Spacecraft minimum latitude | The time that the spacecraft crosses the minimum latitude point. | | (refer to ECS/FDD ICD) | Spacecraft maximum latitude | The time that the spacecraft crosses the maximum latitude point. | | (refer to ECS/FDD ICD) | Van Allen Belt Entry time | The time that the spacecraft enters the Van Allen Belt region. | | (refer to ECS/FDD ICD) | Van Allen Belt Exit time | The time that the spacecraft exits the Van Allen Belt region. | Table 5-8. Activity Record Format (1 of 4) | Field | Description | Type
(Length in Bytes) | Values | |---------------------------|---|---------------------------|---| | Record Type | Indicates that this is an Activity Record | ASCII (3B) | ACT | | Scheduling Type | Indicates the type of scheduling used for the activity (i.e., absolute time or event-based) | ASCII (3 B) | ABS: scheduled based on absolute time EVT: scheduled as an offset from a scheduling event | | Activity Resource
Name | Identifies the scheduling resource upon which the activity is scheduled. Valid resource names are defined in the EOS AM-1 Project Data Base (PDB). The STS and ODS will only contain activities for ASTER scheduling resources. | ASCII (40 B) | Valid Activity Resource Name
as defined in the EOS AM-1
Project Data Base. | | Activity Name | Identifies the activity definition name in the EOC data base | ASCII (40 B) | A valid activity name defined in the EOC data base. | | ASTER Activity ID | An integer value that uniquely identifies this activity. The ID is formatted as "nnnnnnn", where "nnnnnnn" is a unique number assigned to this activity by the ASTER ICC. | ASCII (7 B) | nnnnnn: 0000000 - 9999999 | Table 5-8. Activity Record Format (2 of 4) | Table 5-8. Activity Record Format (2 of 4) | | | !) | |--|--|---------------------------
--| | Field | Description | Type
(Length in Bytes) | Values | | EOC Activity ID | An integer value that uniquely identifies this activity: The ID is formatted as "nnnnnnnn", where "nnnnnnnn" is a unique number assigned to this activity by the EOC when the activity is scheduled. The EOC Activity ID is used for coordination between the STS-Preliminary Resource Schedule and ODS-Activity Schedule. For STS and ODS, this field is filled with ASCII blanks. | ASCII (8 B) | nnnnnnn: 00000000 -
99999999 | | Start Event | The Start Event identifies the scheduling event on which the reference activity "START" point (as defined in the activity definition in the data base) is based. Note: The reference activity "START" is not necessarily equal to the execution time of the first command in the activity. The Start Event is specified as EVENT ORBIT SEQNO, where EVENT represents a mnemonic for a valid scheduling event (fixed length 32 characters); ORBIT represents the orbit number (fixed length 8 digits, as defined in FDF planning aids); and SEQNO represents the sequential number of the event in the specified orbit (fixed length 2 digits). For those events that occur only once in an orbit, the SEQNO is always "01". This field is filled with ASCII blanks when Scheduling Type = ABS. | ASCII (42 B) | EVENT: (see Table 5-7) ORBIT: 00000000 - 99999999 SEQNO: 01 - 99 | | Start Event Delta | The Start Event Delta is represented by a sign (+ or -) and "mmss" to indicate the time (minutes and seconds) offset from the Start Event on which the activity is scheduled. This field is filled with ASCII blanks when Scheduling Type = ABS. A zero delta is represented as "+0000". | ASCII (5 B) | sign: + or -
mm: 00 - 99
ss: 00 - 59 | | Activity Start Time | The Activity Start Time specifies the reference activity "START" point (as defined in the activity definition in the data base) for this activity. Note: The reference activity "START" is not necessarily equal to the execution time of the first command in the activity. The ASTER ICC may insert either blanks or a computed reference activity "START" Time for activities which are scheduled based on events. For activities which are scheduled based on events, EOC will overwrite this field with the most accurate computed reference activity "START" Time based on the latest FDF predicts. The start time will be in the following format: yyyydddhhmrnss. | ASCII (13 B) | yyyy: 1995 - 2100
ddd: 001 - 366
hh: 00 - 23
mm: 00 - 59
ss: 00 - 59 | | Field | Description | Type
(Length in Bytes) | Values | |--|--|---------------------------|--| | Stop Event | The Stop Event identifies the scheduling event on which the reference activity. "STOP" point (as defined in the activity definition in the data base) is based. Note: The reference activity "STOP" is not necessarily equal to the execution time of the last command in the activity. The Stop Event is specified in the same format as the Start Event. This field is filled with ASCII blanks when Scheduling Type = ABS. This field is filled with ASCII blanks when the data base definition for this activity does not have a reference "STOP" point. | ASCII (42 B) | EVENT: (see Table 5-7) ORBIT: 00000000 - 99999999 SEQNO: 01 - 99 | | Stop Event Delta | The Stop Event Delta is represented by a sign (+ or -) and "mmss" to indicate the time (minutes and seconds) offset from the Stop Event on which the activity stop time is scheduled. This field is filled with ASCII blanks when Scheduling Type = ABS. A zero delta is represented as "+0000". | ASCII (5 B) | sign: + or -
mm: 00 - 99
ss: 00 - 59 | | Activity Stop Time | The Activity Stop Time specifies the reference activity "STOP" point (as defined in the activity definition in the data base) for this activity. Note: The reference activity "STOP" is not necessarily equal to the execution time of the last command in the activity. The ASTER ICC may insert either blanks or a computed reference activity "STOP" Time for activities which are scheduled based on events. For activities scheduled based on events, EOC will overwrite this field with the most accurate computed reference activity "STOP" Time based on the latest FDF predicts. The stop time will be in the following format: yyyydddhhmmss. | ASCII (13 B) | yyyy: 1995 - 2100
ddd: 001 - 366
hh: 00 - 23
mm: 00 - 59
ss: 00 - 59 | | Start Pointing Angle
(Data Base Defined
Activities for
Slewing) | For Data Base Defined Activities for Slewing, the start pointing angle is expressed as a sign (+ or -) and degrees. The pointing angle is expressed as the cross-track angular value, where +0000.00 represents nadir pointing. For non-slewing data base defined activities, the STS and ODS contain ASCII blanks for this field. | ASCII (8 B) | -0180.00 - +0180.00 (Start Pointing Angle, as defined by the slew angle with reference to the AM-1 spacecraft Y-axis, as defined in the spacecraft coordinate system.) | | Stop Pointing Angle
(Data Base Defined
Activities for
Slewing) | For Data Base Defined Activities for Slewing, the stop pointing angle is expressed as a sign (+ or -) and degrees. The pointing angle is expressed as the cross-track angular value, where +0000.00 represents nadir pointing. For non-slewing data base defined activities, the STS and ODS contain ASCII blanks for this field. | ASCII (8 B) | -0180.00 - +0180.00 (Stop Pointing Angle, as defined by the slew angle with reference to the AM-1 spacecraft Y-axis, as defined in the spacecraft coordinate system.) | Table 5-8. Activity Record Format (4 of 4) | Field | Description | Type
(Length in Bytes) | Values | |-------------------------|--|---------------------------|-------------------------| | Number of
Parameters | Identifies the number of user-specified parameters associated with this activity. If there are no user-specified parameters associated with this activity, the value must be *00*. | ASCII (2 B) | 00 - 99 | | Number of DAR IDs | Specifies the number of DARs associated with this activity. If there are no DARs associated with this activity, the value must be "00". | ASCII (2 B) | 00 - 99 | | Record Terminator | Identifies the end of this Activity Record | ASCII (1 B) | \n (new line character) | Table 5-9. Parameter Record Format | Field | Description | Type (Length in Bytes) | Values | |-------------------|--|------------------------|--| | Record Type | Indicates that this is a Parameter Record. | ASCII (3 B) | PRM | | Parameter List | Listing of Parameters (separated by commas) associated with the previous activity record. Each parameter specification is expressed as: command mnemonic [CMD#] [†] /parameter name = value | ASČII (<= 154 B) | Parameter Specifications in the format: "Command Mnemonic [CMD #] /Parameter Name = Value", where Command Mnemonic is a valid activity command mnemonic in the EOC data base and Parameter Name is a valid parameter name in the EOC data base for the referenced command mnemonic. Valid Command Mnemonics and Parameter Names (Command Subfields) are defined in the EOS AM-1 Project Data Base. | | Record Terminator | Identifies the end of the
Parameter Record | ASCII (1 B) | \n (new line character) | ¹The command occurrence number is required for a command whose parameter is being modified, because the referenced command mnemonic may appear more than once within an activity definition. Commands are numbered sequentially in an activity definition, beginning with 1. The command occurrence number reference will be entered as [5], for example, to specify the fifth command mnemonic in the activity definition. #### 5.4.3 DAR ID Records If an Activity Record specifies that the number of DAR IDs is greater than zero, then the Activity Record is followed by one or more DAR ID records identifying all of the relevant DAR IDs. If an Activity Record specifies both parameters and DAR IDs, the Parameter Record(s) appear first, followed by the DAR ID record(s). If all of the required DAR IDs do not fit within a single DAR ID Record, additional DAR ID Records are used. DAR IDs are not split across different DAR ID Records. The DAR ID Record is described in Table 5-10. Refer to Figures 5-1 and 5-2 for examples of DAR ID Records. 5-16 Table 5-10. DAR ID Record | Field |
Description | Type (Length in Bytes) | Values | |-------------------|---|------------------------|-------------------------------| | Record Type | Indicates that this is a DAR ID Record. | ASCII (3 B) | DAR | | DAR ID List | Listing of DAR IDs associated with the previous activity record. DAR IDs are separated by commas. | ASCII (<=154 B) | As determined by ASTER
GDS | | Record Terminator | Identifies the end of the DAR ID Record | ASCII (1 B) | \n (new line character) | #### 5.4.4 Mode Records Mode records give operational states of instruments and spacecraft subsystems. Commanding within activities which are scheduled into the mission plan cause instruments and subsystems to transition into various modes. Usually modes are associated with power and data rate information which can be found in the activity definition data base. Mode records will contain a mode name, instrument or subsystem associated with the mode change, power, data rate and the start and stop time of the mode. The Mode Record format is described in Table 5-11. Refer to 5-2 for examples of Mode Records. #### 5.4.5 Constraint Records Constraint information is included in Preliminary Resource Schedules, Activity Schedules, and Detailed Activity Schedules. The purpose of the constraint information is to provide detailed information pertaining to scheduling constraint violations and error conditions. The constraint information includes constraint violations for all instruments and spacecraft subsystem activities. If the activity is constrained by more than one activity, a separate Constraint Record is provided for each violation. The Constraint Record is described in Table 5-12. Refer to Figure 5-2 for examples of Constraint Records. #### 5.4.6 Comment Records Comment records are optional and may be included in STS or ODS. Comment records are not contained in the Preliminary Resource Schedule, Activity Schedule, or Detailed Activity Schedule. Comment Records are used for annotation only; these records are not processed by the EOC scheduling software. The Comment Record is described in Table 5-14. Refer to Figure 5-1 for examples of Comment Records. ## 5.5 Request for EOC Schedules #### 5.5.1 General The Request for EOC Schedules is sent from the ASTER AOS to the ECS IST. The purpose of the Request for EOC Schedules is to request the ECS IST to obtain a report of a particular portion of the integrated EOC master schedule. This integrated schedule will be an Activity Schedule containing activity schedule data for all EOS AM-1 subsystems and instruments for the time frame specified in the Planning and Scheduling Data Header. Table 5-11. Mode Record Format | Field | Description | Type (Length in Bytes) | Values | |--------------------|---|------------------------|--| | Record Type | Indicates that this is a Mode
Record | ASCII (3 B) | MOD: indicates a Mode
Record | | Mode Resource Name | Identifies the scheduling resource with which the mode is associated. Valid instrument/ subsystem names are defined in the EOS AM-1 Project Data Base. | ASCII (40 B) | Valid Mode Resource
Name as defined in the
EOS AM-1 Project Data
Base. | | Mode name | New Mode name as defined in the EOS AM-1 Project Data Base. | ASCII (30B) | A valid new mode name defined in the PDB. | | Mode Start Time | The Mode Start Time specifies the Start Time of this mode. The start time will be in the following format: yyyydddhhmmss. | ASCII (13 B) | yyyy: 1995 - 2100
ddd: 001 - 366
hh: 00 - 23
mm: 00 - 59
ss: 00 - 59 | | Mode Stop Time | The Mode Stop Time specifies the Stop Time of this mode. The stop time will be in the following format: yyyydddhhmmss. For contiguous mode records, the stop time of the previous record will be the same as the start time of the next record. If this is the last record in the list, the stop time field will be blank, indicating that the instrument or subsystem remains in the most recently scheduled mode. | ASCII (13 B) | yyyy: 1995 - 2100
ddd: 001 - 366
hh: 00 - 23
mm: 00 - 59
ss: 00 - 59 | | Average Power | The average power specifies the average number of watts consumed during the mode. | ASCII (8 B) | 00000.00 - 99999.99
(Power) | | Data Rate | The data rate specifies the average rate at which data is being stored in the buffer during the mode. The data rate is specified in units of MBits/second. | ASCII (8 B) | 000.0000 - 999.9999
(Data Rate) | | Record Terminator | Identifies the end of this Mode
Record | ASCII (1 B) | \n (new line character) | | Field | Description | Type (Length in Bytes) | Values | |---------------------------------|---|------------------------|---| | Record Type | Indicates that this is a Constraint Record | ASCII (3 B) | CON: indicates a
Constraint Record | | Resource Name | Identifies the scheduling resource upon which the constraint is detected. Valid resource names are defined in the EOS AM-1 Project Data Base. | ASCII (40 B) | Valid Resource Name as
defined in the AM-1
Project Data Base. | | Activity Name | Identifies the activity name of the activity involved in the constraint violation. | ASCII (40 B) | A valid activity name defined in the PDB. For constraints related to consumables (power, data volume), this field is filled with blanks. | | EOC Activity ID | An integer value that uniquely identifies the activity that is under constraint. The ID is formatted as "nnnnnnn", where "nnnnnnnn" is a unique number assigned to this activity by the EOC when the activity is scheduled. Note: In those cases where an ASTER Activity is not scheduled (Constraint Flag = E), this field will contain the ASTER Activity ID from the STS or ODS. | ASCII (8 B) | nnnnnnnn: 00000000 -
99999999
For constraints related to
consumables (power, data
volume), this field is filled
with blanks. | | Constraining
Resource Name | Identifies the scheduling resource with which the activity is constrained. Valid resource names are defined in the EOS AM-1 Project Data Base. | ASCII (40 B) | Valid Activity or Mode Resource Name as defined in the EOS AM-1 Project Data Base. For constraints related to consumables (power, data volume), this field is filled with blanks. | | Constraining
Activity Name | Identifies the activity name of the activity involved in the constraint violation. | ASCII (40 B) | A valid activity name defined in the PDB. For constraints related to consumables (power, data volume), this field is filled with blanks. | | Constraining EOC
Activity ID | An integer value that uniquely identifies the activity that is causing the constraint. The ID is formatted as "nnnnnnnn", where "nnnnnnnn" is a unique number assigned to this activity by the EOC when the activity is scheduled. Note: In those cases where an ASTER Activity is not scheduled (Constraint Flag = E), this field will contain the ASTER Activity ID from the STS or ODS. | ASCII (8 B) | nnnnnnn: 00000000 -
99999999
For constraints related to
consumables (power, data
volume), this field is filled
with blanks. | Table 5-12. Constraint Record (2 of 2) | Field | Description | Type (Length in Bytes) | Values | |--------------------------------------|--|------------------------|--| | Constraint Start
Time | The constraint start time identifies the time the constraint violation begins. The constraint start time will be identified with the following format: yyyydddhhmmss. For constraints related to consumables (power and data volume), if the constraint start time occurs at a time that is equal to or prior to the Scheduling Data Header "Schedule Start Time", this field will be equal to the "Schedule Start Time". | ASCII (13 B) | yyyy: 1995 - 2100
ddd: 001 - 366
hh: 00 - 23
mm: 00 - 59
ss: 00 - 59 | | Constraint Stop
Time | The constraint stop time identifies the time the constraint violation ends. The constraint stop time will be identified with the following format: yyyydddhhmmss. For constraints related to consumables (power and data volume), if the constraint stop time occurs at a time that is equal to or after the Scheduling Data Header "Schedule Stop Time", this field will be equal to the "Schedule Stop Time". | ASCII (13 B) | yyyy: 1995 - 2100
ddd: 001 - 366
hh: 00 - 23
mm: 00 - 59
ss: 00 - 59 | | Flag and
Error/Constraint
Code | The flag & error/constraint code provides
information that describes the error or constraint violation. The format of the flag & error/constraint code is "Fnn", where "F" = the flag and "nn" is a valid error/constraint code. Valid flags and error/constraint codes are in Table 5-13. | ASCII (3 B) | See Table 5-13 | | Constraint Type | The constraint type specifies if the constraint is a "hard" or "soft" constraint. Hard constraints must be resolved prior to generation of the Detailed Activity Schedule | ASCII (1B) | H = hard constraint
S = soft constraint | | Record
Terminator | Identifies the end of this Constraint Record | ASCII (1 B) | \n (new line character) | | Flag | Error/Constraint Code | Explanation | |---|-----------------------|--| | | | Planning and Scheduling File Errors | | F | 01 | Unrecognized file. File name does not comply with file naming convention | | F | , 02 | Duplicate file name. A unique file name was not provided, as required by the file naming convention | | | 03 - 09 | Spare | | | | Planning and Scheduling Data Header Errors | | F | 10 | Invalid value in Message Type field | | F | 11 | Invalid Source | | F | 12 | Invalid Destination | | F | 13 | Invalid Spacecraft Name | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 14 | Spare | | F | 15 | Invalid Scheduling Mode | | F | 16 | Invalid Number of Days in File | | F | 17 | Invalid/Unrecognized Time for Schedule Start Time or Schedule Stop Time | | F | 18 | Stop time is earlier than Start time | | F | 19 | Incomplete file (File contents do not match Number of Records in the Planning and Scheduling Data Header) | | F | 20 | Invalid Number of Resources | | F | 21 | Invalid Resource Name in Scheduling Resource list | | F | 22 | Invalid number of records (i.e., not an integer) | | F | 23 | Unauthorized Resource Name in Scheduling Resource List | | | 24-35 | Spare | | | | Scheduling Record Errors | | Ε | 36 | Invalid Scheduling Record Type | | E | 37 | Invalid Instrument/Subsystem Name | | Ε | 38 | Activity Name not found in PDB | | E | 39 | Invalid Activity ID | | E | 40 | Invalid Orbit Event | | Ε | 41 | Activity could not be scheduled. FDF orbit event data unavailable. | | E | 42 | Invalid Orbit/Sequence Number | | E | 43 | Invalid Delta Time | | Ε | 44 | Invalid Resource Value (Power, Data Rate, Pointing Angle) | | E | 45 | Number of Parameters in Activity Record does not match the number of parameters provided in the corresponding Parameter Record | | Е | 46 | Number of DAR IDs in Activity Record does not match DAR ID Record | | E | 47 | Unrecognized parameter names (command mnemonic/parameter name or command submnemonic/parameter name) | | E | 48 | Invalid Value specified for parameter | | E | 49 | Missing Parameter (a parameter has not been specified and a default value has not been specified in the Activity definition) | | E | 50 | Invalid Start Time. The start time does not fall within the start/stop range specified in the Planning and Scheduling Header | | E | 51 | User not authorized to schedule this Activity Name | Table 5-13. Error/Constraint Codes (2 of 2) | Flag | Error/Constraint Code | Explanation | |------|-----------------------|--| | Ε | 52 | Activity attempts to modify a non-modifiable parameter | | E | 53 | Invalid/Unrecognized start or stop time | | E | 54 | Activity duration is less than the minimum duration defined in the PDB | | | 55-65 | Spare | | | | Activity Constraint Violations | | W | 66 | Power consumption constraint exceeded | | W | 67 | Data volume constraint exceeded | | W | 68 | Activity prerequisite condition not met (e.g., entry mode violation) | | W | 69 | Constraint violation exists between 2 activities | | W | 70 | Constraint violation exists between activity and orbit event | | | 71 - 99 | Spare | Explanation of Flags: F = Error; File not processed E = Error; Activity Record was not processed W = Warning only; Activity Record was processed Table 5-14. Comment Record Format | Field | Description | Type (Length in Bytes) | Values | |-------------------|--|------------------------|-------------------------| | Record Type | Indicates that this is a Comment Record. A comment record is identified by an ASCII "#" in column 1 of the record. | ASCII (1 B) | # | | Comment Text | User-defined comment text. | ASCII (<=154 B) | ASCII text | | Record Terminator | Identifies the end of the Comment Record | ASCII (1 B) | \n (new line character) | ## 5.5.2 Detailed Data Description The Request for EOC Schedules is described in Table 5-15. The Planning and Scheduling Data Header is the only record of the Request for EOC Schedules. Table 5-15. Request for EOC Schedules Format | Field | Description | Type (Length in Bytes) | Values | |---|---|------------------------|---------------| | Planning and
Scheduling Data
Header | Identifies the type of message being transmitted (REQ) and the time frame covered by the requested EOC schedule data. For Request for EOC Schedules messages, the scheduling mode field will always = "SCHEDULE". | ASCII (variable) | See Table 5-1 | # 5.6 Planning Aids Planning Aids are automatically sent from the FOS to the ASTER AOS via automated FTP over EBnet. Planning aid files are sent to the ASTER AOS whenever new planning aids are received from the GSFC Flight Dynamics Facility (FDF) and successfully ingested into the FOS. The purpose of Planning Aids are to provide the ASTER AOS with orbital information for use in planning and scheduling the ASTER instrument. Planning aids that will be sent to the ASTER AOS are: - a. Predicted EOS-AM1 Ephemeris - b. Predicted Orbital Events - c. Predicted Orbit Number and Start Time - d. Predicted Subsatellite Point (Ground Track) - e. Orbit Adjust Maneuver Request - f. Orbit Adjust Burn Times and Duration Refer to the Earth Observing System (EOS) - AM1 Flight Dynamics Facility (FDF)/EOSDIS Core System (ECS) Interface Control Document for a complete listing of Planning Aid contents and data formats. ## 5.7 Project Data Base Updates The ASTER IOT submits changes to the ASTER portion of the AM-1 PDB (command, telemetry, activity, and constraint definitions) through the tools provided in the ECS IST toolkit. PDB updates are validated, approved, and placed under configuration control at the EOC prior to usage in operations. The ASTER IOT may retrieve AM-1 PDB definitions (command, telemetry, activity, and constraint definitions) through the tools provided in the ECS IST toolkit. The PDB updates may be retrieved in the form of display, reports, or PDB text files. The detailed format of PDB text files are defined in the Flight Operations Segment (FOS) Database Design and Database Schema Specifications for the ECS Project and the Data Format Control Document for the Earth Observing System (EOS) AM-1 Project Data Base. After the PDB text files have been retrieved from the EOC, these files may be sent by operator-initiated FTP from the ECS IST to the ASTER AOS. # 5.8 Absolute Time Command (ATC) Load Report The purpose of the ATC Load Report is to provide the ASTER ICC with information on the contents of the AM-1 SCC stored command load that was generated from the Detailed Activity Schedule. The ATC Load Report is generated prior to the start of the target day. The ATC Load Report is accessible through the ECS IST GUI. Figure 5-3 shows the preliminary layout of the ATC Load Report text file. | | | A M | | | REPORT | | | | |-------------|---|---|---------------------------------|---|--|--------------|--------|-----------------------| | | S
L
L
L | ission name atellite ID oad name: oad creation oad execution oad after tim oad by time: | time:
1 times | - first cmd:
- last cmd: | AM-1 nn, (Hex = xx) AM1_ATC_xxxxxxxx yyyy:ddd:hh:mm:s yyyy:ddd:hh:mm:s yyyy:ddd:hh:mm:s yyyy:ddd:hh:mm:s | s
s
s | | | | | L
P
S
T | st. time for
oad Size in E
rimary uplink
econdary uplinertiary uplinertiary uplinercommands in | Bytes
c
ink
nk
load | = YYYY
= YYYY
= nnnn | nn
::ddd:hh:mm:ss
::ddd:hh:mm:ss
::ddd:hh:mm:ss | | | | | | S | tarting Location | tion # | = nnnr
= nnnr | | | | | | isting of (| S
E
Control Commands:
48-bit command data | tarting Location | tion #
on #
48-bi | = nnnr
t command data | n
a (Hexadecimal) | Decoded data | | ecimal) | | Command # | Control Commands: 48-bit command data nnn nnn nnn nnn n | tarting Location Location Location (Octal) | tion #
on #
48-bi | t command data | (Hexadecimal) | xx xx x | | | | Command # | Control Commands: 48-bit command data nnn nnn nnn nnn n | tarting Location Location (Octal) | tion # on # 48-bi | t command data | (Hexadecimal) | xx xx x | | | | Command # | COMMAND EXECUTION TIME | tarting Location (Octal) A M - 1 TIME TAGS (OCTAL) | 48-bi ATC INH GRP | = nnnr t command data x xx xx xx L O A D R E COMMAND MNEMONIC | A (Hexadecimal) XX XX PORT SUBMNEMONI VALUE | xx xx xx | X XX X | PAGE CMD DATA (OCTAL) | | n = MEMORY | Control Commands: 48-bit command data nnn nnn nnn nnn n | tarting Location (Octal) (Octal) A M - 1 TIME TAGS | 48-bi ATC | = nnnr t command data x xx xx xx L
O A D R E COMMAND | (Hexadecimal) xx xx PORT SUBMNEMONI VALUE | xx xx xx | X XX X | x xx PAGE CMD DATA | Figure 5-3. ATC Load Report File Layout # 5.9 Integrated Report The purpose of the Integrated Report is to provide the ASTER ICC with information on the operations plan for the target day, including the ground script and the contents of the AM-1 SCC stored command load that was generated from the Detailed Activity Schedule. The Integrated Report is generated prior to the start of the target day. The Integrated Report is accessible through the ECS IST GUI. Figure 5-4 shows the preliminary layout of the Integrated Report text file. ## 5.10 Command Procedures The ASTER IOT may define Command Procedures and input these Command Procedures to the ECS IST. Command Procedures typically contain a set of ECS Command Language (ECL) directives that perform a single function at the EOC (e.g., configure a portion of the EOC ground system or initiate transmission of commands from the EOC to safe an instrument). After approval, these Command Procedures may be executed in the EOC by the Flight Operations Team (FOT). Command Procedures are classified as either Normal or Contingency. Command Procedures are input to the ECS IST (Procedure Builder tool). Using an ECS IST tool, the Command Procedure file is sent to the FOT at the EOC for approval. Command Procedures are approved and validated by the EOC prior to use in operations. # 5.11 Relative Time Command Sequences The ASTER IOT may define Relative Time Command Sequences (RTCS) and input these RTCSs to the ECS IST. Approved RTCSs are uplinked and stored onboard the spacecraft. An RTCS is a pre-defined set of commands which performs the same instrument activity on a routine basis. Execution of commands within a RTCS is based on the specified relative time offset between each command. RTCS are input to the ECS IST through the ECS IST GUI (RTS Load Builder tool). At the request of the ECS IST operator, the RTCS is sent to the FOT at the EOC for approval. RTCSs are approved and validated by the EOC prior to uplink to the spacecraft. Each RTCS includes a list of command mnemonics (including any submnemonics or required command parameters), a relative time offset for each command, and a text description for each command. Refer to the ECS IST Toolkit documentation for more information on RTCSs and the RTS Load Builder tool. AM-1 INTEGRATED REPORT ED REPORT PAGE 1 Mission name AM- Satellite ID (I) nn, (Hex = xx) Reporting Period Start Time: yyyy:ddd:hh:mm:ss Reporting Period Stop Time: yyyy:ddd:hh:mm:ss #### AM-1 INTEGRATED REPORT PAGE n | yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss | ECL Directive from th
/Cmd_Mnemonic Submnem
Orbit | onic=Value | | !Descriptive Text
!Cmd_Description of RT Cmd
!Label Activity Description | |---|---|--|--|--| | ATC Loc nnnn
ATC Loc nnnn | Cmd_Mnemonic
Cmd_Mnemonic | Submnemonic=Value
Submnemonic=Value | yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss | !Cmd_Description of ATC Cmd
!Cmd_Description of ATC Cmd | | yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss | ECL Directive from th /Cmd_Mnemonic | e Ground Script | Submnemonic=Value | !Descriptive Text
!Cmd_Description of RT Cmd | | ATC Loc nnnn
ATC Loc nnnn | Cmd_Mnemonic
Cmd_Mnemonic | Submnemonic=Value
Submnemonic=Value | yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss | !Cmd_Description of ATC Cmd
!Cmd_Description of ATC Cmd | | yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss | MSG " Start of TDRS
AOS: TDRS_ID TDRS_S
#ECL comment describi | | Service_Parameters | !ECL Event Msg
!Start of TDRS Service | | YYYY:ddd:hh:mm:ss
YYYY:ddd:hh:mm:ss | START LOAD_ATC (Loadn /Cmd_Mnemonic | ame.UPL) | Submnemonic=Value | !Cmd_Procedure Description
!Cmd_Description of RT Cmd | | ATC Loc nnnn | Cmd_Mnemonic | Submnemonic=Value | yyyy:ddd:hh:mm:ss | !Cmd_Description of ATC Cmd | | yyyy:ddd:hh:mm:ss | /Cmd_Mnemonic | | Submnemonic=Value | !Cmd_Description of RT Cmd | | RTS RTS#
RTS RTS# | Cmd_Mnemonic
Cmd_Mnemonic | Submnemonic=Value
Submnemonic=Value | yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss | !Cmd_Description of RTCS Cmd
!Cmd_Description of RTCS Cmd | | yyyy:ddd:hh:mm:ss
yyyy:ddd:hh:mm:ss | LOS: TDRS_ID TDRS_S
MSG * End of TDRS Co | | !ECL Event Msg | !End of TDRS Service | | ********** | ******* | ******** REPORT END * | ****** | ******* | Figure 5-4. Integrated Report File Layout ## 5.12 Real Time Command Requests The ASTER IOT may prepare Real Time Command Requests and input these Real Time Command Requests to the ECS IST. A Real Time Command Request is used during non-nominal situations to request execution of a selected command procedure at the EOC, transmission of a specified ASTER command to the spacecraft, or execution of a specified RTCS onboard the spacecraft. The Real Time Command Request must be submitted to the ECS FOT prior to the specified real time contact. The time frame for submitting Real Time Command Requests will be defined in the Operations ICD EOS AM Spacecraft to ASTER. Real Time Command Requests are input to the ECS IST through the ECS IST GUI. At the request of the ECS IST operator, the Real Time Command Request is sent to the FOT at the EOC for approval. The ASTER IOT and the EOC FOT communicate by voice to exchange information regarding the implementation or rejection of a Real Time Command Request. The FOS provides command verification status of ASTER real time commands to the ASTER AOS via EOC event messages, as described in Section 5.13 - Instrument Real Time Command Notification and Section 5.14 - Instrument Command Uplink Status. Note: Since the EOC event messages include the command mnemonic of the ASTER real time command and a time stamp, the ASTER IOT can use this information to correlate specific ASTER real time commands to their corresponding command uplink status. The contents of the Real Time Command Request include: - a. Subject - b. Originator - c. Subsystem or Instrument ID (ASTER) - d. Spacecraft ID (AM-1) - e. Selected EOC command procedure - 1. Time of execution of the command procedure - 2. Listing of the commands in the Command Procedure and their parameters (arguments) - 3. Instructions. (examples of Real Time Command Request instructions are listed in Table 5-16.) Table 5-16. Real Time Command Request Instructions | Field | Explanation | |---------------------------|--| | Label | Unique identifier for this Real Time Command Request | | Туре | Type of modification (Add, Delete, Change) | | Time | The time of execution of a Real Time Command Request. The time is specified in UTC. | | Commanding Mode | Desired command mode (one step, two step) | | Commands for
Execution | Specifies the real time command to be executed (for example): - individual command mnemonic (including submnemonics and parameter values, or - RTCS identifier | | Comments | Text explanation or other useful information provided by the ASTER IOT to the EOC FOT | ## 5.13 Instrument Real Time Command Notification Instrument Real Time Command Notifications¹ are automatically sent from the EOC to the ECS IST at the ASTER ICC. The purpose of Instrument Real Time Command Notifications are to notify the ASTER IOT that the EOC has issued a command to the ASTER instrument during a real time contact. This command may have been issued from the ground script by the EOC FOT as a result of a Real Time Command Request or by the EOC FOT in response to an instrument contingency situation. Instrument Real Time Command Notification messages are event messages which consist of a time stamp (indicating the time that the event message was generated at the EOC), an event messages which consist of a time stamp (indicating the time that the event message was generated at the EOS), an event message number (for use in referencing FOS Event Message documentation), the command mnemonic of the command that was issued, including any applicable submnemonics and command parameter values. Instrument Real Time Command Notification is provided to the ASTER IOT through the ECS IST display console in the form of an event message. The ASTER IOT also may request event message reports using the ECS IST user interface. # 5.14 Instrument Command Uplink Status Instrument Command Uplink Status² is automatically sent from the EOC to the ECS IST at the ASTER ICC. The purpose of the Instrument Command Uplink Status is to notify the ASTER ² In the FOS Requirements Specification for the ECS Project, these notifications are called "Command Notification Messages". ¹ In the FOS Requirements Specification for the ECS Project, these notifications are called "Emergency Notification Messages". IOT of the status (command receipt and/or execution verification) of a command that was issued to the ASTER instrument during a real time contact. The command may have been issued from the ground script by the FOT as a result of a Real Time Command Request or by the FOT in response to an instrument contingency situation. Instrument Command Uplink Status event messages are event messages which consists of a time stamp (indicating the time that the event message was generated), an event message number (for use in referencing FOS Event Message documentation), and a text status field providing the command uplink status information (see Table 5-17). Instrument Command Uplink Status is provided to the ASTER IOT through the ECS IST display console in the form of an event message. The ASTER IOT also may request event message reports using the ECS IST user interface.
Note: At the beginning of each TDRSS contact, the EOC's spacecraft state check process uses spacecraft housekeeping telemetry data to verify that all ATC commands (with telemetry verification mnemonics specified in the PDB) that were scheduled since the previous TDRSS contact were properly executed. The EOC will generate an event message for each of these ATC commands which fail EOC spacecraft state check verification. The ASTER IOT may use ECS IST capabilities to request EOC Event History Reports. These IST capabilities will be described in the FOS Operations Tools Manual. Table 5-17. Instrument Command Uplink Status Information | Event Message Status Field | | | | | |--|---------------------------------------|--|--|--| | Command Cmd_Mnemonic successfully executed | | | | | | Submnemonic Submnemonic not found in command data base | | | | | | nvalid value Value for Submnemonic in command Cmd_Mnemonic | | | | | | Not all submnemonics have been entered for command Cmd_Mnemonic | · · · · · · · · · · · · · · · · · · · | | | | | Critical command Cmd_Mnemonic canceled by operator | | | | | | Command Cmd_Mnemonic prereq fail: param=Pvalue, expected Value1-Value2 ** | | | | | | Prerequisite check overridden by operator for command Cmd_Mnemonic | | | | | | Command Cmd_Mnemonic was not received onboard (lost in transmission) | | | | | | Unable to confirm receipt of command Cmd_Mnemonic onboard (TLM dropout) | | | | | | Command Cmd_Mnemonic received onboard; failed execute verification | | | | | | Command Cmd_Mnemonic received onboard; cannot verify execute (TLM static) | | | | | | Command Cmd_Mnemonic received onboard; cannot verify execute (TLM dropout) | | | | | ^{**&}quot;param" is the telemetry parameter whose value is checked. Pvalue is the current value of the telemetry parameter. Value1 - Value2 is the range of acceptable prerequisite values specified in the EOC data base for command Cmd_Mnemonic. ## 5.15 Operations Status Reports ## 5.15.1 Spacecraft Status Reports Spacecraft Status Reports are sent from the EOC to the ASTER ICC. The delivery of Spacecraft Status Reports will be accomplished through the use of e-mail services (refer to Section 4.5.3). Status report content, frequency of transmission, and e-mail distribution lists will be negotiated between the ASTER Operations Team (AOT) and the ESDIS EOS Mission Operations Manager (MOM). ## 5.15.2 Mission Status Reports Mission Status Reports are sent from the EOC to the ASTER ICC. The delivery of Mission Status Reports will be accomplished through the use of e-mail services (refer to Section 4.5.3). Status report content, frequency of transmission, and e-mail distribution lists will be negotiated between the AOT and the ESDIS EOS MOM. ## 5.15.3 Instrument Status Reports Instrument Status Reports are sent from the ASTER ICC to the EOC. The delivery of Instrument Status Reports will be accomplished through the use of e-mail services (refer to Section 4.5.3). Status report content, frequency of transmission, and e-mail distribution lists will be negotiated between the AOT and the ESDIS EOS MOM. # 5.16 Inter-instrument Coordination Messages Inter-instrument Coordination Messages may be exchanged among the ASTER IOT, other AM-1 IOTs, and the FOT at the EOC. The exchange of inter-instrument coordination messages is accomplished through the use of e-mail services (refer to Section 4.5.3). The content of these messages, frequency of transmission, and distribution of these messages are left to the discretion of the EOC FOT and the IOTs. # 6. Interfaces Between the ECS SDPS and the ASTER GDS SDPS ### 6.1 Overview This section describes the interfaces for data and information exchange between ECS SDPS and ASTER GDS SDPS, including data exchanges in support of catalog interoperability (user search and order), ASTER DAR submittal/statusing, exchange of data shipping notices, orbit data anomaly notifications, and delivery of data products. # 6.2 Catalog Interoperability This section contains a detailed definition of each data interface between ECS and the ASTER GDS that is required to support two-way catalog interoperability. In particular, an identification of each data flow is provided along with a discussion of the functional purpose of that flow and the detailed format and contents of each interface. This section also identifies the mandatory/optional extensions to the V0 protocols that need to be added in order to take advantage of new ECS Version 1 (V1) services. Since the above-referenced messages are implemented using Object Description Language (ODL), an example of the ODL normalization forms and standardized conventions is provided in Figure 6-1. These standardized conventions, which provide a formal method of describing ODL commands, include the following rules: - a. keywords are words that have a special meaning in ODL, itself, and are treated as instructions. - b. all keyword are printed in CAPS - c. items in square brackets ([]) are options. - d. items in parentheses (...) indicate that these items may be repeated any number of times - e. after the parentheses (...) a single character is given that tells how many occurrences are allowed; i.e., - 1. a '*' means zero or more occurrences - 2. a '+' means one or more occurrences - f. Each group is further defined down to its keyword components. In Appendix B, each keyword is defined in terms of the following items of information, as appropriate: a. synopsis (short English-Language description of the keyword), ### **EXAMPLE Only** **EXAMPLE Only** Figure 6-1. Example of ODL Normalization Form Illustrating Conventions - b. parent groups, - c. children, - d. ODL type; e.g., - 1. integer, - 2. real, - 3. date, - 4. string, - 5. aggregate, - 6. symbol, - 7. sequence string, - 8. character string - e. maximum value length - f. possible values. The data flows between the ASTER Gateway and the ASTER SDPS Servers, for requests originating from ECS users are depicted in Figure 6-2. Specifically, the following data flows are depicted: - a. Inventory Search Request - b. Inventory Search Results - c. Acknowledge - d. Browse Request - e. Integrated Browse Results - f. Product Request - g. Product Results Figure 6-2. Interfaces Between ECS Earth Science Search Tool and ASTER SDPS - h. Quit - i. Price Estimate Request (extension*) - j. Price Estimate (extension*) - k. Product Status Request (extension*) - 1. Product Status Information (extension*) - m. Product Cancel Request (extension*) - n. Product Cancel Results (extension*) *Note: An extension is a message which is not supported by Version 0, but is specifically added to the V0 protocol in order to exploit new ECS Version 1 services. ERSDAC has agreed to provide the definition of these extensions. All of the messages described above in Figure 6-2 are implemented using Object Description Language (ODL). (For a description of ODL refer to the User's Guide for the Object Description Language Processing Software Library, Release 2.1 - Draft). All of these messages are handled by the IMS Kernel (IK) layer [Note: the ASTER Gateway and the ASTER SDPS IMS contain several software modules, at the communications (lowest) layer, which serve as library routines and are, collectively, referred to as the IK layer]. Each of these messages is described, in detail, in the sections which follow. The ASTER Gateway translates between these V0 protocols and OODCE/ESQL which is understood by ECS. ### 6.2.1.1 Directory Information The ASTER Gateway configuration will include the advertisement of the data sets provided by the ASTER GDS. Using ESQL, the ESST will search the advertising service to retrieve advertisements. This advertisement search is equivalent to a directory search. # 6.2.1.2 Inventory Search Request/Results and Acknowledge The purpose of the inventory search is to aid a user in searching through the available inventory, locating and retrieving metadata about specific granules of the product(s) of interest, and determining whether any granules should be ordered. The search criteria, specified by the user, are based on the following searchable attributes: source, sensor, geophysical parameter, dataset name, data center id, geographical coordinates (area), temporal intervals. An inventory search request for ASTER GDS IMS services, originating from an ECS user, is entered via the ASTER Gateway. The ASTER Gateway sends the ASTER SDPS Servers inventory search criteria based on characteristics of the data. The ASTER SDPS Servers retrieve the requested granules' metadata, and sends these items back to the ASTER Gateway. The basic "building blocks" for a chunk/tree include the following items of information: a. Inventory Result Prefix - This item of information consists of the following sub-items: - 1. Message_ID - 2. Data_Center_ID - 3. Status Code - 4. Status_Code_Comment (optional) - 5. Unmapped_Field (optional) According to the rule, every chunk/tree must contain an Inventory Result Prefix. - b. Package Group This includes metadata about collections of granules that can be ordered from an archive. The package group can be part of a dataset group or can be outside the dataset groups according to three options to be discussed in the paragraphs below. - c. Dataset Group This item includes metadata within the Dataset Group. Every chunk may contain 0 or more items of Dataset Group metadata. - d. Granule Group This item includes metadata within the Granule Group. According to the rule, every chunk will include 0 or more Granule Group information items. It is always part of a dataset group. A package is collection of granules or data which can be ordered from an archive. An ASTER GDS Server can integrate package information into the chunk/tree according to the following three options: - a. Option 1 Insert all Package Groups ahead of the first Dataset Group - b. Option 2 Insert relevant Package Groups ahead of each
Dataset Group - c. Option 3 Embed relevant Package Groups inside each Dataset Group Although a single INVENTORY_RESULT tree could be transmitted containing the entire response to an INVENTORY_REQUEST, the result would often be a very large tree. To make the socket messages more easily handled, the total result can be sent by servers as a number of smaller trees called chunks, each containing part of the total results. Clients logically merge the chunks back into the total message that form the total inventory results tree. When the V0 protocol was originally being developed, chunks were limited to 64KB in deference to VMS limitations. This size limit is now just a guideline. Many servers control chunking based on number of repeating groups (granules or packages) rather than on number of bytes. A chunk always begins with the Inventory Result Prefix, which is followed by: - a. some number of package groups and nothing else; or - b. some number of package groups followed by some number of data set groups (possibly containing, in turn, some number of granule groups) - c. some number of data set groups (usually containing granule groups) - d. some number of data set groups (containing package groups and possibly granule groups) The ASTER Gateway returns a separate acknowledge message to the ASTER SDPS Servers upon receiving each chunk. The Inventory Search Request and Inventory Search Results messages are implemented using ODL---their ODL Normalization Forms are defined in the immediately-following sections. [A discussion of the ODL standardized conventions is provided as reference in Section 4.1. Detailed definitions of the message keywords (e.g., MESSAGE_ID) are provided in Appendix B). In order to accommodate two-way mapping of terminology between ECS and the ASTER SDPS, the ASTER Gateway maintains a Sybase database containing the terminology mapping information. The ASTER Gateway database is built by a Gateway Administrator using ASTER Gateway search parameters, ECS schema and metadata. Specifically, upon receiving a request from the ECS, the ASTER Gateway performs a ECS-ASTER mapping table look-up within the ASTER Gateway database, converting the ECS request into ASTER SDPS terminology. Similarly, results returned from the ASTER SDPS to the ASTER Gateway are converted, via the ASTER-ECS mapping service, to ECS terminology prior to returning these results to the ECS. The ASTER Gateway-to-Sybase mapping interfaces are completely documented in CDRL #305-CD-023-002, Release B SDPS Data Management Subsystem Design Specification for the ECS Project. ## 6.2.1.2.1 ODL Normalization Form for Inventory Search Request The ODL Normalization Form for the ASTER Gateway-to-ASTER SDPS Servers Inventory Search Request (i.e., request originating from ECS user) message is provided below. ``` INVENTORY_SEARCH group ::== MESSAGE_ID [AUTHENTICATOR] [ECS_AUTHENTICATOR] GRANULE_LIMIT [BROWSE_ONLY] [CAMPAIGN] [DATASET ID] [SENSOR_NAME] (SOURCE_NAME) [START_DATE] [STOP_DATE] [START_DAY_OF_YEAR] [STOP_DAY_OF_YEAR] [DAY_NIGHT] [PROCESSING_LEVEL] [PARAMETER] Note: Only applicable from ECS to ASTER GDS [XAR ID] Note: Only applicable from ECS to ASTER GDS [CLOUD_COVERAGE] Global_GRANULES_ONLY Note: POINT_LOC group One of these five groups must be sent with the search POLYGON_LOC group . RANGE_LOC group (based on user selection). XHAIRS group MONITOR group VERSION group POINT_LOC group ::== LATITUDE LONGITUDE ``` ``` POLYGON_LOC group ::== LATITUDE LONGITUDE [POLE_INCLUDED] MAP PROJECTION_TYPE TANGENT_LATITUDE TANGENT_LONGITUDE RANGE_LOC group ::== NORTH_LATITUDE SOUTH_LATITUDE EAST_LONGITUDE WEST_LONGITUDE XHAIRS group ::== LATITUDE LONGITUDE LATITUDE_DISTANCE LONGITUDE_DISTANCE MONITOR group ::== TX_CLIENT [RX_SERVER] [TX_SERVER] [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` # 6.2.1.2.2 ODL Normalization Form for Inventory Search Results The ODL Normalization Form for the ASTER SDPS Servers-to-ASTER Gateway Inventory Search Results message is provided below. Note: Source, sensor and parameter information can be put either in DATASET or GRANULE groups. See annotations. ``` INVENTORY_RESULT group ::== MESSAGE_ID DATA_CENTER_ID STATUS_CODE [STATUS_CODE_COMMENT] MONITOR group VERSION group Note: repeated group (PACKAGE group) *::== OPTION 1: for use when all package information is sent for the whole inventory result. OPTION 2: for use when package information is sent in front of each relevant dataset group (DATASET group) * [NUMBER_OF_DATASETS] Note: present only in the last chunk for an inventory results set [UNMAPPED_FIELD] PACKAGE group ::== DATA_CENTER_ID DATASET_ID Note: The PACKAGE_ID in the PACKAGE group gives an arbitrary identifier by which PACKAGE_ID the package is known. Processing and media options for the package are provided in the group, GRANULE groups can list multiple packages in which they are available. For the ``` ``` common case where granules can be ordered in single-granule packages and all such packages have the same processing and media options, a single package group can be provided whose id is "*". Then each granule that can be ordered this way can be listed as being in PACKAGE ID "*" (along with possibly other named packages). [INFO_PROMPT] NUMBER_OF_GRANULES NUMBER_OF_OPTIONS (PROCESSING OPTIONS group)+ (MEDIA_TYPE group) + PROCESSING_OPTIONS group ::== OPTION_ID PACKAGE_SIZE. NUMBER_OF_MEDIA_TYPE (MEDIA_TYPE group) + MEDIA_TYPE group ::== TYPE_ID NUMBER_OF_MEDIA_FORMAT (MEDIA_FORMAT) + MEDIA_FORMAT group ::== FORMAT_ID APPROX_COST DATASET group ::== STATUS_CODE DATASET_ID (VALID_ACCOUNTS group) * (PACKAGE group) *_ Note: OPTION 3: for use when package information is sent within each relevant dataset group and before the granule group(s). (GRANULE group) * Note: repeated group [MD_ENTRY_ID] [SENSOR_NAME] (See Note 1) [SOURCE_NAME] (See Note 2) (See Note 3) [PARAMETER] [COMMENT] [RESTRICTION] [CAMPAIGN] [DAY_NIGHT] [PROCESSING_LEVEL] [NUMBER_OF_GRANULE_HITS] Note: omitted from all chunks except the one containing the last granule of the dataset) [BROWSE_PRODUCT_DESCRIPTION] Note: the headings should be done in UPPERCASE on lines by themselves in the sequence, i.e. PRIMARY PURPOSE, PRODUCT HISTORY, etc) VALID_ACCOUNTS group ::== ACCOUNT_NUMBER [BALANCE] [ERROR] GRANULE group ::== GRANULE_ID [XAR_ID] [SCENE_CLOUD_COVERAGE] [QUADRANT_CLOUD_COVERAGE] START_DATE STOP_DATE [SENSOR_NAME] (See Note 1) [SOURCE_NAME] (See Note 2) [PARAMETER] (See Note 3) ``` ``` [BROWSE_TYPE] [CAMPAIGN] [COMMENT] [DAY_NIGHT] [PROCESSING_LEVEL] [PACKAGE_ID] Note: If omitted or if package information is not provided within the inventory results, granule cannot be ordered. Note 1 - If all granules of the dataset have the same values for SENSOR_NAME, the value can be specified in the DATASET group and omitted from all of the GRANULE groups.) Note 2 - If all granules of the dataset have the same values for SOURCE_NAME, the value can be specified in the DATASET group and omitted from all of the GRANULE groups.) Note 3 - If all granules of the dataset have the same values for PARAMETER_NAME, the value can be specified in the DATASET group and omitted from all of the GRANULE groups.) GLOBAL_GRANULE POINT_LOC group POLYGON_LOC group | RANGE_LOC group POINT_LOC group ::== LATITUDE LONGITUDE POLYGON_LOC group ::== T.ATTTUDE LONGITUDE [POLE_INCLUDED] CENTROID_LAT CENTROID_LON RANGE_LOC group ::== NORTH_LATITUDE SOUTH_LATITUDE EAST_LONGITUDE WEST_LONGITUDE MONITOR group ::== TX_CLIENT RX_SERVER TX_SERVER [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` # 6.2.1.2.3 ODL Normalization Form for Acknowledge The ODL Normalization Form for the ASTER Gateway-to-ASTER SDPS Servers Acknowledge message is provided below. ``` ACKNOWLEDGE group ::== MESSAGE_ID MONITOR group VERSION group MONITOR group ::== TX_CLIENT ``` ``` {RX_SERVER} [TX_SERVER] [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION {IMS_STAFF} ``` ### 6.2.1.3 Browse Request/Results The purpose of the Browse service is to allow the user to request and receive "representative" images for viewing and for analysis prior to deciding on specific full-resolution products to order. The Integrated Browse service allows the user to view the browse product through the ECS ESST. An integrated browse request sent by the ECS ESST, via the ASTER Gateway, to the ASTER SDPS Servers. The ASTER SDPS Servers send back, via the ASTER Gateway, to the ECS ESST, the integrated browse results message, followed by the browse image which is then displayed to the user. All ASTER GDS browse images are provided in the National Super Computing Applications (NCSA) Hierarchical Data Format (HDF), Version 4.0. The Browse Request/Results messages are implemented using ODL---their ODL Normalization Forms are defined in the immediately-following sections. [A discussion of the ODL standardized conventions is provided as a reference in Section 4.1. Detailed definitions of the message keywords (e.g., MESSAGE_ID) are provided in Appendix B]. Integrated browse transmitted in separate files utilize the LAST_BROWSE flag in the INTEGRATED_BROWSE_RESULTS message. The LAST_BROWSE = 0 flag indicates to the client that the final file of the integrated browse has not been transmitted. The LAST_BROWSE flag is set equal to 1 when the last browse file is transmitted. However, this is optional and assumed when omitted. Refer to Figure 6-3 for details on transmission of multiple files in an integrated browse. ### 6.2.1.3.1 ODL Normalization Form for Browse Request The ODL Normalization Form for the ASTER Gateway-to-ASTER SDPS Servers Browse Request message is presented below. ``` BROWSE_REQUEST group ::== MESSAGE_ID [AUTHENTICATOR] [ECS_AUTHENTICATOR] DATA_CENTER_ID USER_AFFILIATION group BROWSE_TYPE BROWSE_GRANULES group CONTACT_ADDRESS group MONITOR group VERSION group ``` Figure 6-3. Multi-file Integrated Browse ``` BROWSE_GRANULES group::== DATASET_ID GRANULE_ID
CONTACT_ADDRESS group ::== [TITLE] LAST_NAME FIRST_NAME [MIDDLE_INITIAL] ORGANIZATION ADDRESS CITY [STATE] [ZIP] COUNTRY PHONE [FAX] EMAIL ``` ``` MONITOR group ::== TX_CLIENT [RX_SERVER] [TX_SERVER] [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] USER_AFFILIATION group ::== CATEGORY TYPE ``` ### 6.2.1.3.2 ODL Normalization Form for Integrated Browse Results The ODL Normalization Form for the ASTER SDPS Servers-to-ASTER Gateway Integrated Browse Results message is presented below: ``` INTEGRATED_BROWSE_RESULT::== MESSAGE_ID STATUS_CODE DATA_CENTER_ID IMAGE group [LAST_BROWSE] MONITOR group VERSION group IMAGE group ::== DATASET_ID GRANULE_ID IMAGE ID IMAGE_SIZE MONITOR group ::== TX_CLIENT RX_SERVER TX SERVER [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` The INTEGRATED_BROWSE_RESULT message is followed by the browse file itself transferred as a binary stream of IMAGE_SIZE bytes. If there are multiple browse files, each has a INTEGRATED_BROWSE _RESULT message before it. ### 6.2.1.4 Product Request/Result The Product Request allows the user to order ASTER GDS data products through the ASTER Gateway. After the user has successfully searched, located, and viewed the inventory data for the data sets and selected the granules desired, the user has the option to view certain "}representative"} images. Only at this point is the user permitted to submit a product request if he/she desires. The Product Request is sent from the ASTER Gateway to the ASTER SDPS Servers. The Product Result is sent from the ASTER SDPS Servers to the ASTER Gateway. The Product Result provides a confirmation of the archive's receipt of the Product Request and provides contact information for further inquiries. The actual product is distributed by the ASTER GDS IMS via physical media. It should be noted that the Product Request must include the ECS Request ID. # 6.2.1.4.1 ODL Normalization Form for Product Request The ODL Normalization Form for the ASTER Gateway-to-ASTER SDPS Servers Product Request message is presented below: ``` PRODUCT_REQUEST group ::== MESSAGE_ID INITIATOR_REQUEST_ID DATA_CENTER_ID [AUTHENTICATOR] [ECS_AUTHENTICATOR] [INITIAL_USER_KEY] USER_AFFILIATION group CONTACT_ADDRESS group [SHIPPING_ADDRESS] group [BILLING_ADDRESS] group (MEDIA Group) + MONITOR group VERSION group MEDIA group ::== MEDIA TYPE MEDIA_FORMAT (PRODUCT_DELIVERY group) + PRODUCT_DELIVERY group::== DATASET_ID PACKAGE_ID SENSOR_TYPE (PRODUCT_GENERATION group) * PRODUCT_GENERATION group::== PRODUCT_TYPE (PARAMETER group) * PARAMETER group::== PGR_CODE PGR_VALUE END_GROUP = PARAMETER USER_AFFILIATION group ::== CATEGORY TYPE CONTACT_ADDRESS group ::== (TITLE) LAST_NAME FIRST_NAME [MIDDLE_INITIAL] ORGANIZATION ADDRESS CITY ``` ``` [STATE] [ZIP] COUNTRY PHONE [FAX] EMAIL Note: for Product Request SHIPPING_ADDRESS group ::== Note: Optional group [TITLE] LAST_NAME FIRST_NAME [MIDDLE_INITIAL] [ORGANIZATION] [ADDRESS] CITY [STATE] [ZIP] COUNTRY PHONE [FAX] [EMAIL] BILLING_ADDRESS group ::== Note: Optional group [TITLE] LAST_NAME FIRST_NAME [MIDDLE_INITIAL] [ORGANIZATION] [ADDRESS] Note: Billing address will be set to a NASA billing address. CITY [STATE] [ZIP] COUNTRY PHONE [FAX] [EMAIL] MONITOR group ::== TX CLIENT [RX_SERVER] [TX_SERVER] [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` ### 6.2.1.4.2 ODL Normalization Form for Product Result The ODL Normalization Form for the ASTER SDPS Servers-to-ASTER Gateway Product Result message is presented below: ``` PRODUCT_RESULT group ::== MESSAGE_ID DATA_CENTER_ID STATUS_CODE [STATUS_CODE_COMMENT] (DAAC_CONTACT_ADDRESS group)+ Note: repeatable to support gateways/systems that are consortia of multiple archives such as ")ECS") which has multiple DAACs. Whenever one DATA_CENTER_ID is really multiple contacts for different data sets, this is a way to provide those additional contacts. The name DAAC here remains for historical reasons. ``` ``` MONITOR group VERSION group DAAC_CONTACT_ADDRESS group ::== CONTACT_NAME ORGANIZATION [ADDRESS] CITY [STATE] ZIP COUNTRY PHONE [FAX] [EMAIL] MONITOR group ::== TX_CLIENT RX_SERVER TX_SERVER [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION ``` ### 6.2.1.5 Quit [IMS_STAFF] During any given session, problems may necessitate premature termination of the process. In such cases, a bi-directional quit message is transmitted between the ASTER SDPS Servers and the ASTER Gateway, as appropriate. Specifically, the ASTER Gateway sends a quit message to the ASTER SDPS Servers if the user presses the "abort" button on the screen. On the other hand, the quit message is sent by the ASTER SDPS Servers to the ASTER Gateway if an error condition terminates the response. Quit messages are also used to synchronize the ASTER Gateway with the ASTER SDPS Server following the last chunk in an inventory result---the ASTER SDPS Server sends a QUIT with a STATUS_CODE of 1 to the ASTER Gateway. ### 6.2.1.5.1 ODL Normalization Form for Quit The ODL Normalization Form for the ASTER SDPS Servers-to-ASTER Gateway Quit Notification is presented below: ``` QUIT group ::== MESSAGE_ID [DATA_CENTER_ID] STATUS_CODE [STATUS_CODE_COMMENT] [AUTHENTICATOR] MONITOR group VERSION group MONITOR group ::== [TX_CLIENT] {RX_SERVER} [TX_CLIENT] ``` ``` VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` ### 6.2.1.6 Product Cancel Request/Result The operations concept for canceling a request is to first ask for status and obtain the top-level request ID and then each sub-request ID. Given this, the user can attempt to cancel the entire order or an individual request within an order. Therefore, the following message can be used to cancel an order or a sub-request within that order. ## 6.2.1.6.1 ODL Normalization Form for Product Cancel Request ``` PRODUCT_CANCEL_REQUEST group::== MESSAGE_ID INITIATOR_REQUEST_ID) * MONITOR_group VERSION_group MONITOR group ::== TX_CLIENT [RX_SERVER] [TX_SERVER] [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` If any SUB_REQUEST_Ids are provided, then only those sub-requests are attempted to be canceled. If no SUB-REQUEST_Ids are supplied then entire order is attempted to be canceled. The result message is as follows: ### 6.2.1.6.2 ODL Normalization Form for Product Cancel Result ``` PRODUCT_CANCEL_RESULT group::== MESSAGE_ID DATA_CENTER_ID STATUS_CODE [STATUS_CODE_COMMENT] INITIATOR_REQUEST_ID [ORDER_STATUS_CODE] [ORDER_STATUS_COMMENT] (SUB_REQUEST_INFO group) * MONITOR group VERSION group SUB_REQUEST_INFO group::== SUB_REQUEST_ID [REQUEST_STATUS_CODE] [REQUEST_STATUS_COMMENT] MONITOR group ::== TX_CLIENT ``` ``` {RX_SERVER} {TX_SERVER} {RX_CLIENT} VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` This group returns a success/fail and comment for each request attempted to be canceled. This message proposal was intended to only allow all or part of an INITIATOR_REQUEST_ID to be canceled. Note that the INITIATOR_REQUEST_ID is not repeated. Therefore, there is no need to group the INITIATOR_REQUEST_ID with the SUB_REQUEST_IDs. All the SUB_REQUEST_IDs should relate to the one INITIATOR_REQUEST_ID specified in the request. # 6.2.1.7 Product Status Request/Information # 6.2.1.7.1 ODL Normalization Form for Product Status Request ``` PRODUCT_STATUS_REQUEST group::== MESSAGE_ID (INITIATOR_REQUEST_ID) + MONITOR group VERSION group MONITOR group ::== TX_CLIENT RX_SERVER TX_SERVER [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` If no INITIATOR_REQUEST_ID is supplied, then all the requests for a given INITIATOR_REQUESTER_ID will be supplied in the result. The results that are returned are in the following message: # 6.2.1.7.2 ODL Normalization Form for Product Status Information ``` PRODUCT_STATUS_INFO group::== MESSAGE_ID DATA_CENTER_ID STATUS_CODE { STATUS_CODE_COMMENT} (ORDER_STATUS_INFO group)+ MONITOR group VERSION group ORDER_STATUS_INFO_ group INITIATOR_REQUEST_ID RECEIVE_DATE PLANNED_COMPLETION_DATE {COMPLETION_DATE} ``` ``` PRICE ORDER_STATUS_CODE [ORDER_STATUS_COMMENT] Note: Description of In Progress status. SHIPPING_ADDRESS_group (SUB_REQUEST_STATUS_INFO group)+ SUB_REQUEST_STATUS_INFO group::== Note: This is the request ID for a portion of the order. SUB-REQUEST_ID REQUEST_STATUS_CODE [REQUEST_STATUS_COMMENT] [COMPLETION_DATE] Note: ASTER GDS doesn't provide COMPLETION_DATE by SUB_REQUEST_ID in STATUS_INFO group. ECS does provide this so the user will know which sub-requests are done, but this can be optional. [PROCESSING_DATA_CENTER] Note: Returned from ECS only MEDIA_TYPE MEDIA_FORMAT DATASET_ID [NUMBER_OF_GRANULES] MONITOR group ::== TX_CLIENT RX_SERVER TX_SERVER [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` ECS requests are not necessarily partitioned by media type. Sometimes, the order may be partitioned by DAAC and then by media type. So the result message may have two subrequests with the same media type, for example, DAAC=GSFC, MEDIA=8mm and DAAC=LaRC, MEDIA=8mm. ### 6.2.1.8 Price Estimate Request/Result ### 6.2.1.8.1 ODL Normalization Form for Price Estimate Request The Price Estimate Request includes product generation parameters ``` PRICE_ESTIMATE_REQUEST group ::== MESSAGE_ID DATA_CENTER_ID (MEDIA group) + Note: repeated group MONITOR group VERSION group MEDIA group ::== MEDIA_TYPE MEDIA_FORMAT (PRODUCT_DELIVERY group)+ Note: repeated group PRODUCT_DELIVERY group ::== DATASET_ID PACKAGE ID SENSOR_TYPE (PRODUCT_GENERATION group) * Note: repeated and optional ``` ``` PRODUCT_GENERATION group ::== PRODUCT_TYPE (PARAMETER group) * PARAMETER_group::== PGR_CODE PGR_VALUE END_GROUP = PARAMETER MONITOR group ::== TX_CLIENT [RX_SERVER] [TX_SERVER] [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` ## 6.2.1.8.2 ODL Normalization Form for Price Estimate Result ``` PRICE_ESTIMATE_RESULT group ::== MESSAGE_ID DATA_CENTER_ID STATUS_CODE
[STATUS_CODE_COMMENT] ESTIMATED_PRICE [PRICE_COMMENT] PREDICTED_COMPLETION_DATE MONITOR group VERSION group MONITOR group ::== TX CLIENT RX_SERVER TX_SERVER [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ``` # 6.2.2 Data Flows Between ASTER SDPS and ASTER Gateway (or ECS Document Data Server) For Requests Originating From ASTER GDS Users The data flows between the ASTER SDPS and the ASTER Gateway (or ECS Document Data Server), for requests originating from ASTER SDPS users and results destined for ASTER SDPS users, are depicted in Figure 6-4. Specifically, the following data flows are depicted: - a. Between ASTER SDPS and the ASTER Gateway - 1. Directory Search Request Figure 6-4. Interfaces Between ASTER SDPS and ECS Servers for Catalog Interoperability - 2. Directory Search Results - 3. Inventory Search Request - 4. Inventory Search Results - 5. Acknowledge - 6. Browse Request - 7. Browse Results - 8. Product Request - 9. Product Results - 10. Quit - 11. Price Estimate Request (Extension) - 12. Price Estimate Result (Extension) - 13. Product Status Request (Extension) - 14. Product Status Results (Extension) - 15. Product Cancel Request (Extension) - 16. Product Cancel Results (Extension) All of the above messages will be implemented using Object Description Language (ODL). (For a description of ODL refer to the User's Guide for the Object Description Language Processing Software Library, Release 2.1 - Draft). All of these messages are handled by the IMS Kernel (IK) layer [Note: The ASTER SDPS and the ASTER Gateway contain several software modules, at the communications (lowest) layer, which serve as library routines and are, collectively, referred to as the IK layer. At this writing, the IK library routines have already been developed/implemented for the V0 System]. Each of these messages is described, in detail, in the sections which follow. ## 6.2.2.1 Directory Search Request/Results The purpose of the directory search is to aid the user in making an initial determination of the potential usefulness of various data sets pertinent to some application by searching through descriptions of metadata or data set catalogues which contain high-level information. The directory search provides information on the location of metadata or data set catalogues. The search criteria, specified by the user, are based on the following typical searchable attributes: source, sensor, geophysical parameter, dataset name, data center id, geographical coordinates (area), temporal intervals, etc.. An ASTER user, requesting ECS services, submits the directory search request via the ASTER SDPS. The ASTER SDPS sends the request to the ASTER Gateway. The Directory Search Request and Directory Search Results messages are implemented using ODL---their ODL Normalization Forms are defined in the immediately-following sections. ## 6.2.2.1.1 ODL Normalization Form for Directory Search Request ``` DIRECTORY_SEARCH group ::== MESSAGE ID [AUTHENTICATOR] [ECS_AUTHENTICATOR] [CAMPAIGN] [DATASET_ID] [PARAMETER] [SENSOR_NAME] [SOURCE_NAME] [START_DATE] [STOP_DATE] [RANGE_LOC group] MONITOR group VERSION group MONITOR group ::== TX CLIENT ``` ``` RX_SERVER } {TX_SERVER } {RX_CLIENT } RANGE_LOC group ::== NORTH_LATITUDE SOUTH_LATITUDE EAST_LONGITUDE WEST_LONGITUDE VERSION group ::== PROTOCOL_VERSION SENDER_VERSION {IMS_STAFF} ``` ## 6.2.2.1.2 ODL Normalization Form for Directory Search Result ``` DIRECTORY_RESULT group ::== MESSAGE_ID DATA_CENTER_ID STATUS CODE [STATUS_CODE_COMMENT] (DATASET group)+ NUMBER_OF_DATASETS MONITOR group VERSION group DATASET group ::== DATASET_ID [DATA_SET_CONTACT group] DESCRIPTION (SOURCE_NAME) * (SENSOR_NAME) * (DISCIPLINE) + (TOPIC)+ (TERM)+ (VARIABLE) + [START_DATE] [STOP_DATE] [SPATIAL_COVERAGE group] DATA_SET_CONTACT group ::== DATA_CENTER_LONGNAME [DATA_CENTER_URL] [FIRST_NAME] [MIDDLE_INITIAL] [LAST_NAME] PHONE [FAX] EMAIL ADDRESS SPATIAL_COVERAGE group ::== EASTBOUNDINGCOORDINATE WESTBOUNDINGCOORDINATE NORTHBOUNDINGCOORDINATE SOUTHBOUNDINGCOORDINATE [MINIMUM_ALTITUDE] (MAXIMUM_ALTITUDE) [MINIMUM_DEPTH] [MAXIMUM_DEPTH] ``` MONITOR group TX_CLIENT RX_SERVER TX_SERVER [RX_CLIENT] VERSION group ::== PROTOCOL_VERSION SENDER_VERSION [IMS_STAFF] ## 6.2.2.2 Inventory Search Request/Results and Acknowledgment The purpose of the inventory search is to aid a user in searching through the available inventory, locating and retrieving metadata about specific granules of the product(s) of interest, and determining whether any granules should be ordered; and also to allow a user to find datasets if the user chooses not to use a directory or guide search first. The search criteria, specified by the user, are based on the following searchable attributes: source, sensor, geophysical parameter, dataset name, data center id, geographical coordinates (area), temporal intervals, etc. An ASTER GDS user, requesting ECS services, submits the inventory search request via the ASTER SDPS Client. The ASTER SDPS Client sends the ASTER Gateway inventory search criteria based on characteristics of the data. The ASTER Gateway retrieves the requested granules' metadata, and sends these items back to the ASTER GDS IMS in chunks (maximum). The ASTER SDPS returns a separate acknowledge message to the ASTER Gateway upon receiving each chunk (the "chunking protocol" is described in section 6.2.1.3. The Inventory Search Request and Inventory Search Results messages are implemented using ODL---their ODL Normalization Forms are defined in the immediately-following sections. [A discussion of the ODL standardized conventions is provided as reference in Section 6.2. Detailed definitions of the message keywords (e.g., MESSAGE_ID) are provided in Appendix B]. In order to accommodate two-way mapping of terminology between ECS and the ASTER SDPS, the ASTER Gateway maintains a Sybase database containing the terminology mapping information. The ASTER Gateway database is built by a Gateway Administrator using ASTER Gateway search parameters, ECS schema and metadata. Specifically, upon receiving a request from the ASTER SDPS Client the ASTER Gateway performs a ASTER-ECS mapping table look-up within the ASTER Gateway database, converting the ASTER request into ECS's terminology in order to accommodate ECS Similarly, results returned from ECS to the ASTER Gateway are converted, via the ASTER-ECS mapping service, to ASTER terminology prior to returning these results to the ASTER SDPS Client The ASTER Gateway-to-Sybase mapping interfaces are completely documented in #305-CD-023-002, Release B SDPS Data Management Subsystem Design Specification for the ECS Project. ## 6.2.2.2.1 ODL Normalization Form for Inventory Search Request The ODL Normalization Form for the ASTER SDPS Client-to-ASTER Gateway Inventory Search Request message is equivalent to that defined in Section 6.2.1.2.1. with the following exceptions: (1) XAR_ID is not recognized (2) CLOUD_COVERAGE is not recognized. ### 6.2.2.2.2 ODL Normalization Form for Inventory Search Results The ODL Normalization Form for the ASTER Gateway-to-ASTER SDPS Client Inventory Search Results message is equivalent to that defined in Section 6.2.1.2.2. ## 6.2.2.2.3 ODL Normalization Form for Acknowledge The ODL Normalization Form for the ASTER SDPS Client-to-ASTER Gateway Acknowledge message is equivalent to that defined in Section 6.2.1.2.3. ### 6.2.2.3 Browse Request/Results The purpose of the Browse service is to allow the user to request and receive "representative" images for viewing and for analysis prior to deciding on specific full-resolution products to order. The Integrated Browse service allows the user to view the browse product through the ASTER SDPS Client. In response to an integrated browse request (BROWSE_TYPE = Y) sent by the ASTER SDPS Client, via the ASTER Gateway, to the ECS Science Data Server, the ECS Science Data Server sends back to the ASTER SDPS Client (via the ASTER Gateway) the integrated browse results message, followed by the browse image, which is then displayed to the user. All Browse image formats are provided in the Hierarchical Data Format (EOS-HDF) from the National Super Computing Applications (NCSA). The Browse Request/Results messages are implemented using ODL---their ODL Normalization Forms are defined in the immediately-following sections. Detailed definitions of the message keywords (e.g., MESSAGE_ID) are provided in Appendix B. The ASTER SDPS Client can display the image layers of the ECS browse data files written in HDF-EOS format. This will help the ASTER user to visualize ECS browse images during the selection of data and to verify that the data received is the data desired. It is important to point out that the ASTER SDPS Client is not capable of reading text, table or movie loop documents. The ASTER SDPS Client can also save a browse file in a user-selectable directory for viewing with other viewers such as EOSView. ## 6.2.2.3.1 ODL Normalization Form for Browse Request The ODL Normalization Form for the ASTER SDPS Client-to-ASTER Gateway Browse Request message is equivalent to that defined in Section 6.2.1.3.1. ### 6.2.2.3.2 ODL Normalization Form for Integrated Browse Results The ODL Normalization Form for the ASTER Gateway-to-ASTER SDPS Client Integrated Browse Results message is equivalent to that defined in Section 6.2.1.3.2. ## 6.2.2.4 Product Request/Result The Product Request allows the user to order ECS data products through the ASTER SDPS. After the user has successfully searched, located, and viewed the inventory data for the data sets and selected the granules desired; and (possibly) after the user has viewed certain "representative" browse images, the user may (but is not required to) submit a product request. The Product Request is sent from the ASTER SDPS Client to the ASTER Gateway. The Product Result is sent from the ASTER Gateway to the ASTER SDPS Client. The Product Result provides a confirmation of ECS receipt of the Product
Request and provides contact information for further inquiries. The actual product is distributed by ECS via physical media ### 6.2.2.4.1 ODL Normalization Form for Product Request The ODL Normalization Form for the ASTER SDPS-to-ASTER Gateway are equivalent to those in Section 6.2.1.4.1. ### 6.2.2.4.2 ODL Normalization Form for Product Result The ODL Normalization Form for the ASTER Gateway-to-ASTER SDPS Client are equivalent to those in Section 6.2.1.4.2. ### 6.2.2.5 Quit During any given session, problems may necessitate premature termination of the process. In such cases, a bi-directional quit message is transmitted between the ASTER Gateway and the ASTER SDPS Client, as appropriate. Specifically, the ASTER SDPS Client sends a quit message to the ASTER Gateway if the user presses the "abort" button on the screen. On the other hand, the quit message is sent by the ASTER Gateway to the ASTER SDPS Client if an error condition terminates the response. Quit messages are also used to synchronize the ASTER SDPS Client with the ECS Science Data Server following the last chunk in an inventory result---the ECS Science Data Server sends a QUIT with a STATUS_CODE of 1, via the ASTER Gateway, to the ASTER SDPS Client and the ASTER SDPS Client sends a similar QUIT back to the ECS Science Data Server, via the ASTER Gateway. ### 6.2.2.5.1 ODL Normalization Form for Quit The ODL Normalization Form for the ASTER SDPS-to-ASTER Gateway are equivalent to those in Section 6.2.1.5.1. ### 6.2.2.6 Product Cancel Request/Result The operations concept for canceling a request is to first ask for status and obtain the top-level request ID and then each sub-request ID. Given this, the user can attempt to cancel the entire order or an individual request within an order. Therefore, the following message can be used to cancel an order or a sub-request within that order. ### 6.2.2.6.1 ODL Normalization Form for Product Cancel Request The ODL Normalization Form for the ASTER SDPS-to-ASTER Gateway are equivalent to those in Section 6.2.1.6.1. ## 6.2.2.6.2 ODL Normalization Form for Product Cancel Result The ODL Normalization Form for the ASTER SDPS-to-ASTER Gateway are equivalent to those in Section 6.2.1.6.2. ### 6.2.2.7 Product Status Request/Information ### 6.2.2.7.1 ODL Normalization Form for Product Status Request The ODL Normalization Form for the ASTER SDPS-to-ASTER Gateway are equivalent to those in Section 6.2.1.7.1. ### 6.2.2.7.2 ODL Normalization Form for Product Status Information The ODL Normalization Form for the ASTER SDPS-to-ASTER Gateway are equivalent to those in Section 6.2.1.7.2. ## 6.2.2.8 Price Estimate Request/Result ### 6.2.2.8.1 ODL Normalization Form for Price Estimate Request The ODL Normalization Form for the ASTER SDPS-to-ASTER Gateway are equivalent to those in Section 6.2.1.8.1. ## 6.2.2.8.2 ODL Normalization Form for Price Estimate Results The ODL Normalization Form for the ASTER SDPS-to-ASTER Gateway are equivalent to those in Section 6.2.1.8.2. # 6.3 Data Acquisition Requests (DARs) ### 6.3.1 DAR Data Base Information (Refer to Appendix C: DAR Client Application Programming Interface) ### 6.3.2 Data Acquisition Request Input Parameters The DAR input parameters provided by the ASTER GDS specify the required conditions and instrument configuration(s) for filling a user's request for data acquisition(s) by the ASTER instrument. The DAR Input Parameters List is the mechanism by which the ASTER science team conveys its DAR submission preferences to the ASTER GDS API developers. Once the DAR input parameters contained in the API data structure associated with the submitDar call is in agreement with the DAR Input Parameters List, the DAR Input Parameters List will no longer be needed. This is because the content of the DAR Input Parameters List will be fully contained within the API and the API software will be coded solely in accordance with the final API. This information is provided to the ASTER GDS DAR Client application by the ECS Client via the submitDar call contained in the ASTER GDS API. The ASTER GDS DAR Client application validates the DAR input parameters against an internal data base of valid DAR input values. If the DAR parameters are valid, the ASTER DAR Client application submits the user's DAR to the ASTER GDS SDPS. Upon submittal to the ASTER GDS SDPS, the DAR Client application obtains a confirmation that the DAR was received by the ASTER GDS. The ASTER GDS DAR Client application returns this confirmation and the assigned DAR ID and DAR request version number to the ECS SDPS Client. #### 6.3.3 DAR Submit/Results A user request regarding observations by use of the ASTER instrument will be submitted via the ECS Client software. Subsequently, a registration request of the user request will be issued to the ASTER GDS. DAR parameters will be specified either by the user or the DAR Client software in accordance with the submitDAR call defined in Appendix C. DAR registration information will be sent via the DAR Gateway API and the DAR server in the GDS-IMS, stored in the XAR DB of the GDS-AOS, and used in a scheduling process of the ASTER Instrument operations. If the DAR submittal is properly accomplished, a XAR ID will be sent back to the user. If the DAR submittal is not properly accomplished, an error message will be sent back to the user. ### 6.3.4 XAR Modify Request/Results A modification request regarding a DAR of the ASTER instrument will be submitted to the ASTER-GDS via the ECS Client software. DAR parameters to be modified will be specified by the user in accordance with the data structure associated with the modifyDar call defined in Appendix C. Information on the DAR changes will be sent via the DAR Gateway API and the DAR server in the GDS-IMS, stored in the XAR DB of the GDS-AOS, and used in a scheduling process of the ASTER instrument operations. After the DAR modifications have been stored, the revised status information will be sent back to the user. ### 6.3.5 XAR Query The ECS Client software has the ability to send queries to ASTER-GDS via the DAR Gateway API. The ASTER-GDS software, in turn, transmits ECS queries to the ASTER-AOS database. The ASTER-AOS database searches the database in accordance with the ECS search criteria and creates a response that is returned to the ASTER-GDS software, whereupon it is returned to the ECS Client software via the DAR Gateway API. The DAR Gateway API supports four API calls for queries via the gateway: - a. XAR status - b. Sub-XAR status - c. XAR Contents Each of these query types are discussed in the following subparagraphs. ## 6.3.5.1 XAR Status Search Request/Results XAR Status Search Request regarding observations by use of the ASTER instrument will be submitted via the ECS Client software. Subsequently, a search request will be issued to the ASTER GDS. The XAR search request will be submitted to the DAR server in the GDS-IMS via the DAR Gateway API. The DAR server will retrieve the inventory information of the XAR DB in the GDS-AOS, and send the retrieval results to ECS. If the XAR Status Search is properly accomplished, the requested XAR status information will be sent back to ECS. If the XAR Status Search is not properly accomplished, an error message will be sent back to ECS. ### 6.3.5.2 Sub-XAR Status Search Request/Results The Status Search Request regarding observations by use of the ASTER Instrument will be submitted via the ECS Client software. Subsequently, a search request will be issued to the ASTER GDS. The Sub-XAR search request will be submitted to the DAR server in the GDS-IMS via the DAR Gateway API. The DAR server will retrieve the inventory information of the XAR DB in the GDS-AOS, and send the retrieval results to ECS. If the Sub-XAR Status Search is properly accomplished, the requested Sub-XAR status information will be sent back to ECS. If the Sub-XAR Status Search is not properly accomplished, an error message will be sent back to ECS. ### 6.3.5.3 XAR Contents Requests/Results The XAR Contents Request regarding observations by use of the ASTER Instrument will be submitted to the ASTER GDS via the ECS Client software. The XAR Content Request will be submitted to the DAR server in the GDS-IMS via the DAR Gateway API. The DAR server will retrieve the inventory information of the XAR DB in the GDS-AOS, fetch the requested XAR contents, and send the retrieval results to ECS. If the XAR Content Request is properly accomplished, the requested XAR contents will be sent back to the user. If the XAR Content Request is not properly accomplished, an error message will be sent back to the user. The XAR Contents Request allows a user to get information on a single XAR. # 6.4 Data Products Delivered Via Physical Media Data products will be delivered by ASTER GDS to ECS via physical media transfer. Details of the data exchange framework, including media specifications, bar coding standards, and Physical Media PDR's are described in Sections 4.6.4. #### 6.4.1 ASTER Level 1A and 1B Products The complete list of files that will be included in Level 1A and Level 1B delivery to ECS are identified in section 4.6.3.1 and 4.6.3.2, respectively. The ASTER Level 1A products that are delivered to the EDC DAAC will be in HDF-EOS format. Details of the ASTER Level 1A product format is specified in the ASTER Level 1 Data Products Specification (ASTER GDS Version), which is Appendix D to this document. #### 6.4.2 Data Shipping Notice The Data Shipping Notice serves as a routine notice from the ASTER GDS to the ECS DAAC Operations Supervisor at EDC that a shipment of level 1 tapes is being put into the mail. This Data Shipping Notice will identify granule-level information for the level 1 scenes being shipped. This will provide the DAAC with several days advance notice of the arrival of these level 1 granules. The ASTER GDS will send the Data Shipping Notices via e-mail to the ECS DAAC Operations Supervisor at EDC. The structure of the Data Shipping
Notice is shown in Section 4.6.3.8, Figure 4-8, and the format of the Data Shipping Notice is shown in section 4.6.3.8, Table 4-3. #### 6.4.3 ECS Standard Data Products ECS standard data products are in HDF-EOS format. The physical media for delivery is selected by the ASTER GDS from a listing of physical media options at the time the product order is placed (refer to Section 4.6 for more information on physical media options). # 6.5 Science Software Development and Delivery #### 6.5.1 ASTER GDS Science Software By agreement between ESDIS and ERSDAC, the ASTER Level 1a and Level 1b science software will be developed using (at a minimum) the mandatory portions of the ECS Science Data Production (SDP) toolkit. NASA will provide the ECS SDP Toolkit (and updates) to the ASTER GDS. Science Data Production Software Delivery Packages and Calibration Coefficient Update Packages for ASTER Level 1a and Level 1b science software are delivered by the ASTER GDS SDPS to the ECS SDPS at the EDC DAAC. ASTER science software delivery to the ECS SDPS will be via media delivery (8 mm. tape, 4 mm. tape, CD-ROM). The details of the science software interfaces for Science Data Production Software Delivery Packages and Calibration Coefficient updates are defined in the sections of the ICD Between ECS and Science Computing Facilities, as noted below: - a. Section 4.6 ECS Ingest Requirements (for Science Software and Calibration Coefficient Delivery) - b. Section 5.1 ECS Software Package External interfaces (for SDP Toolkit Delivery from ECS) - c. Section 5.3.1 Interactive Session Dialog - d. Section 5.4.2 Data Production Software Delivery Package via Media to GSFC - e. Section 5.7 Results of Testing interfaces (Interface Method for Test Products should be Password-protected ftp or Media) - f. Section 5.13.4 Coefficients and SCF-Generated Ancillary Data Update Package Media Ingest. #### 6.5.2 ECS Science Software for ASTER Standard Products By agreement between ESDIS and ERSDAC, the ASTER SDPS may submit a request to the ECS SDPS to obtain Data Production Software Delivery Packages for U.S. ASTER science software for higher level standard products. The requested Data Production Software Delivery Packages will be delivered to the ASTER GDS SDPS via physical media. # 6.6 Valids Exchange Valids are exchanged between ECS and ASTER GDS via e-mail. Information about valids formats and definitions is TBD In the paragraphs below, groups within the [] are optional. Values that are repeated within a category are separated by commas. The notes within the <> are just for descriptive purposes. If multiple values are not shown, then a single value is assumed. A SINGLE_VALUE is of the form: "}some string with double quote marks preceded by \"} A MULTIPLE_VALUE_LIST is of the form: (SINGLE_VALUE[, SINGLE_VALUE, ...]]) #### 6.6.1 Format for ASTER GDS Valids for ECS The following describes the valids file format that ASTER GDS creates and sends to ECS. This file contains the information ECS uses for both Data Dictionary valids and directory information. ECS will parse this one file and internally use its components in the Advertising Service and the Data Dictionary as needed. ``` GROUP = VALIDS DATA_CENTER_ID = "<data_center_id>" GROUP = DATASET {CAMPAIGN = "MULTIPLE_VALUE_LIST}" ``` 6-30 ``` DATASET_ID = " SINGLE_VALUE" SOURCE = " MULTIPLE_VALUE_LIST" SENSOR = " MULTIPLE_VALUE_LIST" PARAMETER = " MULTIPLE_VALUE" PROCESSING_LEVEL = "SINGLE_VALUE" Note: must be one of [0, 1A, 1B, 2, 3, 4] [DAY_NIGHT_FLAG = * MULTIPLE_VALUE_LIST* GROUP = DATASET_COVERAGE SPATIAL = " SINGLE_VALUE" TEMPORAL = "<MM/DD/YYYY - MM/DD/YYYY | present" END_GROUP = DATASET_COVERAGE [GROUP = GRANULE_COVERAGE SPATIAL = " SINGLE_VALUE" TEMPORAL = "SINGLE_VALUE" END_GROUP = GRANULE_COVERAGE) GROUP = DEPENDENCY /* variable */ END_GROUP = DEPENDENCY GROUP = DIRECTORY_PARAMETERS DESCRIPTION = "<long description, quotes must be preceded by \>" DATASET_SHORT_NAME = "<short name for DATASET_ID>" DISCIPLINE= "MULTIPLE_VALUE_LIST" TOPIC= "MULTIPLE_VALUE_LIST" TERM= "MULTIPLE_VALUE_LIST' VARIABLE = "MULTIPLE_VALUE_LIST" [GROUP = SPATIAL_COVERAGE EASTBOUNDINGCOORDINATE="<float between -180 - +180>" WESTBOUNDINGCOORDINATE="<float between -180 - +180>" NORTHBOUNDINGCOORDINATE="<float between -90 - +90>" SOUTHBOUNDINGCOORDINATE="<float between -90 - +90>" [MINIMUM_ALTITUDE="<float>"] [MAXIMUM_ALTITUDE="<float>"] [MINIMUM_DEPTH="<float>"] [MAXIMUM_DEPTH="<float>"] END_GROUP = SPATIAL_COVERAGE] GROUP = DATA_SET_CONTACT DATA_CENTER_LONGNAME="<1ong name of DATA_CENTER>" [DATA_CENTER_URL="<URL to home page of data center>"] [FIRST_NAME="<first name of contact person>"] [MIDDLE_NAME="<middle name of contact person>"] [LAST_NAME="<last name of contact person>"] PHONE="<phone number of site>" [FAX = "<FAX number at site>"] EMAIL="<e-mail of contact person>" ADDRESS="<free text including address>" END_GROUP = DATA_SET_CONTACT END_GROUP = DIRECTORY_PARAMETERS GROUP = SERVICES GROUP = BROWSE FTP="no" INTEGRATED= "yes" END_GROUP = BROWSE GROUP = PGR PRODUCT_TYPE= "SINGLE_VALUE" SENSOR TYPE= "MULTIPLE_VALUE_LIST" RESOUCE_PRODUCT = "SINGLE or MULTIPLE_VALUE" PGR_SPEC_NUMBER GROUP = PGR_SPEC PGR_CODE = "SINGLE_VALUE" PGR_TYPE = 0 or 1 PGR_COMMENT = "SINGLE_VALUE" PGR_LIST = "MULTIPLE_VALUE_LIST" PGR_MAXVALUE = "SINGLE_VALUE" PGR_MINVALUE = "SINGLE_VALUE" ``` ``` END_GROUP = PGR_SPEC END_GROUP = PGR GROUP = PRODUCT_REQUEST MEDIA_TYPE = "MULTIPLE_VALUE_LIST" MEDIA_FORMAT = "MULTIPLE_VALUE_LIST" END_GROUP = "PRODUCT_REQUEST" END_GROUP="SERVICES" END_GROUP = DATASET /* REPEAT DATASET group for each dataset available through the Gateway. */ END_GROUP = VALIDS ``` #### 6.6.2 Format for ECS Valids for ASTER GDS The following describes the valids file format that ECS creates and sends to the ASTER GDS. This file is identical to the valids file sent from ASTER GDS to ECS, with the exception that the DIRECTORY group is omitted. ``` GROUP = VALIDS DATA_CENTER_ID = "<data_center_id>" GROUP = DATASET [CAMPAIGN = " MULTIPLE_VALUE_LIST] " DATASET_ID = " SINGLE_VALUE" SOURCE = " MULTIPLE_VALUE_LIST" SENSOR = " MULTIPLE_VALUE_LIST" PARAMETER = " MULTIPLE_VALUE" PROCESSING_LEVEL = "SINGLE_VALUE" Note: must be one of [0, 1A, 1B, 2, 3, 4] [DAY_NIGHT_FLAG = " MULTIPLE_VALUE_LIST" GROUP = DATASET_COVERAGE SPATIAL = " SINGLE_VALUE" TEMPORAL = "<MM/DD/YYYY - MM/DD/YYYY | present" END_GROUP = DATASET_COVERAGE [GROUP = GRANULE_COVERAGE SPATIAL = " SINGLE_VALUE" TEMPORAL = "SINGLE_VALUE" END_GROUP = GRANULE_COVERAGE] GROUP = DEPENDENCY /* variable */ END_GROUP = DEPENDENCY GROUP = SERVICES GROUP = BROWSE FTP="no" INTEGRATED="yes" END_GROUP = BROWSE GROUP = PGR PRODUCT_TYPE= "SINGLE_VALUE" SENSOR_TYPE= "MULTIPLE_VALUE LIST" RESOUCE_PRODUCT = "SINGLE or MULTIPLE_VALUE" PGR_SPEC_NUMBER GROUP = PGR_SPEC PGR_CODE = "SINGLE_VALUE" PGR_TYPE = 0 or 1 PGR_COMMENT = "SINGLE_VALUE" PGR_LIST = "MULTIPLE_VALUE_LIST" PGR_MAXVALUE = "SINGLE_VALUE" PGR_MINVALUE = "SINGLE_VALUE" END_GROUP = PGR_SPEC END_GROUP = PGR END_GROUP = DATASET /* REPEAT DATASET group for each dataset available through the Gateway. */ END_GROUP = VALIDS ``` # 6.7 Guide and Guide Searches The interface for Guide is unidirectional, from ASTER GDS to ECS. GDS Guide for ASTER will be delivered by the ASTER GDS to the ECS on TBD media. ECS will ingest the GDS Guide and make the documents available as part of the ECS Guide holdings. GDS users will have access to ECS Guide and ECS Guide search capabilities via the internet and http. ECS users will also utilize the ECS Guide for access to the ASTER GDS documents ingested into the ECS. This page intentionally left blank. # 7. Interfaces Between the ECS CSMS and the ASTER GDS AOS #### 7.1 General This section describes the interfaces between ECS and the ASTER GDS that will be implemented through use of the ECS bulletin board services. Access to ECS Bulletin Board services are available through EBnet connections. ## 7.2 Long Term Plans The ASTER GDS access to the EOS Long Term Science Plan (LTSP), Long Term Instrument Plan (LTIP), and the Long Term Spacecraft Operations Plan will be accomplished through EBnet access via ECS bulletin board services. Specified ASTER AOT and IOT addressees will be included in the access group(s) which have access to these messages. This page intentionally left blank. # 8. Interfaces Between the ECS CSMS and the ASTER GDS CSMS GSMS #### 8.1 General This section describes the system status exchange interfaces between ECS and the ASTER GDS. Communications between ECS CSMS and the ASTER GDS CSMS Ground System Management System (GSMS) will be by e-mail. Exchanged information is system running status information and maintenance scheduling information. This information will be formatted for automated import to and export from the Remedy Action Request System (ARS) on the ECS side and a custom problem tracking system on the Aster GDS side. The interface (ECS CSMS or ASTER GDS CSMS GSMS) whose system running status changes, will send its information to the other interface. # 8.2 ECS System Management Data ECS and ASTER GDS are responsible for exchanging system management information and event notifications. The management information provided in this interface includes notification of events which should be forwarded for informational purposes, and events which directly impact operations between ECS and ASTER GDS. The information will be in a shared schema which allows incorporation into the respective trouble ticketing system. ASTER GDS shall notify ECS of all scheduled maintenance activities affecting ECS sites nominally 5 days in advance. ASTER GDS shall notify all affected ECS sites directly and will also provide notification to the SMC. The notice will be sent to the SMC where it will be forwarded to affected ECS sites. The notification will provide an estimated time of restoration. # 8.3 Detailed Description of the System Management Data The format for management information notification is via SMTP electronic
mail (email) and will be formatted in a machine-parsable form. The template for ECS-ASTER GDS event notification is illustrated in Figure 8-1. This template is also used for notification of maintenance activities. Table 8-1 shows ECS-ASTER GDS Event Notification Message Fields. Table 8-2 shows the mapping between site names and site IDs used in the schema. The Affected Service Identification Table is shown in Table 8-3, and Figure 8-2 contains the GDS_Header, which will be required in transmitting the ECS-ASTER GDS Event Notification Message via e-mail. The following figure and table show the template for ECS-ASTER GDS Event Notifications, the schema for the template and the associated fields. #### 8.4 DAR User Profile The DAR User Profile message will be sent from ECS to ASTER GDS. The DAR User Profile message format is TBR. The standard E-mail message header to be used in the transmission of the DAR User Profile message is provided as Figure 8-2. # Transfer Schema E-mail Template Schema: Trouble-Ticket-Xfer Status !536870912!: EventDescription !536870913!: StatusLog !536870919!: !536870918!: Activity SourceCreateDate !536870916!: SourceCloseDate !536870920!: SourceTicketId !536870914!: AffectedSites !536870917!: SourceSiteId !536870921!: ContactInformation !536870915!: DestinationSiteId !536870922!: AffectedService !TBS!: Note: A blank line must follow the Schema field. Figure 8-1. ECS-ASTER GDS Event Notification Message Format 8-2 | Field | Field ID | Data Type | Size | Values | Definition | |--------------------|-----------|-----------|-----------|--|---| | Status | 536870912 | Selection | 4 | Open, Closed,
Tracking,
Information,
Rejected | Current status of trouble ticket in its source system. Note, Aster only issues the Open and the Closed status values when sending to ECS. ECS supports all 5 status values. Reason for a status of Rejected can be found in the StatusLog field. | | EventDescription | 536870913 | Character | 255 | | This field contains a short description of the problem. For messages sent by Aster GDS, the field is formatted with "Segment, Subsystem, Service, trouble/maintenance, Explanation". See Table 8-3 for a list of valid service lds. For messages sent by ECS, the field is completely free form. | | SourceTicketId | 536870914 | Character | 15 | | Trouble ticket id from ticket's source system. | | ContactInformation | 536870915 | Character | 255 | | Name, phone, fax, etc. of responsible person(s) at source site. | | SourceCreateDate | 536870916 | Date/Time | 4 | | Timestamp when ticket was created in source system. GMT | | AffectedSites | 536870917 | Character | 255 | See table below
for current list of
supported sites. | Space separated list of site ids for sites affected by event. Note, the sending site may but is not obligated to fill in this field since the receiving site agrees to forward the ticket to affected sites. | | Activity | 536870918 | Character | 25 | | If an outage is determined to be from a planned outage the ticket will be marked as such, otherwise it will be marked unplanned. This field is *NOT* used for scheduling future planned outages. | | StatusLog | 536870919 | Diary | Unlimited | | For messages sent by ECS, this field shall contain all diagnostic notes and any other information deemed important to the destination site. All related external trouble tickets received against this problem will be included here and marked "\nEOSXID: SourceTicketNumber\n". The reason for rejecting a messages is included here as well. | | SourceCloseDate | 536870920 | Date/Time | 4 | | Timestamp of when source system closed their ticket. GMT. | | SourceSiteId | 536870921 | Character | 30 | See table below for current list of supported sites. | Site id of site that sent you this ticket. See Table 8-2 for list of site Ids. | Table 8-1. ECS-ASTER GDS Event Notification Message Schema Fields (2 of 2) | Field | Field ID | Data Type | Size | Values | Definition | |-------------------|-----------|-----------|------|--|---| | DestinationSiteId | 536870922 | Character | 30 | See table below for current list of supported sites. | Site id of site that you intend to receive this ticket. See Table 8-2 for list of site Ids. | | AffectedService | TBS | Character | 30 | | For messages from Aster GDS, this field is blank since the information is embedded in the EventDescription field For messages from ECS this field contains a service identifier. See Table 8-3 for a list of valid service Ids. | Table 8-2. Domain Site to Domain ID Mapping | Domain Sites | Domain IDs | | |--------------|------------|--| | ASTER GDS | ASG | | | SMC | SMC | | | EOC | EOC | | | GSFC | GSF | | | LaRC | LAR | | | EDC | EDC | | | NSIDC | NSC | | | JPL | JPL | | | ASF | ASF | | | ORNL | ORN | | | ECS EDF | EDF | | | EDOS | EDO | | | EBnet | EBN | | | NSI | NSI | | Table 8-3. Affected Service Identification Table | Service Description | Affected Service ID | |---|---------------------| | Aster Data Network | ADN | | Aster Operation Segment | AOS | | Data Acquisition and Data Storage (Aster) | DADS | | Ground System Management System (Aster) | GSMS | | Information Management System (Aster) | IMS | | Product Generation System (Aster) | PGS | | SISS (Aster) | SISS | | ECS Aster Gateway | ASGATE | | ECS Ingest Server | INGEST | | ECS Science Data Server | SDSRV | | ECS Document Data Server | DDSRV | | ECS Data Distribution Server | DDIST | | ECS Order Tracking Server | ORDTRK | | ECS DAR Tool | DAR | | ECS LIM/DIM | IMSRV | | ECS Advertising Server | ADVSRV | Note, the list of services offered at ASG is incomplete. E-mail Contents Header BEGIN_OBJECT=GDS_Header; Message_Number=123456789; ReEntrantCheck=Yes; Sender_ID=GDS; Receiver_ID=ECS Mode=Operation; Data_Number=0; EndData_Flag=E; Send_Date=1998-08-01; Send_Time=06:56:12.056; END_OBJECT=GDS_Header; /* End of GDS Header */ BEGIN_OBJECT=DATA /* Data Descriptin Area */ END_OBJECT=DATA /* Message Sequential Number 0 ~ 999999999(dec) */ /* Re-entarant Check Flag "Yes", "No" */ /* Sender ID ECS, GDS */ /* Receiver ID ECS, GDS */ /* Operation Mode "Operation", "Test" */ /* Data Sequential Number 0~999999999(dec) */ /* End-data Flag "E" or "" */ /* User ID */ /* Send Date yyyy-mm-dd */ /* Send Time hh:mm:ss.msc */ | No. | Key | Contents | Value | |-----|----------------|--|---| | 1 | Message_Number | Message serial number in seder segment. A series of Interface sequence is set same number. | "000000000"
~"99999999"(dec)
Values are used cyclically. | | 2 | ReEntrantCheck | If this flag is "Yes", same " Message_Number" message can be skipped in Receiver. | "Yes": Check
"No": No Check | | 3 | Sender_ID | Identifier of Sender's
Segment/Subsystem. | ECS, GDS | | 4 | Receiver_ID | Identifier of Receiver's
Segment/Subsystem | Same as Sender_ID | | 5 | Mode | Identifier of Operation Mode / Test Mode. | "Operation" or "Test" | | 6 | Data_Number | Serial Number in the case there are plural data. | "000000000"
~"99999999" (dec) | | 7 | EndData_Flag | Identifier of End data in the case there are plural data. | ASCII Blank (20hex): all data except end one "E": Last data (including in the case of there is only 1 data) | | 8 | Send_Date | Date to send message. Display with yyyy-mm-dd. Use GMT. yyyy: Year mm: Month dd: Day | yyyy:0000~9999
mm:01~12
dd:01~28,29,30,31 | | 9 | Send_Time | Time to send message. Display with hh:mm:ss.msc. Use GMT. hh: Hour (24hour system) mm: Minute ss: Second msc: Milli Second | hh:00~23
mm:00~59
ss:00~59
msc:000~999
Use MSCif necessary. Set 000
if not necessary. | Figure 8-2. Standard E-mail GDS Header # 9. Interface Between ECS GSFC DAAC and GDS ADN/DADS for #### 9.1 Overview ECS will provide Expedited Data Sets (EDS) to the ASTER GDS for use in evaluating the operation of the instrument. Expedited Data Sets (EDS) are defined as raw satellite telemetry processed into time-ordered instrument packets with packets separated into files for a given downlink contact. The data flow of the EDS is shown in Figure 9-1. The data format and contents of the EDS are illustrated in the ICD Between EDOS and the EOS Ground System (EGS). Figure 9-1. EDS Data Transmission Diagram ### 9.2 EDS Subscription GSFC DAAC operations will place a subscription to the subscription server, on behalf of the ASTER GDS, once in the beginning of the mission and/or once at a time defined in an Operations Agreement between the ASTER GDS and ECS. Each time the GSFC DAAC receives an EDS from EDOS, the subscription will trigger and automatically cause an e-mail message to be sent to the ASTER GDS DADS, as described below. ### 9.3 EDS Notification/Request The GSFC DAAC will automatically notify ASTER GDS DADS each time an ASTER EDS is received from EDOS. This notification will be in the form of an EDS Data Notification (EDN) sent via e-mail, over EBnet. The format of the EDN is shown in Table 9-1 and Table 9-2. ASTER GDS DADS will have the option of ignoring the data notification or requesting EDS based upon the metadata (time range of
coverage) contained in the EDN. This request from ASTER GDS DADS will be a EDS Data Request (EDR) sent via e-mail, over Ebnet. The format of the EDR is shown in Table 9-3. Figure 9-2 contains the standard E-mail header to be used when transmitting the EDN and EDR. Table 9-1. EDS Data Notification (EDN) Format | Parameter | Contents | PVL Date
Type | Max Length
(Bytes) | Value | |-------------------------|--|------------------|-----------------------|-----------------------| | OBJECT | | | | 'EDS_INFORMATION' | | TOTAL_FILE_COUNT | The total number of EDS file. EDS which ASTER GDS side required and EDS which NASA side required is separated to another file. | Integer | 4 | 1-9999 | | OBJECT . | Start of each EDS information. EDS is made by one UNIX file. | ۵ | - | EDS_SPEC | | BEGINNING_
DATE/TIME | Date and Time (in GMT) of the first CCSDS packet of the EDS. | date/time | 20 | yyyy-mm-dd-Thh:mm:ssZ | | ENDING_DATE/TIME | Date and Time (in GMT) of the first CCSDS packet of the EDS. | date/time | 20 | yyyy-mm-dd-Thh:mm:ssZ | | APID_COUNT | Number of APIDs in this EDS file. | ASCII | 2 | ≤99 | | OBJECT | Start of APID specification (repeat for each APID) | ASCII | 9 | 'APID_SPEC' | | APID_IN_EDS | Decimal value of the EDOS APID. | ASCII | 4 | See Next Table | | END_OBJECT | End of APID Specification. | ASCII | 9 | 'APID_SPEC' | | FILE_ID | File name. | ASCII | 256 | | | FILE_SIZE | File size in Bytes. | integer | 10 | 4.296*10^9 | | END_OBJECT | End of parameters for each file group. | | - | 'EDS_SPEC' | | END_OBJECT | End of EDS information. | | | 'EDS_INFORMATION' | Table 9-2. EDS Data Notification (EDN) Format | ASTER Data Group | Operation Mode | APIDS in a EDS (in Hex) | |------------------|----------------|-------------------------| | VNIR(1) | Observation | x101, x103 | | VNIR(2) | Observation | x111, x113 | | SWIR | Observation | x121, x123 | | TIR | Observation | x131, x133, x132 | | VNIR(1) | Calibration | x105, x107 | | VNIR(2) | Calibration | x115, x117 | | SWIR | Calibration | x125, x127 | | TIR | Calibration | x135, x137, x136 | | VNIR(1) | Test | x109, x10B | | VNIR(2) | Test | x119, x11B | | SWIR | Test | x129, x12B | | TIR | Test | x139, x13B, x13A | Table 9-3. EDS Data Request (EDR) Format | | , ab, c c c, bbc bata, loques | . (,, | | | |------------------|--|------------------|-----------------------|---------------| | Parameter | Contents | PVL Date
Type | Max Length
(Bytes) | Value | | OBJECT | | | | 'EDS_DESINFO' | | TOTAL_FILE_COUNT | The total number of EDS file. | Integer | 4 | 1-9999 | | OBJECT | Start of each file information of GSFC DAAC to ftp-put to ASTER GDS. | - | * | 'FILE_SPEC' | | FILE_ID | File name. | ASCII | 256 | | | FILE_SIZE | File size in Bytes. | integer | 10 | 4.296*10^9 | | END_OBJECT | End of parameters for each file group. | • | - | 'FILE_SPEC' | | END_OBJECT | End of EDS information. | - | - | 'EDS_DESINFO' | E-mail Contents Header BEGIN_OBJECT=GDS_Header; Message_Number=123456789; ReEntrantCheck=Yes; Sender_ID=GDS; Receiver_ID=ECS Mode=Operation; Data_Number=0; EndData_Flag=E; Send_Date=1998-08-01; Send_Time=06:56:12.056; END_OBJECT=GDS_Header; /* End of GDS Header */ BEGIN_OBJECT=DATA /* Data Descriptin Area */ END_OBJECT=DATA /* Message Sequential Number 0 ~ 999999999(dec) */ /* Re-entarant Check Flag "Yes", "No" */ /* Sender ID ECS, GDS */ /* Receiver ID ECS, GDS */ /* Operation Mode "Operation", "Test" */ /* Data Sequential Number 0~99999999(dec) */ /* End-data Flag "E" or "" */ /* User ID */ /* Send Date yyyy-mm-dd */ /* Send Time hh:mm:ss.msc */ | No. | Key | Contents | Value | |-----|----------------|--|---| | 1 | Message_Number | Message serial number in seder segment. A series of Interface sequence is set same number. | "000000000"
~"999999999"(dec)
Values are used cyclically. | | 2 | ReEntrantCheck | If this flag is "Yes", same " Message_Number" message can be skipped in Receiver. | "Yes": Check
"No": No Check | | 3 | Sender_ID | Identifier of Sender's
Segment/Subsystem. | ECS, GDS | | 4 | Receiver_ID | Identifier of Receiver's
Segment/Subsystem | Same as Sender_ID | | 5 | Mode | Identifier of Operation Mode / Test Mode. | "Operation" or "Test" | | 6 | Data_Number | Serial Number in the case there are plural data. | "000000000"
~"99999999" (dec) | | 7 | EndData_Flag | Identifier of End data in the case there are plural data. | ASCII Blank (20hex): all data except end one "E": Last data (including in the case of there is only 1 data) | | 8 | Send_Date | Date to send message. Display with yyyy-mm-dd. Use GMT . yyyy: Year mm: Month dd: Day | yyyy:0000~9999
mm:01~12
dd:01~28,29,30,31 | | 9 | Send_Time | Time to send message. Display with hh:mm:ss.msc. Use <u>GMT</u> . hh: Hour (24hour system) mm: Minute ss: Second msc: Milli Second | hh:00~23
mm:00~59
ss:00~59
msc:000~999
Use MSCif necessary. Set 000
if not necessary. | Figure 9-2. Standard E-mail Header # 9.4 EDS Transmission/Authentication The EDS file will be transferred from the GSFC DAAC host computer to the ASTER GDS CSMS ADN FTP server by using standard FTP put protocol. Immediately upon completion of the FTP of the data file, ECS will transmit a 'signal file' to the same directory on the receiving host computer. The 'signal file' will be used by the receiving host to identify the completion of the file transfer of the EDS data file. The GSFC DAAC host computer will send a standard UNIX password to ADN ftp for authentication. Registered mail will be used to exchange passwords for ftp authentication. # 9.5 Non-Receipt of EDS In the event that ASTER GDS does not receive requested data, it will communicate with GSFC DAAC via phone or e-mail for problem resolution, as documented in Operations Agreement Between the GSFC DAAC and ASTER GDS SDPS. This page intentionally left blank. # Appendix A. Work-Off Plan | ICD
Issue | ICD
Para. | ICD
Prior-
ity | ICD Issue Type -
Description | Work-off Plan (Task(s) | Proj.
Resolu-
tion Date | Risk Assessment** | |--------------|----------------------|----------------------|---|--|-------------------------------|--| | 1 | 4.4 | А | Use of DCE and Kerberos for security authentication in the EOC is TBR | Baseline DCE and Kerberos; awaiting approval confirmation of export license for Keberos. No impact to ASTER GDS development; this is an ECS- internal issue. | 1/15/97 | Closed | | 2 | 4.6.3 Fig
4-6 | В | Relationship correspondence of the Product Delivery Record File to the Product File Group is TBR | Meet with ERSDAC on 12/17-
19 to resolve issue.
Issue was resolved at this
meeting. | 12/96 | Closed | | 3 | 4.6
Tble 4-2 | В | Format of PDR - Archive_File_Offset, contents, i.e., #of EOFs to be skipped, File_Type (Value Column) Science, Browse, XAR, Granule ID (max length bytes), XAR ID, XAR Type are all TBR | ECS Ingest is working this issue with ERSDAC and anticipates resolving by the due date. | 1/15/97 | Closed | | 4 | 4.6
Tble 4-3 | В | Format of Data Shipping Notice - Volume_ID and Create_Date_Time (Value Column) is TBR | Value column has been deleted. | 1/15/97 | Closed | | 5 | 4.6.3.9
Tble 4-6 | В | File Naming Convention of
L1 Products, i.e., ASTER
L1A and ASTER L1B in
value column in Product
Level is TBR | Same as above | 12/96 | Closed | | 6 | 4.6.3.10
Tble 4-5 | В | Definition of Bar Code
Format for Media Delivery to
EDC - media type (value
column) Reprocessed and
resent D3 Cassette tape is
different from "E". This value
is TBD | | 2/15/97 | Schedule for completion of interface design may be affected. | | ICD
Issue | ICD
Para. | ICD
Prior-
ity | ICD Issue Type -
Description | Work-off Plan (Task(s) | Proj.
Resolu-
tion Date | Risk Assessment** | |--------------|---|----------------------|---|---|-------------------------------|-------------------| | 7 | 4.3.3 | A | ERSDAC recommends adding language which states "File transfers between ECS SDPS and ASTER GDS SDPS for Science S/W Dev. & Delivery are accomplished through standard ftp". There is no ftp connectivity here. | All reference to Science S/W Development and delivery has been removed from this paragraph as agreed by ECS and ERSDAC. | 12/96 | Closed | | 8 | ERSDA
C
Propose
d
Section
10 | A | Proposed Data Flow Definition Table, items 21- 30 indicate via ftp connection. The ECS IST- EOC I/F is via the IST toolkit furnished by ECS. The protocol to transmit data between ECS IST and EOC is TBD. | This has been determined by ECS; is not an interface with ERSDAC. | 12/96 | Closed | | 9 | ERSDA
C
Propose
d
Section
10 | С | Proposed Data Flow Definition Table, items 21- 24. There is no requirement
for FOS to provide Command Event History Reports to the AOS - but this is a generic capability that is available through the ECS IST. ECS would prefer "not" to show this data flow in the ICD (TBR) | Inclusion of data flow diagram in ICD is TBD. Issue has been assigned to FOS for resolution. | 1/15/97 | No impact | | 10 | ERSDA
C
Propose
d
Section
10 | Α | In the proposed Data Flow Definition Table (EOSDIS User access to ASTER GDS) items 1-8, indicate that these data flows should be via internet. This is not correct; these data flows are via Ebnet. | ECS confirmed that these data flows are Ebnet. | 12/96 | Ciosed | | 11 | 5.8, 5.9,
5.13,
5.14 | A | ERSDAC is considering deleting ICOS2 that has capability of command execution verification from AOS. If ICOS2 is deleted, these data flows between AOS and ECS IST will be deleted. ECS has no issue with ERSDAC deleting these interfaces. | ERSDAC is deleting these data flows from ICOS2. These changes have been incorporatedd into this ICD. | 12/96 | Closed | | ICD
Issue | ICD
Para. | ICD
Prior-
ity | ICD Issue Type -
Description | Work-off Plan (Task(s) | Proj.
Resolu-
tion Date | Risk Assessment** | |--------------|----------------|----------------------|---|--|-------------------------------|---| | 17 | App. B | B | ODL Message Keywords
(Objects) needs to be
finalized between ECS and
ERSDAC. | This issue will be closed pending ERSDAC review of updated ODL Message Keywords contained in Appendix B of 12/23 version of ICD. | 2/15/97 | Interface design will be incomplete. Status on 1/24/97: Awaiting ERSDAC comments from review of updated ODL Message Keywords. | | 18 | Аррх. Е | В | ASTER L1A/L1B Data
Format Specification Stored
in Physical Media
TBS by ERSDAC | ECS Jo Pulkkinen determined that ASTER L1A/L1B Data Specification Stored in Physical Media is adequately covered in Section 4 of this ICD and therefore, a separate Appendix is not required. | 12/96 | Closed. | | 19 | 4.6 Fig
4-7 | В | Sample Product Delivery
Record (PDR) PVL -Data
Type=ASTL1A (TBR) | ECS (Karl Cox) has confirmed that the data type for ASTER is L1A and L1B. | 1/15/97 | Closed | | 20 | 6.6 | В | Valids Exchange -
information about valid
formats and definition is
TBD. | Valids Exchange information has been incorporated into the ICD. | 1/15/97 | Closed | | 21 | 6.7 | В | Guide and Guide Searches - GDS Guide for ASTER will be delivered by TBD media. | Preferred media is D3 tape using standard ECS delivery records. The information in the tape delivery record will identify the tape items (which are documentation) Please note that the implementation of the document data server in ECS has been moved to Release B.1. | 1/15/97 | Closed | | 22 | 6.8 | В | DAR User Profile Mail
Format is TBS | MSS reviewed format of DAR User Profile provided by ERSDAC and prefers not to build/code a formatted E-mail message. MSS preference is to attach a comma/tab delimited file to an E-mail message with the fields identified in the ASTER response. (TBR) | 2/15/97 | Schedule for completion of interface design may be affected. | | ICD
Issue | ICD
Para. | ICD
Prior-
ity | ICD Issue Type -
Description | Work-off Plan (Task(s) | Proj.
Resolu-
tion Date | Risk Assessment** | |--------------|--------------------------|----------------------|---|---|-------------------------------|---| | 23 | 8-3
Fig 8-1 | В | #Transfer Schema E-mail
Template - AffectedService
is TBD | MSS proposed ECS values for this field and submitted for architect office/subsystem review; response from review is pending. ERSDAC indicated that their services list was incomplete but ECS has not received any revisions from them. (TBR) | 2/15/97 | Interface design will be incomplete and could affect schedule for completion of design. | | 24 | 8-3 Tble
8-2 | B | AffectedService - TBS | MSS proposed ECS values for this field and submitted for architect office/subsystem review; response from review is pending. ERSDAC indicated that their services list was incomplete but ECS has not received any revisions from them. (TBR) | 2/15/97 | Interface design will be incomplete and could affect schedule for completion of design. | | 25 | 9 TBLs
9-1 and
9-2 | В | Contents of Tables 9-1 and 9-2 are TBS | ECS/Shankar Rachakonda will review and revise these tables to include Construction Record and all other files which will be transferred with the EDS. | 2/15/97 | Interface design will be incomplete and may affect schedule for completion. | | ICD | ICD
Para. | ICD
Prior- | ICD Issue Type -
Description | Work-off Plan (Task(s) | Proj.
Resolu- | Risk Assessment** | |-------|--|---------------|---|---|--|---| | issue | | ity | , | | tion Date | | | 26 | App.
B
Keywrd | 8 | ACKNOWLEDGE - Synopsis, Parent Group, ODL Type TBD AUTHENTICATION_ID - Synopsis, ODL Type, Max Length TBD | This issue is being agressively worked by both ECS and ERSDAC and is progressing toward completion. | 2/15/97 | Interface design will be
incomplete. | | | | | CONTENT_NAME - Synopsis, Child Group(s), ODL Type TBD | | | | | | sistematical designation of the second secon | | FORMAT_ID Synopsis,
Child Group(s), ODL Type
TBD | | | | | | | | INITIATOR_REQUEST_ID - Max Length TBS | | | | | | | | NUMBER_OF_MEDIA_FO RMAT - Synopsis, Child Group(s), ODL Type TBD | | | | | | | | ORDER_STATUS_INFO -
Synopsis, ODL Type TBD | | | | | | | | PRICE_COMMENT - Synopsis, ODL Type, Max Length TBD | | | | | | | | PROCESSING_DATA_CEN
TER - Synopsis, Child
Group(s), ODL Type TBD | | | | | | | | QUADRANT_CLOUD_COV
ERAGE - ODL Type TBS | | | | | | | | RECEIVE_DATE - Synopsis, Child_Group(s). ODL Type TBD | | ************************************** | | | | *************************************** | | REQUESTER_ID - Synopsis, Child_Group(s), ODL Type TBD | | es de las constantes des la constante de co | | | | | | SENSOR_TYPE - Synopsis,
Child_Group(s), ODL Type
TBD | | | | | | | | VERSION -Synopsis, ODL
Type, Max Length TBD | | | | | | | | XAR_ID - Max Length TBS XHAIRS - Synopsis, ODL Type. Max Length TBD | | | | | | | | SERVICE STATE TABLE | | | | | | | | Process Product Status Request, TX Product Status Info, Process Product Connel Request, TX | | Action to the contract of | | | | | | Cancel Request, TX Product Cancel Response, Process Price Estimate | A 6 | | 200 CD 002 005 | | | | | Request, TX Price Estimate Result | A-6 | | 209-CD-002-005 | | ICD
Issue | ICD
Para. | ICD
Prior-
ity | ICD Issue Type -
Description | Work-off Plan (Task(s) | Proj.
Resolu-
tion Date | Risk Assessment** | |--------------|-------------------------|----------------------|--|---|-------------------------------|--| | 27 | Table
4-2 | В | Granule_ID, XAR_INFO_COUNT, XAR_ID and XAR_TYPE - Maximum Length (Bytes) and Value are TBR | Awaiting response from ERSDAC. | 2/15/97 | Schedule for completion of interface design could be affected. | | 28 | Section
4-9 and
9 | С | ECS implementation of expedited data requirement is contingent upon approval of ESD#27. | ECS administrative issue that is aggressively being worked. | 2/1/97 | Schedule for completion of interface design could be affected. | #### * Issue Priority Definition: - A = Design impact; e.g., unresolved interface. - B = Minimal design impact; e.g., content or format of a specific field unresolved. - C = No design impact administrative detail; e.g., reference document # not available. - ** Risk Assessment Definition: - 1 Risk if issue is not resolved by CDR - 2 Risk if issue is not resolved by projected resolution date This page intentionally left blank. # Appendix B. ODL Message Keywords (Objects) ### **B.1 ODL Message Keywords** This section identifies and defines each of the ODL Message keywords corresponding to the ODL descriptions provided in Section 6 of this document. Each keyword is defined, as applicable, in terms of synopsis (short English-Language description of the keyword), parent groups, children, ODL type [e.g., integer, real, date, string, aggregate (i.e., the keyword object contains children), symbol, sequence string (i.e., 0 or more strings entered on separate lines), and character string.], maximum (value) length, and possible values. If no possible values are specified, then any possible value for the stated ODL type is legal. For example, an ACCOUNT_NUMBER may be any string up to 80 characters. The ODL keywords described in this section are derived from the "Messages and Development Data Dictionary - V0 and Release A Message Passing Protocol Specification," 9/95. Section B.2 provides the ODL message keywords which are ASTER GDS extensions to the V0 ODL specification, and section B.3 provides the Server State Table. Keyword: ACCOUNT_NUMBER Synopsis: Account identifier provided by a DAAC. Parent Group(s): VALID_ACCOUNTS ODL Type: String Maximum Length: 80 Note: ASTER GDS does not return this keyword, as this Parent Group is (VALID_ACCOUTS)*. Keyword: ADDRESS Synopsis: Address information can be entered using three lines. Parent Group(s): [BILLING_ADDRESS], CONTACT_ADDRESS, [SHIPPING_ADDRESS], [DAAC_CONTACT_ADDRESS], DATA_SET_CONTACT ODL Type: Sequence String Field length: 32 x 3 (96) Keyword: ACKNOWLEDGE Synopsis: Message group used to acknowledge chunks of an Inventory Results transfer Parent Group(s): Not used Child group(s): MESSAGE_ID, MONITOR, VERSION ODL Type: Aggregate Keyword: APPROX_COST Synopsis: Estimated cost for the selected data package. Parent Group(s): MEDIA_FORMAT ODL Type: Real Maximum Length: 16 Note: Though APPROX_COST is a mandatory keyword, ASTER GDS can not provide the value of this keyword. Keyword: AUTHENTICATOR Synopsis: Encrypted value from authentication key, last name, first name. Passed with every request (if authentication key is not blank). Parent Group(s): [BROWSE_REQUEST], [PRODUCT_REQUEST], [INVENTORY_SEARCH], [DIRECTORY_SEARCH], QUIT ODL Type: String Maximum Length: 16 Note: This keyword is not used between ECS and ASTER GDS. Keyword: BALANCE Synopsis: Dollar amount remaining for a particular account. Parent Group(s): [VALID_ACCOUNTS] ODL Type: Real Maximum Length: 16 Note: ASTER GDS does not return this keyword. Keyword: BILLING_ADDRESS Synopsis: Billing address for data order. Parent Group(s): [PRODUCT_REQUEST] Child Group(s): CITY, [EMAIL], [FAX], FIRST_NAME, [MIDDLE_INITIAL], LAST NAME, PHONE, [STATE], COUNTRY, [ZIP], [TITLE], [ORGANIZATION], [ADDRESS] ODL Type: Aggregate Keyword: BROWSE_GRANULES Synopsis: granule(s) request Parent Group(s): BROWSE_REQUEST Child Group(s): DATASET_ID, GRANULE_ID ODL Type: Aggregate Keyword: BROWSE_ONLY Synopsis: Only granules with associated browse images should be returned from the INVENTORY_SEARCH. Parent Group(s): [INVENTORY_SEARCH] ODL Type: Symbol Maximum Length: 1 Possible value(s): Y Keyword: BROWSE_PRODUCT_DESCRIPTION Synopsis: Data set specific browse product (image) description Parent Group(s): [DATASET] ODL Type: Sequence String Maximum Length: 80 Keyword: BROWSE_REQUEST Synopsis: Provide information for obtaining browse image Child Group(s): BROWSE_TYPE, MESSAGE_ID, MONITOR group, CONTACT_ADDRESS group, BROWSE_GRANULES group, [AUTHENTICATOR], DATA_CENTER_ID, VERSION group, [ECS_AUTHENTICATOR], USER_AFFILIATION ODL Type: Aggregate Keyword: BROWSE_TYPE Synopsis: Type of delivery for browse image Parent Group(s): BROWSE_REQUEST, [GRANULE] ODL Type: Symbol Maximum Length: 8 Possible value(s): Y | N | FTP_Only Notes: If Y is in a request, then = 'send integrated browse'. If Y is in a granule, then = 'available in integrated browse'. If N is in a granule, then = 'not available'. If FTP is in granule, then = 'available only as FTP'. Note: For ASTER GDS only Integrated Browse is utilized. Keyword: CAMPAIGN Synopsis: Name of campaign/project that gathered data. Parent Group(s): [DIRECTORY_SEARCH], [DATASET], [GRANULE], [INVENTORY SEARCH] ODL Type: Sequence_String Maximum Length: 80 Keyword: CATEGORY Synopsis: Affiliation category for a user Parent Group(s): USER_AFFILIATION ODL Type: String Maximum Length: 7 Possible value(s): USA, NOT USA Keyword: CENTROID_LAT Synopsis: Used for part of center point coordinate in the case where a granule is described as a polygon. Parent Group(s): POLYGON_LOC group for INVENTORY_RESULTS ODL Type: Real Maximum Length: 8 Keyword: CENTROID_LON Synopsis: Used for part of center point coordinate in the case where a granule is described as a polygon. Parent Group(s): POLYGON_LOC group for INVENTORY_RESULTS ODL Type: Real Maximum Length: 8 Keyword: CITY Synopsis: Name of the city of the associated address Parent Group(s): BILLING_ADDRESS, CONTACT_ADDRESS, SHIPPING_ADDRESS, DAAC_CONTACT_ADDRESS ODL Type: String Maximum Length: 30 Possible value(s): any string Keyword: COMMENT Synopsis: Data Center provided information about corresponding granule or data set. Parent Group(s): [DATASET], [GRANULE], PACKAGE ODL Type: Sequence String Maximum Length: 60 Possible value(s): any string Keyword: CONTACT_ADDRESS Synopsis: The address portion of a user's contact information. Parent Group(s): BROWSE_REQUEST, PRODUCT_REQUEST Child Group(s): CITY, EMAIL, [FAX], FIRST_NAME, [MIDDLE_INITIAL], LAST_NAME, PHONE, [STATE], COUNTRY, [ZIP], [TITLE], ORGANIZATION, ADDRESS ODL Type: Aggregate Keyword: CONTACT_NAME Synopsis: Name of contact for current order fulfillment. Parent Group(s): DAAC_CONTACT_ADDRESS ODL Type: String Keyword: COUNTRY Synopsis: The name for the country of the associated address Parent Group(s): SHIPPING_ADDRESS, BILLING_ADDRESS, CONTACT_ADDRESS, DAAC_CONTACT_ADDRESS ODL Type: String Maximum Length: 30 Keyword: DAAC_CONTACT_ADDRESS Synopsis: The Data Center's User Services Office contact information. Parent Group(s): PRODUCT_RESULT group Child Group(s): CONTACT_NAME, ORGANIZATION, [ADDRESS], CITY, [STATE], [ZIP], COUNTRY, PHONE, [FAX], [EMAIL] ODL Type: Aggregate Keyword: DATA_CENTER_ID Synopsis: Acronym form of the name of data center transmitting message. Parent Group(s): DIRECTORY_RESULT, INTEGRATED_BROWSE_RESULT, INVENTORY_RESULT, PRODUCT_RESULT, PRODUCT_REQUEST, PACKAGE, BROWSE_REQUEST, [QUIT], PRODUCT_STATUS_INFO, PRICE_ESTIMATE_REQUEST, PRICE_ESTIMATE_RESULT. PRODUCT CANCEL RESULT ODL Type: Sequence String Maximum Length: 10 Keyword: DATASET Synopsis: Group to describe a data set and associated granules from the result set Parent Group(s): DIRECTORY_RESULT, INVENTORY_RESULT Child group(s) of DIRECTORY_RESULT: [DATA_SET_CONTACT group], DATASET_ID, DATASET_SUMMARY, DISCIPLINE, [SENSOR_NAME],
[SOURCE_NAME], [SPATIAL_COVERAGE group], [START_DATE], [STOP_DATE], TERM, TOPIC, VARIABLE Child group(s) of INVENTORY_RESULT: [BROWSE_PRODUCT_DESCRIPTION], [CAMPAIGN], [COMMENT], DATASET_ID, [DAY_NIGHT], [GRANULE], [MD_ENTRY_ID], [NUMBER_OF_GRANULE_HITS], [PACKAGE], [PARAMETER], [PROCESSING_LEVEL], [SENSOR_NAME], [SOURCE_NAME], [RESTRICTION], STATUS_CODE, [VALID_ACCOUNTS] ODL Type: Aggregate Keyword: DATASET_ID Synopsis: Name(s) of valid IMS data set(s) Parent Group(s): DATASET, [DIRECTORY_SEARCH], DIRECTORY RESULT, IMAGE. [INVENTORY_SEARCH], PACKAGE, PRODUCT_DELIVERY, SUB_REQUEST_STATUS_INFO, BROWSE GRANULES ODL Type: Sequence String Maximum Length: 80 Keyword: DAY_NIGHT Synopsis: Data gathered during "day" or "night" Parent Group(s): [GRANULE], [DATASET], [INVENTORY SEARCH] ODL Type: Symbol Maximum Length: 1 Possible value(s): D | N Note: DATASET unique and is under review. Keyword: DIRECTORY_RESULT Synopsis: Provides result of directory level query against data center. Child Group(s): DATA_CENTER_ID, DATASET Group, MESSAGE_ID, MONITOR group, NUMBER_OF_DATASETS, STATUS_CODE, [STATUS_CODE_COMMENT], **VERSION** ODL Type: Aggregate Note: DIRECTORY_RESULT is returned by only ECS. Keyword: DIRECTORY_SEARCH Synopsis: Provides data for directory level search of data center Child Group(s): [DATASET_ID], MESSAGE_ID, MONITOR group, [RANGE_LOC group], [CAMPAIGN], [PARAMETER], [SENSOR_NAME], [SOURCE_NAME], [START_DATE], [STOP_DATE], [AUTHENTICATOR], [ECS_AUTHENTICATOR], VERSION ODL Type: Aggregate Note: DIRECTORY_SEARCH is requested by only ASTER GDS users. Keyword: EAST_LONGITUDE Synopsis: Eastern most longitude for an area on the globe Parent Group(s): RANGE_LOC ODL Type: Real Maximum Length: 9 Possible value(s): -180.0000 to +180.0000 Keyword: ECS_AUTHENTICATOR Synopsis: Optional in every outgoing client message. Used for interfacing with ECS registration. Parent Group(s): [INVENTORY SEARCH], [BROWSE_REQUEST], [PRODUCT_REQUEST], [DIRECTORY_SEARCH], [QUIT] ODL Type: String Maximum Length: 100 Keyword: EMAIL Synopsis: Internet e-mail address for associated person Parent Group(s): [BILLING_ADDRESS], CONTACT_ADDRESS, [SHIPPING_ADDRESS], [DAAC_CONTACT_ADDRESS], DATA_SET_CONTACT ODL Type: String Maximum Length: 128 Possible value(s): any string Keyword: ERROR Synopsis: Data Center provided freetext information about VALID_ACCOUNTS details. Provides multiple line of information. Parent Group(s): [VALID_ACCOUNTS] ODL Type: Sequence string Maximum Length: 80 Note: ASTER GDS does not return this keyword. Keyword: FAX Synopsis: FAX phone number for associated person Parent Group(s): [BILLING_ADDRESS], [CONTACT_ADDRESS], [SHIPPING_ADDRESS], [DAAC_CONTACT_ADDRESS], [DATA_SET_CONTACT] ODL Type: String Maximum Length: 22 Possible value(s): any string Keyword: FIRST_NAME Synopsis: The user's first name Parent Group(s): BILLING_ADDRESS, CONTACT_ADDRESS, SHIPPING_ADDRESS, [DATA_SET_CONTACT] ODL Type: String Maximum Length: 20 Possible value(s): any string Keyword: FORMAT_ID Synopsis: Description of one possible media distribution format for delivering selected data. One of the FORMAT_IDs listed in the group MEDIA_FORMAT of PACKAGE group in a INVENTORY_RESULT must be returned for ordering that package. Parent Group(s): MEDIA_FORMAT ODL Type: String Keyword: GLOBAL_GRANULE Synopsis: Granule has global coverage Parent Group(s): GRANULE ODL Type: Symbol Maximum Length: 1 Possible value(s): Y Note: This keyword maybe used to replace a LOC group if the granule indeed has global coverage. ASTER GDS has no granule which has global coverage so far. Keyword: GLOBAL GRANULES ONLY Synopsis: Only global granules should be returned in the result. Parent Group(s): INVENTORY_SEARCH ODL Type: Symbol Maximum Length: 1 Possible value(s): Y Note: ASTER GDS has no granule which has global coverage so far. Keyword: GRANULE Synopsis: Collection of metadata about data granule Parent Group(s): DATASET Child Group(s): [BROWSE_TYPE], GRANULE_ID, [PARAMETER], POINT_LOC group, POLYGON_LOC group, [PROCESSING_LEVEL], RANGE_LOC group, [SENSOR_NAME], [SOURCE_NAME], START_DATE, STOP_DATE, [CAMPAIGN], [COMMENT], [DAY_NIGHT], GLOBAL_GRANULE, [PACKAGE_ID], [SCENE_CLOUD_COVERAGE], [QUADRANT_CLOUD_COVERAGE], [XAR_ID] ODL Type: Aggregate N/A #### Notes: - 1. One and only one of the groups or keywords defining spatial coverage of the granule is required. - 2. PARAMETER and CAMPAIGN are required if provided in the INVENTORY_SEARCH, except for the ASTER GDS. - 3. If SENSOR_NAME and SOURCE_NAME are not given the DATASET level, SENSOR_NAME and SOURCE_NAME must be given at the GRANULE level. Keyword: GRANULE_ID Synopsis: Granule's ID from Inventory Parent Group(s): BROWSE_REQUEST, GRANULE, IMAGE ODL Type: String Maximum Length: 50 Possible value(s): any string Keyword: GRANULE_LIMIT Synopsis: Number of granules requested per data set Parent Group(s): INVENTORY SEARCH ODL Type: Integer Maximum Length: 10 Possible value(s): 1 to 2147483647 Keyword: IMAGE Synopsis: Provides attributes of an image Parent Group(s): INTEGRATED_BROWSE_RESULT Child Group(s): DATASET_ID, GRANULE_ID, IMAGE_ID, IMAGE_SIZE ODL Type: Aggregate Keyword: IMAGE_ID Synopsis: Image identifier from Data Center Parent Group(s): IMAGE group ODL Type: String Maximum Length: 30 Possible value(s): any string Keyword: IMAGE_SIZE Synopsis: Image size in bytes Parent Group(s): IMAGE group ODL Type: String Maximum Length: 10 Possible value(s): 1 to 2147483647 Keyword: IMS_STAFF Synopsis: Sent with every client message. Usually blank unless the client was run by a member of the IMS Staff. It comes from the IMS staff environment variable (shell set). Parent Group(s): [VERSION] ODL Type: String Note: ASTER GDS does not return this keyword. Keyword: INFO_PROMPT Synopsis: Data Center-supplied string to describe use of 'additional info' on the Order screen. Parent Group(s): [PACKAGE] ODL Type: String Maximum Length: 80 Note: ASTER GDS does not return this keyword. Keyword: INITIAL_USER_KEY Synopsis: Set by shell for Data Center hosted clients. Original password used at the Data Center when first registering a user. Parent Group(s): [PRODUCT_REQUEST] ODL Type: String Maximum Length: 12 Note: This keyword is not used between ECS and ASTER GDS. Keyword: INTEGRATED_BROWSE_RESULT Synopsis: Provides result of BROWSE_REQUEST Child Group(s): DATA_CENTER_ID, IMAGE group, MESSAGE_ID, MONITOR Group, STATUS_CODE, [LAST_BROWSE], VERSION ODL Type: Aggregate Keyword: INVENTORY_RESULT Synopsis: Provides result set from inventory query Child Group(s): DATA_CENTER_ID, MESSAGE_ID, MONITOR group, [NUMBER_OF_DATASETS], STATUS_CODE, [DATASET group], [UNMAPPED_FIELD], [STATUS_CODE_COMMENT], [PACKAGE], VERSION ODL Type: Aggregate Keyword: INVENTORY_SEARCH Synopsis: Provides data to perform inventory query Child Group(s): GRANULE_LIMIT, MESSAGE_ID, MONITOR group, [BROWSE_ONLY], [CAMPAIGN,] [DATASET_ID], [DAY_NIGHT], GLOBAL_GRANULES_ONLY, [PARAMETER], POINT_LOC group, POLYGON_LOC group, [PROCESSING_LEVEL], RANGE_LOC group, [SENSOR_NAME], [SOURCE_NAME], [START_DATE], [START_DAY_OF_YEAR], [STOP_DATE], [STOP_DAY_OF_YEAR], [AUTHENTICATOR], [ECS_AUTHENTICATOR], [XAR_ID], [CLOUD_COVERAGE], XHAIRS, VERSION ODL Type: Aggregate Note: For Requests Originating from ASTER GDS users, one and only one type of spatial coverage is required in the INVENTORY_SEARCH group and at least one of the DATASET_ID, SENSOR_NAME, or PARAMETER keywords. For Requests Originating from ECS users, one type of spatial coverage is required in the INVENTORY_SEARCH group and at least one of the DATASET_ID or SENSOR_NAME keywords. Because ASTER GDS might not define values of "PARAMETER", ASTER GDS Product Search by "PARAMETER" was eliminated. Keyword: LAST_NAME Synopsis: The user's last name. Parent Group(s): BILLING_ADDRESS, CONTACT_ADDRESS, SHIPPING_ADDRESS, [DATA_SET_CONTACT] ODL Type: String Maximum Length: 20 Keyword: LAST_BROWSE Synopsis: Used in integrated browse to indicate the last browse in a series has not been received. Parent Group(s):[INTEGRATED_BROWSE_RESULT] ODL Type: Symbol Maximum Length: 1 Possible values: 0, 1 Note: If LAST_BROWSE = 0, then the final file of the integrated browse has not been transmitted. If LAST_BROWSE = 1, when the last browse file is transmitted. Keyword: LATITUDE Synopsis: Latitude for a point on the globe. Parent Group(s): POINT_LOC, POLYGON_LOC, XHAIRS ODL Type: Sequence Real Maximum Length: 8 Possible value(s): -90.0000 to +90.0000 Keyword: LATITUDE_DISTANCE Synopsis: Degrees separating center point and latitude corner point. Parent Group(s): XHAIRS ODL Type: String Maximum Length: 9 Keyword: LONGITUDE Synopsis: Longitude for a point on the globe. Parent Group(s): POINT_LOC, POLYGON_LOC, XHAIRS ODL Type: Sequence Real Maximum Length: 9 Possible value(s): -180.0000 to +180.0000 Keyword: LONGITUDE_DISTANCE Synopsis: Degrees separating center point and longitude corner point. Parent Group(s): XHAIRS ODL Type: String Maximum Length: 10 Keyword: MAP_PROJECTION_TYPE Synopsis: Map projection type selected by the user. Parent Group(s): POLYGON_LOC group for INVENTORY_SEARCH ODL Type: String Maximum Length: 80 Possible value(s): PLATE_CARREE, NORTH_POLAR_STEREOGRAPHIC, SOUTH_POLAR_STEREOGRAPHIC Keyword: MD_ENTRY_ID Synopsis: Global Change Master Directory Entry ID Parent Group(s): [DATASET] ODL Type: String Maximum Length: 31 Possible value(s): any string Keyword: MEDIA_FORMAT Synopsis: Media distribution format for delivering selected data. Parent Group(s): MEDIA, MEDIA_TYPE, SUB_REQUEST_STATUS_INFO Child Group(s): APPROX_COST, FORMAT_ID ODL Type: String, Aggregate (see note) Maximum Length: 30, group (see note) Note: MEDIA_FORMAT is used in two contexts: - 1. Under MEDIA group and SUB_REQUEST_STATUS_INFO group, the values are user selected identifying the distribution format for delivery of the data. - 2. Under MEDIA_TYPE group this are subgroup names. Keyword: MEDIA_TYPE Synopsis: The distribution media for delivering selected data. Parent Group(s):
MEDIA, PACKAGE, PROCESSING OPTIONS, SUB_REQUEST_STATUS_INFO Child Group(s): TYPE_ID, NUMBER_OF_MEDIA_FORMAT, MEDIA_FORMAT ODL Type: String, Aggregate (see note) Maximum Length: 20, group (see note) Note: MEDIA_TYPE is used in two contexts: 1. Under MEDIA group and SUB_REQUEST_STATUS_INFO group, the values are user selected identifying the distribution format for delivery of the data. Under PROCESSING_OPTIONS and PACKAGE group this are subgroup names. Note: MEDIA_TYPE is a child of PACKAGE in the INVENTORY_RESULT message. Keyword: MESSAGE_ID Synopsis: Identifier used to track messages. Parent Group(s): BROWSE_REQUEST, DIRECTORY_RESULT, DIRECTORY_SEARCH, INTEGRATED BROWSE_RESULT, INVENTORY_RESULT, INVENTORY_SEARCH, PRODUCT_REQUEST, PRODUCT_RESULT, ACKNOWLEDGE, QUIT, PRODUCT_STATUS_REQUEST, PRODUCT_STATUS_INFO, PRICE_ESTIMATE_REQUEST, PRICE ESTIMATE RESULT, PRODUCT_CANCEL_REQUEST, PRODUCT_CANCEL_RESULT ODL Type: String Maximum Length: 30 Possible value(s): any string Note: Generated by Gaea, the IMS client software. Keyword: MIDDLE_INITIAL Synopsis: One letter initial for the user's middle name. Parent Group(s): [BILLING_ADDRESS], [CONTACT_ADDRESS], [SHIPPING_ADDRESS], [DATA_SET_CONTACT] ODL Type: String Maximum Length: 1 Keyword: MONITOR Synopsis: Collection of performance statistics. Parent Group(s): BROWSE_REQUEST, DIRECTORY_RESULT, DIRECTORY_SEARCH, INTEGRATED_BROWSE_RESULT, INVENTORY_RESULT, INVENTORY_SEARCH, PRODUCT_REQUEST, PRODUCT_RESULT, ACKNOWLEDGE, QUIT, PRODUCT_CANCEL_REQUEST, PRODUCT_CANCEL_RESULT, PRODUCT_STATUS_REQUEST, PRODUCT_STATUS_INFO, PRICE_ESTIMATE_REQUEST, PRICE ESTIMATE RESULT Child Group(s): [RX_CLIENT], [RX_SERVER], TX_CLIENT, [TX_SERVER] ODL Type: Aggregate Maximum Length: 84 Keyword: NORTH_LATITUDE Synopsis: Northern most latitude for an area on the globe. Parent Group(s): RANGE_LOC ODL Type: Real Maximum Length: 8 Possible value(s): -90.0000 to +90.0000 Keyword: NUMBER_OF_DATASETS Synopsis: Number of data sets included in query result set. Parent Group(s): DIRECTORY_RESULT, [INVENTORY_RESULT] ODL Type: Integer Maximum Length: 10 Possible value(s): 1 to 2147483647 Keyword: NUMBER_OF_GRANULES Synopsis: The number of granules included in the package. Parent Group(s): PACKAGE, [SUB_REQUEST_STATUS_INFO] ODL Type: Integer Maximum Length: 10 Possible value(s): 1 to 2147483647 Keyword: NUMBER_OF_GRANULE_HITS Synopsis: Number of granules from this data set included in query result set. Parent Group(s): [DATASET] Child Group(s): ODL Type: Integer Maximum Length: 10 Possible value(s): 1 to 2147483647 Keyword: NUMBER_OF_MEDIA_TYPE Synopsis: Indicates how many media choices are available. Parent Group(s): PROCESSING_OPTIONS ODL Type: Integer Maximum Length: 10 Possible value(s): 1 to 2147483647 Keyword: NUMBER_OF_MEDIA_FORMAT Synopsis: Number of MEDIA_IDs in the following MEDIA_FORMAT group. Parent Group(s): MEDIA_TYPE ODL Type: Integer Keyword: NUMBER_OF_OPTIONS Synopsis: Indicates how many processing options are available. Parent Group(s): PACKAGE ODL Type: Integer Maximum Length: 10 Possible value(s): 1 to 2147483647 Keyword: OPTION_ID Synopsis: The valid value for selected processing options. Parent Group(s): PROCESSING_OPTIONS ODL Type: String Keyword: ORGANIZATION Synopsis: Additional address information, e.g., NASA. Parent Group(s): CONTACT_ADDRESS, DAAC_CONTACT_ADDRESS, [BILLING_ADDRESS], [SHIPPING_ADDRESS] ODL Type: String Maximum Length: 60 Keyword: PACKAGE Synopsis: The collection of granules or data which can be ordered from an archive. Parent Group(s): INVENTORY_RESULT, DATASET Child Group(s): DATA CENTER ID, DATASET_ID PACKAGE_ID, COMMENT, NUMBER_OF_GRANULES, NUMBER_OF_OPTIONS, PROCESSING_OPTIONS, [INFO_PROMPT], MEDIA_TYPE ODL Type: String Notes: - 1. OPTION 1: for use when all package information is sent for the whole inventory result and is sent before the first DATASET group (disfavored and may not be implemented). - 2. OPTION 2: for use when package information is sent in front of each relevant data set group. - 3. OPTION 3: for use when package information is sent within each relevant data set group and before the granule group(s). Keyword: PACKAGE_ID Synopsis: Names of valid IMS distributed products. If the package information is the same for all granules in the data set and there is one product per granule, then use the character '*' for the PACKAGE_ID. Parent Group(s): [GRANULE], PACKAGE, PRODUCT_DELIVERY ODL Type: Sequence String Maximum Length: 50 Keyword: PACKAGE_SIZE Synopsis: The size of the package in bytes of data. Parent Group(s): PROCESSING_OPTIONS ODL Type: Integer Maximum Length: 10 Possible value(s): 1 to 2147483647 Keyword: PARAMETER Synopsis: Valid value that is a geophysical term associated with a data set or granule. Parameters for product generation Parent Group(s): [DATASET], [DIRECTORY_SEARCH], [GRANULE], [INVENTORY_SEARCH], PRODUCT_GENERATION Child Group: PGR_CODE, PGR_VALUE ODL Type: Aggregate (see note) #### Notes: - 1. PARAMETER is required in the DATASET or GRANULE groups of the INVENTORY_RESULT group. - 2. PARAMETER can be given in the DATASET group if and only if the value of PARAMETER is the same for all the GRANULES in the DATASET group. - 3. PARAMETER is used in two contexts - Under DATASET, DIRECTORY_SEARCH, GRANULE and INVENTORY_SEARCH group, the values is a geophysical term associated with a data set or granule. - Under PRODUCT_GENERATION group this is subgroup name. - 4. ASTER GDS might not define values of "PARAMETER". So ASTER GDS Product Search by "PARAMETER" was eliminated. Keyword: PHONE Synopsis: Voice telephone number of associated person. Parent Group(s): BILLING_ADDRESS, CONTACT_ADDRESS, SHIPPING_ADDRESS, DAAC_CONTACT_ADDRESS, DATA_SET_CONTACT ODL Type: String Maximum Length: 22 Possible value(s): any string Keyword: POINT_LOC Synopsis: Single point on the globe. Parent Group(s): GRANULE, INVENTORY_SEARCH Child Group(s): LATITUDE, LONGITUDE ODL Type: Aggregate Keyword: POLE_INCLUDED Synopsis: Pole is included in described search area. Parent Group(s): [POLYGON_LOC] ODL Type: Symbol Maximum Length: 1 Possible value(s): N,I S Note: If not included in the location group then no pole included in region. Keyword: POLYGON_LOC Synopsis: Group of four latitude longitude pairs describing an area on the globe. Parent Group(s): GRANULE, INVENTORY_SEARCH Child Group(s) of GRANULE: LATITUDE, LONGITUDE, [POLE_INCLUDED], CENTROID_LAT, CENTROID_LON Child Group(s) of INVENTORY_SEARCH: LATITUDE, LONGITUDE, [POLE_INCLUDED], MAP_PROJECTION_TYPE, TANGENT_LATITUDE, TANGENT_LONGITUDE ODL Type: Aggregate Keyword: PROCESSING_LEVEL Synopsis: Level to which data has been processed. Parent Group(s): [GRANULE] [DATASET], [INVENTORY_SEARCH] ODL Type: Symbol Maximum Length: 2 Possible value(s): 0, 1, 1a, 1b, 2, 3, 4 Note: DATASET unique, currently under review Keyword: PROCESSING_OPTIONS Synopsis: User requested processing of GRANULE to produce a product. Parent Group(s): PACKAGE Child Group(s): OPTION_ID, PACKAGE_SIZE, NUMBER_OF_MEDIA_TYPE, MEDIA_TYPE ODL Type: Sequence String Maximum Length: 30 Keyword: PRODUCT_REQUEST Synopsis: Provides data for product request. Child Group(s): [BILLING_ADDRESS group], CONTACT_ADDRESS group, DATA_CENTER_ID, MESSAGE_ID, MEDIA group, MONITOR group, [SHIPPING_ADDRESS group], USER_AFFILIATION group, INITIATOR_REQUEST_ID, [AUTHENTICATOR], [ECS_AUTHENTICATOR], [INITIAL_USER_KEY], VERSION ODL Type: Aggregate Keyword: PRODUCT RESULT Synopsis: Group of information including Data Center contact information acknowledging a product request. Child Group(s): DATA_CENTER_ID, MESSAGE_ID, MONITOR group, STATUS_CODE, [STATUS_CODE_COMMENT], DAAC_CONTACT_ADDRESS, VERSION ODL Type: Aggregate Keyword: PROTOCOL_VERSION Synopsis: Version of message passing protocol, e.g., 3.5. Parent Group(s): VERSION ODL Type: Real Keyword: QUIT Synopsis: Termination message. Child Group(s): MESSAGE_ID, [DATA_CENTER_ID], STATUS_CODE, [STATUS_CODE_COMMENT], [AUTHENTICATOR], [ECS_AUTHENTICATOR], MONITOR, VERSION ODL Type: Aggregate Keyword: RANGE_LOC Synopsis: Group of maximum and minimum latitudes and longitudes describing an area. Parent Group(s): DIRECTORY_SEARCH, GRANULE, INVENTORY_SEARCH Child Group(s): EAST_LONGITUDE, NORTH_LATITUDE, SOUTH_LATITUDE, WEST_LONGITUDE ODL Type: Aggregate Keyword: RESTRICTION Synopsis: Details of any ordering restrictions placed on the data set. Parent Group(s): [DATASET group] ODL Type: Sequence String Maximum Length: 60 Possible value(s): any string Keyword: RX_CLIENT Synopsis: Time stamp when the client received the entire ODL message Parent Group(s): [MONITOR group] ODL Type: Sequence STRING Maximum Length: 20 Possible value(s): two part: seconds (required), microseconds (optional) Note: integer number of seconds as returned by the time () call or the gettimeofday call Keyword: RX_SERVER Synopsis: Time stamp when the server received the entire ODL message Parent Group(s): MONITOR group ODL Type: Sequence STRING Maximum Length: 20 Possible value(s): two part: seconds (required), microseconds (optional) Note: integer number of seconds as returned by the time () call or the gettimeofday call Keyword: SENDER_VERSION Synopsis: Descriptor identifying the name and number of the sender (client or server) that sent the message. Parent Group(s): VERSION ODL Type: String Maximum Length: 16 Keyword: SENSOR_NAME Synopsis: Name(s) of sensor. Parent Group(s): [GRANULE], [DATASET], [DIRECTORY_SEARCH], [DIRECTORY_RESULT], [INVENTORY_SEARCH] ODL Type: Sequence String Maximum Length: 30 Keyword: SERVER_VERSION Synopsis: Optional descriptor identifying the server version, and is stored in the group = VERSION. Parent Group(s): VERSION ODL Type: String Maximum Length: 16 Keyword: SHIPPING_ADDRESS Synopsis: Address where requested data is to be sent. Parent Group(s): [PRODUCT_REQUEST] Child Group(s): CITY, [EMAIL], [FAX], FIRST_NAME, [MIDDLE_INITIAL], LAST_NAME, PHONE, [STATE], COUNTRY, [ZIP], [TITLE], [ORGANIZATION], [ADDRESS] ODL Type: Aggregate
Keyword: SOURCE_NAME Synopsis: Name(s) of source/platform. Parent Group(s): [GRANULE], [DIRECTORY_SEARCH], [DIRECTORY_RESULT], [INVENTORY_SEARCH], [DATASET] ODL Type: Sequence String Maximum Length: 30 Keyword: SOUTH_LATITUDE Synopsis: Southern most latitude for an area on the globe Parent Group(s): RANGE_LOC ODL Type: Real Maximum Length: 8 Possible value(s): -90.0000 to +90.0000 Keyword: START_DATE Synopsis: Beginning of temporal interest Parent Group(s): GRANULE, [DIRECTORY_SEARCH], [DIRECTORY_RESULT], [INVENTORY_SEARCH] ODL Type: Date Maximum Length: 20 Possible value(s): yyyy-mm-ddThh:mm:ss | yyyy-mm-ddThh:mm:ssZ Keyword: START_DAY_OF_YEAR Synopsis: Beginning day of seasonal interest Parent Group(s): [INVENTORY_SEARCH] ODL Type: Integer Maximum Length: 3 Possible value(s): 1 TO 366 Keyword: STATE Synopsis: US Postal state abbreviation for associated person Parent Group(s): [BILLING_ADDRESS], [CONTACT_ADDRESS], [SHIPPING_ADDRESS], [DAAC_CONTACT_ADDRESS] ODL Type: String Maximum Length: 20 Possible value(s): any string Keyword: STATUS_CODE Synopsis: Numeric code giving status of query and/or server Parent Group(s): DIRECTORY_RESULT, INTEGRATED_BROWSE_RESULT, INVENTORY_RESULT, PRODUCT_RESULT, QUIT, DATASET, PRODUCT_STATUS_INFO, PRICE_ESTIMATE_RESULT, PRODUCT_CANCEL_RESULT ODL Type: Integer Maximum Length: 4 Possible value(s): 1 to 20, or 1000 #### Notes: - 01 successful query; query results returned - 02 no match found - 03 data for selected source are not archived at DAAC - 04 data for selected sensor are not archived at DAAC - 05 data set is not archived at DAAC - data for selected parameter(s) not archived at DAAC - 07 data for selected source, sensor, parameter(s) and/or data set are not archived at DAAC - 08 pertinent inventory system unavailable, try again later - 09 bad message; message contains syntax error(s) - 10 requested function not supported by this DAAC - system error, please try again later - search too broad, narrow spatial and/or temporal search criteria - 13 no data for selected campaign archived at DAAC, please reconstruct Search Query - browse_granules_only selected, but no granules having browse data match - global_granules_only selected, but no granules having global coverage match - no data for requested processing level at this DAAC, please reconstruct Search Ouery - 17 bad message; protocol error - 18 system busy; try again later - system error; contact user support - 20 data not found due to spatial and/or temporal limitation - 103 ASTER GDS limitation on Product Request; all products can not be accepted - ASTER GDS limitation on Product Request; number of product request is over the limitation for processing level - ASTER GDS limitation on Product Request; number of product request is over the limitation for processing level by user type - ASTER GDS limitation on Product Request; number of product request is over the limitation for user type - ASTER GDS limitation on Product Request; number of product request is over the limitation for media type - 109 ASTER GDS PG parameter error - 1000 user-requested abort of search Keyword: STATUS_CODE_COMMENT Synopsis: Data Center provided commentary related to status code for communications. Parent Group(s): [INVENTORY_RESULT], [DIRECTORY_RESULT], [INTEGRATED_BROWSE_RESULT], [PRODUCT_RESULT], [QUIT], PRODUCT_STATUS_INFO], [PRICE_ESTIMATE_RESULT], [PRODUCT_CANCEL_RESULT] ODL Type: sequence string Maximum Length: 128 Keyword: STOP_DATE Synopsis: Date terminating interval of temporal interest. Parent Group(s): GRANULE, [DIRECTORY_SEARCH], [DIRECTORY_RESULT], [INVENTORY_SEARCH] ODL Type: Date Maximum Length: 20 Possible value(s): yyyy-mm-ddThh:mm:ss | yyyy-mm-ddThh:mm:ssZ Keyword: STOP_DAY_OF_YEAR Synopsis: Ending day of seasonal interest. Parent Group(s): [INVENTORY_SEARCH] ODL Type: Date Maximum Length: 3 Possible value(s): 1 to 366 Keyword: TANGENT_LATITUDE Synopsis: Current tangent (center) latitude of projection map. Parent Group(s): POLYGON_LOC ODL Type: Real Maximum Length: 8 Possible value(s): -90.0000 to +90.0000 Keyword: TANGENT_LONGITUDE Synopsis: Current tangent (center) latitude of projection map. Parent Group(s): POLYGON_LOC ODL Type: Real Maximum Length: 9 Possible value(s): -180.0000 to +180.0000 Keyword: TITLE Synopsis: Part of the User Profile. A user's formal designation. Parent Group(s): [CONTACT_ADDRESS], [SHIPPING_ADDRESS], [BILLING_ADDRESS] ODL Type: String Maximum Length: 5 Keyword: TX_CLIENT Synopsis: Time stamp when client transmitted entire ODL message. Parent Group(s): MONITOR group ODL Type: Sequence STRING Maximum Length: 20 Possible value(s): two part: seconds (required), microseconds (optional) Note: integer number of seconds as returned by the time () call or the gettimeofday call Keyword: TX_SERVER Synopsis: Time stamp when server transmitted entire ODL message. Parent Group(s): MONITOR group ODL Type: Sequence STRING Maximum Length: 20 Possible value(s): two part: seconds (required), microseconds (optional) Note: integer number of seconds as returned by the time () call or the gettimeofday call Keyword: TYPE Synopsis: Affiliation categories: Government, Commercial, Academic, Other. Parent Group(s): USER_AFFILIATION ODL Type: String Maximum Length: 15 Note: ASTER GDS definition might not fit into the above definition. Keyword: TYPE_ID Synopsis: The valid values for selected media types. Parent Group(s): MEDIA_TYPE ODL Type: String Maximum Length: 30 Keyword: UNMAPPED_FIELD Synopsis: Field(s) given in query not used in inventory search. Parent Group(s): [INVENTORY_RESULT] ODL Type: Sequence String Maximum Length: Possible value(s): any keyword contained in the INVENTORY_SEARCH group Keyword: USER_AFFILIATION Synopsis: General information for user services statistics. Parent Group(s): PRODUCT_REQUEST, BROWSE_REQUEST Child Group(s): CATEGORY, TYPE ODL Type: Aggregate Keyword: VALID_ACCOUNTS Synopsis: Contains DAAC provided valid account information associated with a particular data set. Is an optional or a repeating group. Parent Group(s): [DATASET] Child Group(s): ACCOUNT_NUMBER, [BALANCE], [ERROR] ODL Type: Group Notes: 1. There may be 0 valid account groups sent in inventory/data set group. 2. If the user has no valid account, then 1 valid account group will be sent containing only the error object with information to instruct or inform the user. 3. For cases with multiple accounts, many valid accounts groups will be sent, each containing mandatory account number with optional balance and error fields. 4. ASTER GDS does not return this keyword. Keyword: VERSION Synopsis: Information identifying the client and server version Parent group(s): Used in all message types ODL Type: Aggregate Maximum Length: N/A Keyword: WEST_LONGITUDE Synopsis: Western most longitude for an area on the globe. Parent Group(s): RANGE_LOC ODL Type: Real Maximum Length: 9 Possible value(s): -180.0000 to +180.0000 Keyword: XHAIRS Synopsis: TBD Parent group(s): INVENTORY_SEARCH Child Group: LATITUDE, LONGITUDE, LATITUDE_DISTANCE, LONGITUDE_DISTANCE ODL Type: TBD Maximum Length: TBS Keyword: ZIP Synopsis: US Postal ZIP code for associated person. Parent Group(s): [BILLING_ADDRESS], [CONTACT_ADDRESS], [SHIPPING_ADDRESS], [DAAC_CONTACT_ADDRESS] ODL Type: String Maximum Length: 15 Possible value(s): any string # **B.2 ODL Message Keywords for Required Extensions** This section identifies and defines the ODL Message Keywords which are ASTER GDS extensions to the V0 ODL specificiation. Keyword: CLOUD_COVERAGE Synopsis: Percent of cloud coverage for granule Parents Group: [INVENTORY_SEARCH] Child Group: Not Used ODL Type: Integer Note: This keyword is used as user's search parameter. This value is for quadrant scene. Keyword: COMPLETION_DATE Synopsis: Actual date that Product Request is completed. Parent Group: [ORDER_STATUS_INFO], [SUB_REQUEST_STATUS_INFO] Child Group: Not Used ODL Type: String Maximum Length: 10 Possible Value(s): yyyy-mm-dd Note: In the case that STATUS_CODE is "COMPLETED", STATUS_INFO group incorporates this keyword. ASTER GDS does not return COMPLETION_DATE under SUB_REQUEST_STATUS_INFO. Keyword: DATA_CENTER_LONGNAME Synopsis: TBD Parent Group(s): DATA_SET_CONTACT ODL Type: String Maximum Length: TBD Keyword: DATA_CENTER_URL Synopsis: The Universal Reference Locator for accessing the data center. Parent Group(s): [DATA_SET_CONTACT] ODL Type: String Maximum Length: 64 Keyword: DATA_SET_CONTACT Synopsis: Iinformation for contacting data center for a particular data set. Parent Group(s): [DIRECTORY_RESULT] Child Group(s): DATA_CENTER_LONGNAME, [DATA_CENTER_URL], [FIRST_NAME], [MIDDLE_INITIAL], [LAST_NAME], PHONE, [FAX], EMAIL, ADDRESS ODL Type: Aggregate Keyword: DATASET_SUMMARY Synopsis: TBD Parent Group(s): DATASET group for DIRECTORY_RESULT ODL Type: TBD Maximum Length: TBD Comment: See "Keyword: DATASET". Keyword: DISCIPLINE Synopsis: TBD Parent Group(s): DATASET group for DIRECTORY_RESULT ODL Type: String Maximum Length: TBD Keyword: EASTBOUNDINGCOORDINATE Synopsis: TBD Parent Group(s): SPATIAL_COVERAGE ODL Type: Float Maximum Length: TBD Keyword: ESTIMATED_PRICE Synopsis: Estimated total price of products Parent Group: PRICE_ESTIMATE_RESULT Child Group: Not Used ODL Type: Real Maximum Length: Note: The unit is Yen. Proposal: ASTER GDS think that ODL Type had better be changed from Real to Integer. Maximum Length is about 10. Keywords: INITIATOR_REQUEST_ID Synopsis: ID assigned by the ASTER Gateway or ASTER GDS IMS to track Product Request. Parent Group: PRODUCT_REQUEST, PRODUCT_STATUS_REQUEST, ORDER STATUS INFO, PRODUCT_CANCEL_REQUEST, PRODUCT_CANCEL_RESULT Child Group: Not Used ODL Type: String Maximum Length: 30 Note: 1. When ECS client submits Product Request, ASTER Gateway generates this ID. 2. When ASTER GDS client submits Product Request, ASTER GDS IMS generates this ID. Keyword: MAXIMUM_ALTITUDE Synopsis: TBD Parent Group(s): SPATIAL_COVERAGE ODL Type: TBD Maximum Length: TBD Keyword: MAXIMUM_DEPTH Synopsis: TBD
Parent Group(s): SPATIAL_COVERAGE ODL Type: TBD Maximum Length: TBD Keyword: MEDIA Synopsis: Media information for Product Request. Parent Group: PRICE_ESTIMATE_REQUEST, PRODUCT_REQUEST Child Group: MEDIA_TYPE, MEDIA_FORMAT, PRODUCT_DELIVERY ODL Type: Aggregate Keyword: MINIMUM_ALTITUDE Synopsis: TBD Parent Group(s): SPATIAL_COVERAGE ODL Type: TBD Maximum Length: TBD Keyword: MINIMUM_DEPTH Synopsis: TBD Parent Group(s): SPATIAL_COVERAGE ODL Type: TBD Maximum Length: TBD Keyword: NORTHBOUNDINGCOORDINATE Synopsis: TBD Parent Group(s): SPATIAL_COVERAGE ODL Type: TBD Maximum Length: TBD Keyword: ORDER_STATUS_CODE Synopsis: Provides the status for a order status request. Parent Group: [PRODUCT_CANCEL_RESULT], ORDER_STATUS_INFO Child Group: Not used ODL Type: String Possible Value(s): PROPOSEDIACCEPTEDIPROCESSINGICANCELEDI FAILED Maximum Length: 10 Note: - "PROPOSED" means that Product Request is received by ASTER GDS IMS. - 2. "ACCEPTED" means that Product Request is received by ASTER GDS DADS. - 3. "PROCESSING" means that Product Request is processed for delivery. - 4. "CANCELED" means that all Product Requests added one INITIATOR_REQUEST_ID is canceled because of user's cancel request. - 5. "FAILED" means request could not be processed because of an error condition Keyword: ORDER_STATUS_INFO Synopsis: TBD Parent Group(s): PRODUCT_STATUS_INFO Child group(s): INITIATOR_REQUEST_ID, RECEIVE_DATE, PLANNED_COMPLETION_DATE, [COMPLETION_DATE], PRICE, # ORDER_STATUS_CODE, [ORDER_STATUS_COMMENT], SHIPPING_ADDRESS, SUB_REQUEST_STATUS_INFO ODL Type: Aggregate Keyword: ORDER_STATUS_COMMENT Synopsis: Ancillary information concerning an order cancellation request. Parent Group: [PRODUCT_CANCEL_RESULT], [ORDER_STATUS_INFO] Child Group: Not used ODL Type: String Maximum Length: 128 Keyword: PGR_CODE Synopsis: TBD Parent Group(s): PARAMETER ODL Type: String Maximum Length: 16 Note: The possible value of keywords in "PARAMETER group" is defined by Valids. Keyword: PGR_VALUE Synopsis: TBD Parent Group(s): PARAMETER ODL Type: TBD Maximum Length: TBD Note: The possible value of keywords in "PARAMETER group" is defined by Valids. Keyword: PREDICTED_COMPLETION_DATE Synopsis: Estimated number of days until product is ready for delivery Parent Group(s): PRICE_ESTIMATE_RESULT Group ODL Type: Integer Possible values: 0 to 65335 Keyword: PRICE Synopsis: Estimated total price of products Parent Group: ORDER_STATUS_INFO Child Group: Not Used ODL Type: Real Maximum Length: Note: The unit is Yen. Keyword: PRICE_COMMENT Synopsis: Provide the information for price calculation (algorithm, etc.). Parent Group: [PRICE_ESTIMATE_RESULT] Child Group: Not Used ODL Type: Sequence String Maximum Length: 128 Possible value(s): any string Keyword: PRICE_ESTIMATE_REQUEST Synopsis: Provide the information for estimated total price of products that user orders. Parent Group: Not Used Child Group: MEDIA, MONITOR, VERSION, MESSAGE_ID, DATA_CENTER_ID, ODL Type: Aggregate Note: This request is submitted prior to Product Request. Keyword: PRICE_ESTIMATE_RESULT Synopsis: Provide estimated total price of products that user orders. Parent Group: Not Used Child Group: MONITOR, MESSAGE_ID, DATA_CENTER_ID, STATUS_CODE, [STATUS_CODE_COMMENT], ESTIMATED_PRICE, [PRICE_COMMENT], PREDICTED_COMPLETION_DATE, VERSION ODL Type: Aggregate Keyword: PROCESSING_DATA_CENTER Synopsis: Data Center which is handling a processing request Parent Group(s): SUB_REQUEST_STATUS_INFO Child group(s): None ODL Type: String Note: This is returned from ECS only. Keyword: PRODUCT_DELIVERY Synopsis: Delivered product and generated product Parent Group: MEDIA Child Group: [PRODUCT_GENERATION], DATASET_ID, PACKAGE_ID, SENSOR TYPE ODL Type: Aggregate Note: 1. When user requests delivery of product only, "DATASET_ID" and "PACKAGE_ID" incorporated in PRODUCT_DELIVERY group mean delivered product. In this case, PRODUCT_DELIVERY group doesn't incorporate PRODUCT_GENERATION group. 2. When user requests generation and delivery of product, "DATASET_ID" and "PACKAGE_ID" incorporated in PRODUCT_DELIVERY group mean source product for generation. In this case, PRODUCT_DELIVERY group incorporates PRODUCT_GENERATION group. Keyword: PRODUCT_GENERATION Synopsis: Processing level and parameter for product generation. Parent Group: [PRODUCT_DELIVERY] Child Group: PARAMETER, PRODUCT_TYPE ODL Type: Aggregate Keyword: PRODUCT_STATUS_INFO Synopsis: Provide processing status of product request after user submits. Parent Group: Not Used Child Group: MONITOR, MESSAGE_ID, DATA_CENTER_ID, STATUS_CODE, [STATUS_CODE_COMMENT], ORDER_STATUS_INFO, VERSION ODL Type: Aggregate Note: This group incorporates processing status of all granule in some product requests. Keyword: PRODUCT_STATUS_REQUEST Synopsis: Provide information for obtaining processing status of product request after user submits. Parent Group: Not Used Child Group: MONITOR, VERSION, MESSAGE_ID, INITIATOR_REQUEST_ID ODL Type: Aggregate Note: This request must incorporate INITIATOR_REQUEST_ID keyword. Keyword: PRODUCT_TYPE Synopsis: Type of product in the case of product generation. Parent Group: PRODUCT_GENERATION Child Group: Not Used ODL Type: Symbol Maximum Length: 10 Possible Value(s): 1B00 | 2A02 | 2A03 Note: "1B00" means product level 1B. "2A02" and "2A03" means decorrelation stretch. Possible values will be added in the future. Keyword: PLANNED_COMPLETION_DATE Synopsis: Planed date that Product Request is completed (after scheduled). Parent Group: ORDER_STATUS_INFO Child Group: Not Used ODL Type: String Maximum Length: 10 Possible Value(s): yyyy-mm-dd Keyword: PRODUCT_CANCEL_REQUEST Synopsis: Provide the information for cancel of Product Request. Parent Group: Not Used Child Group: MESSAGE_ID, INITIATOR_REQUEST_ID, [SUB_REQUEST_ID], MONITOR, VERSION ODL Type: Aggregate Keyword: PRODUCT_CANCEL_RESULT Synopsis: Provide the response for cancel request of Product Request. Parent Group: Not Used Child Group: MESSAGE_ID, DATA_CENTER_ID, STATUS_CODE, [STATUS_CODE_COMMENT], INITIATOR_REQUEST_ID, [ORDER_STATUS_CODE], [ORDER_STATUS_COMMENT], [SUB_REQUEST_INFO], MONITOR, VERSION ODL Type: Aggregate Note: In the case of ASTER GDS, this group means the reception for Product Cancel Request. From this group, ECS client can not know if Product Request is canceled. From Product Status Information, ECS client can know if Product Request is canceled. ASTER GDS understands that ECS returns the PRODUCT_CANCEL_RESULT that includes each success/fail and comment for requests attempted to be canceled. Keyword: QUADRANT_CLOUD_COVERAGE (for ASTER GDS only) Synopsis: Percent of cloud coverage for quadrant scene. Parents Group: [GRANULE] Child Group: Not Used ODL Type: Sequence Integer Note: This keyword means the cloud coverage percentages for 4 quarters of a scene in the order of: upper left -> upper right -> lower left -> lower right Keyword: RECEIVE_DATE Synopsis: TBD Parent Group(s): ORDER_STATUS_INFO Child group(s): Not used ODL Type: Date Maximum Length: 20 Possible value(s): yyyy-mm-ddThh:mm:ss | yyyy-mm-ddThh:mm:ssZ ODL Keyword: REQUEST_STATUS_CODE Synopsis: Provides the cancellation status for a sub-request associated with an order request. Parent Group: SUB_REQUEST_STATUS_INFO, [SUB_REQUEST_INFO] Child Group: Not used ODL Type: String Possible Values: PROPOSEDIACCEPTEDIPROCESSINGICANCELI FAILED - Comment: The definition of value provided by ASTER SDPS is shown as follows. 1. "PROPOSED" means that Product Request is received by ASTER GDS IMS. - 2. "ACCEPTED" means that Product Request is received by ASTER GDS DADS. - 3. "PROCESSING" means that Product Request is processed for delivery. - 4. "CANCELED" means that Product Requests is canceled because of user's cancel request. - 5. "FAILED" means that Product Request including generation parameter is failed during "PROCESSING" because of generation parameter error. Maximum Length: 10 Keyword: REQUEST_STATUS_COMMENT Synopsis: Ancillary information concerning a request for cancellation of a sub-request. Parent Group: [SUB_REQUEST_STATUS_INFO], [SUB_REQUEST_INFO] Child Group: Not used ODL Type: String Maximum Length: 128 Keyword: SCENE_CLOUD_COVERAGE (for ASTER GDS only) Synopsis: Average percent of cloud coverage for scene. Parents Group: [GRANULE] Child Group: Not Used ODL Type: Integer Note: This value is for the whole scene Keyword: SENSOR_TYPE. Synopsis: TBD Parent Group(s): PRODUCT_DELIVERY Child group(s): not used ODL Type: Sequence String Possible Value(s): "VST", "V ", " S ", " T", "VS ", " ST", "V T" Note: The possible value of "SENSOR_TYPE" for delivery product type is defined by Valids. Keyword: SOUTHBOUNDINGCOORDINATE Synopsis: TBD Parent Group(s): SPATIAL_COVERAGE ODL Type: TBD Maximum Length: TBD Keyword: SPATIAL_COVERAGE Synopsis: TBD Parent Group(s): DATASET group for DIRECTORY_RESULT Child Group(s): EASTBOUNDINGCOORDINATE, [MAXIMUM_ALTITUDE], [MAXIMUM_DEPTH], [MINIMUM_ALTITUDE], [MINIMUM_DEPTH], NORTHBOUNDINGCOORDINATE, SOUTHBOUNDINGCOORDINATE, WESTBOUNDINGCOORDINATE ODL Type: Aggregate. Keyword: SUB_REQUEST_ID Synopsis: TBD Parent Group: SUB_REQUEST_STATUS_INFO, SUB_REQUEST_INFO Child Group: None OLD Type: TBD Comment: Integer Keyword: SUB_REQUEST_INFO Synopsis: TBD Parent Group: [PRODUCT_CANCEL_RESULT] Child Group: SUB_REQUEST_ID, [REQUEST_STATUS_CODE], [REQUEST_STATUS_COMMENT] OLD Type: Aggregate Keyword: SUB_REQUEST_STATUS_INFO Synopsis: TBD Parent Group: ORDER_STATUS_INFO Child Group: SUB_REQUEST_ID, REQUEST_STATUS_CODE, [REQUEST_STATUS_COMMENT], [COMPLETION_DATE], [PROCESSING_DATA_CENTER], MEDIA_TYPE, MEDIA_FORMAT, DATASET_ID, [NUMBER_OF_GRANULES] OLD Type: Aggregate Keyword: TERM Synopsis: TBD Parent Group(s): DATASET group for DIRECTORY_RESULT ODL Type: TBD Maximum Length: TBD Keyword: TOPIC Synopsis: TBD Parent Group(s): DATASET group for DIRECTORY_RESULT ODL Type: TBD Maximum Length: TBD Keyword: VARIABLE Synopsis: TBD Parent Group(s): DATASET group for DIRECTORY_RESULT ODL Type: TBD Maximum Length: TBD
Keyword: WESTBOUNDINGCOORDINATE Synopsis: TBD Parent Group(s): SPATIAL_COVERAGE ODL Type: TBD Maximum Length: TBD Keyword: XAR_ID (for ASTER GDS only) Synopsis: ID for xAR that produced the granule. Parents Group: [INVENTORY_SEARCH], [GRANULE] Child Group: Not Used ODL Type: Sequence Integer Maximum Length: 4 ## **B.3** Server State Table This table shows transfer of processing in server when server receives each request. Italic and bold characters mean processing regarding extension. Table B-1. Server States | State and action taken | Event (returned by action) | New State | |--|---------------------------------|--| | Accept | Got Inventory Search | Query for Granules | | | Got Directory Search | TBS | | į | (only ECS) | (only ECS) | | | Got Int. Browse Request | Process Int. Browse Request | | | Got Price Estimate Request | Process Price Estimate Request | | | Got Product Request | Process Product Request | | | Got Product Status Request | Process Product Status Request | | | Got Product Cancel Request | Process Product Cancel Request | | | Got No Data | Accept | | | Got ABORT | Stop | | | Got QUIT | STOP | | | Server Crash | Stop | | | Server System Error | Stop | | | Errors(returned from ECS) | Tx QUIT [status code: 17, 18] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 9, 17, 18] | | Query for Granules | Query Success | Build First Chunk | | addity for andriane | Errors(returned from ECS) | Tx QUIT [status code: 2-16, 19, 20] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 2, 7, 9, 11, 16] | | action: Query Inventory | <u> </u> | | | Build First Chunk | Fetch Granule Success | Tx Inventory Result Chunk | | Dalid Till St Offdrik | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT (status code: 11) | | action: Fetch Granule | Enois(totaling non-no-tan- | | | Build Next Inv. Result Chunk | Fetch Granule Success | Tx Inventory Result Chunk | | Build (Vext IIIV. Nesdit Orlank | Fetch Granule Complete | Tx QUIT [status code: 1] | | | Errors(returned from ECS) | Tx QUIT (status code: 11, 19) | | | Errors(returned from ASTER GDS) | Tx QUIT (status code: 11) | | action: Check Status of Last Fetch | | | | Tx Inventory Result Chunk | Client Down | Ciose | | 1X inventory nesult Online | Server Crash | Stop | | | Send Granules Success | Listen Search ACK | | | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11] | | action: Send Granule to Client and | minoralistante and Advertidad) | CAL TO PACE (PAYMATRIA AND MALL F. C.) | | Fetch Next Chunk | | | | Listen Search ACK | Got Search Result ACK | Build Next Inv. Result Chunk | | <u>कार्यक्रम । क्रिकेट कार्यकार कार्यकार प्र</u> | Got QUIT | Close | | | Got ABORT | Close | | | Errors | Tx QUIT (status code: 17) | | action: Listen Search ACK | | | | Query for MD Entries (TBS only ECS) | Query Success | Tx MD Result | | Guary for this Elitards (150 only COO) | Errors | Tx QUIT [status code: 2-11, 13, 19, 20] | | action: Quant Directors | 6-4-1 5 Vef Ve | And the termination of the second sec | | action: Query Directory | Sand Susana | Close | | Tx MD Result (TBS only ECS) | Send Success | Close | | | Client Down | Close | | | Server Crash | Stop | | | Errors | Tx QUIT [status code: 11, 19] | Table B-1. Server States (2 of 3) | State and action taken | Event (returned by action) | New State | |--|---------------------------------|--| | Process Int. Browse Request | Process Success | Build Integrated Browse ODL | | | Errors | Tx QUIT [status code: 2, 8-11, 19] | | action: Get Image | | | | Build Integrated Browse ODL | Build Success | Tx Integrated Browse ODL | | • | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER
GDS) | Tx QUIT (status code: 2, 9, 11) | | action: Build Int. Browse ODL | · | | | Tx Integrated Browse ODL | Send Success | Tx Integrated Browse Image | | , xg | Server Crash | Stop | | | Client Down | Close | | | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11] | | action: Send Int. Browse ODL to
Client | | | | Tx Integrated Browse Image | Send Success | Tx Integrated Browse image | | J | Send Complete | Close | | | Server Crash | Stop | | | Client Down | Close | | | Got ABORT | Close | | | Got QUIT | Ciose | | | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11] | | action: Send Int. Browse Image to
Client | | | | Process Price Estimate Request | Process Success | Tx Price Estimate Result | | , | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 9, 11] | | action: Process Price Estimate
Request | <u> </u> | · · · · · · · · · · · · · · · · · · · | | Tx Price Estimate Result | Send Success | Close | | | Client Down | Close | | | Server Crash | Stop | | | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11] | | action: Send Price Estimate Result to Client | | | | Process Product Request | Process Success | Tx Product Request Contact Info | | | Errors(returned from ECS) | Tx QUIT [status code: 9-11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11, 103-107, 109] | | action: Process Product Request | | | | Tx Product Request Contact Info | Send Success | Close | | The second second and an experience of the second s | Client Down | Close | | | Server Crash | Stop | | | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11] | | action: Send Product Request to
Client | | Comment of the state sta | Table B-1. Server States (3 of 3) | State and action taken | Event (returned by action) | New State | |--|---------------------------------|---------------------------------| | Process Product Status Request | Process Success | Tx Product Status Info | | .00000 | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GOS) | Tx QUIT [status code: 2, 9, 11] | | ction: Process Product Status
equest | | | | x Product Status Info | Send Success | Close | | | Client Down | Close | | | Server Crash | Stop | | | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11] | | ction: Send Product Status Info to | | | | Process Product Cancel Request | Process Success | Tx Product Cancel Results | | cooper country warrant | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 2, 9, 11] | | action: Process Product Cancel
Request | | | | x Product Cancel Results | Send Success | Close | | PRINCE TO SECURE THE S | Client Down | Close | | | Server | Stop | | | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11] | | action: Send Product Cancel Results
o Client | | | | rx quit[] | Send Success | Close | | rin merrigi | Server Crash | Stop | | | Client Down | Close | | | Errors(returned from ECS) | Tx QUIT [status code: 11, 19] | | | Errors(returned from ASTER GDS) | Tx QUIT [status code: 11] | | action: Send QUIT with Status Code to Client | | | | Close | Done | Stop | | action: Close Communication | | | # Appendix C. DAR Client API List # ASTER-GDS IMS DAR Client API LIST Final October 1996 Mitsubishi Electric Co., Ltd. # Change History | change# | change notes | date | |-------------|---|----------| | 01 | reflect Feb. NASA I/F meeting DAR API support DAR gateway function reflect xAR DB parameter | 3/15/96 | | 02 | delete checkDAR API function reflect review result of API argument reflect revised xAR DB | 4/15/96 | | 03 | reflect revised xAR DB change requester ID type to char add modifyDar API function | 6/4/96 | | 03' | •change table-2,4,6 to include all input parameters. | 6/7/96 | | 04 | delete CancelDar function.add modify stream. | 7/8/96 | | | modify expression add error code to each API function add default value and range in the table reflect the latest(Sep 03, 1996) science requirement | 9/24/96 | | 06
final | add AOI placement in table-3 add cloud cover per quadrant in table-4 add scene placement in table-4 delete Comments for Urgency in table-1 change data type u_int to int change data type u_char to char | 10/09/96 | #### 1. PREMISE DAR server API provids the functionality to transmit data concerning DAR between DAR gateway and DAR server. The location of DAR server API is shown Fig-1. This document is described for the explanation of API usage and calling format. - (1) API prepared by ERSDAC is a C language program library for supporting DARÉgateway functions. - (2) DAR server API provides socket interface. - (3) API contents and data tables depend on xAR DB structure. # 1.1 Request for DAR client ASTER-GDS IMS DAR server performs data stream contents check. However, DAR client S/W should be checked user input parameter due to be less response time between ECS and ASTER-GDS. The following items shows - User privilege check - ¥ Checking user by requester ID if user can access DAR server or not. - Data contents check Contents check at DAR registration and search request. - ¥ If mandatory items are setting or not. - ¥ Error check of designation for observation repetition request. - Input range check. DAR individual item check. - ¥ Maximum/Minimum Look angle - ¥ Sun angle - ¥ Latitude and longitude of AOI polygon - ¥ Lifetime Start/End and another observation timing parameters #### 1.2 API functionality ¥ submitDar : DAR registration request ¥ modifyDar : DAR modification ¥ getxARStatus : xAR status request ¥ getSubxARStatus : Sub-xAR and scene status request ¥ getxARcontents : xAR contents request ¥ getSchedule : Schedule information request Fig-1 DAR server API | API name | input | output | |-----------------|--------------------------------|------------------------------| | submitDar | •DAR input parameter | •xar ID | | getxARStatus | •Search condition | •xAR Status search result | | getSubxARStatus | •Search condition | •SubxAr Status search result | | getxARContents | ·xar id | •xAR contents | | getSchedule | •resource name
•request day | •schedule information | | modifyDar | •Modify parameter | • NONE | # 2.API functionality and calling format # Name : int submitDar(*xarDataStream, *DarID) Function :Sending DAR registration request from DAR client to DAR server After DAR server checked DAR contents valid data, sending DAR data to xAR server of AOS. When AOS regists requested DAR as new xAR, xAR server return its xAR ID to DAR server. This function allows to use for the privilede user. DAR client should need to check user ID. :char *xarDataStream (in) DAR contents data stream setting by requester.Polygon information data length is a variable length record. (cf.Table-1, Figure-1) ## u_int *DarID (out) responded xAR ID from DAR server #### Return code : 0 - no error - 11 Communication error on IMS DAR server connection - 12 Communication error on IMS DAR server
response - 13 Communication error on AOS xAR server connection - 14 Communication error on AOS xAR server response - 31 AOS xAR server error return : format error - 32 AOS xAR server error return : limit error - 33 AOS xAR server error return : syntax error - 41 Data stream format error - 42 xAR services stopped - 50 user cannot submit DAR Name : int getxARStatus(*searchStream, *resultStream) getting xAR status by matching with searchStream. Function This function apply to search xAR(DAR, ETR and STAR) status from xAR DB. :char *searchStream (in) Argument Data stream stored search condition. (cf.Table-2, Figure-2) char *resultStream (out) Data stream stored xAR status as result of search. (cf.Table-3, Figure-3) Return code : 0 - no error 11 - Communication error on IMS DAR server connection 12 - Communication error on IMS DAR server response 21 - xAR DB access error on connection 22 - xAR DB access error on response 23 - xAR search error : no data found 24 - xAR search error : too much data 41 - Data stream format error 42 - xAR services stopped ### Name : int getSubxARStatus(*searchSubxarStream, *subxarStream) Function :getting SubxAR and scene status from xAR DB by coincidence with searchSubxarStream. SubxAR is generated by xAR observation repetition. Scene represents unit of observation. Argument :char *searchSubxarStream (in) Data stream stored search subxAR condition. (cf.Table-6) char *subxarStream (out) Data stream stored subxAR and scene status (cf.Table-4, Figure-4) Return code : 0 - no error 11 - Communication error on IMS DAR server connection 12 - Communication error on IMS DAR server response 21 - xAR DB access error on connection 22 - xAR DB access error on response 23 - xAR search error : no data found 24 - xAR search error : too much data 41 - Data stream format error 42 - xAR services stopped Name : int getxARContents(xarID, *xarDataStream) Function :getting a xAR contents from xAR DB by matching xAR ID. This function respons one xAR contents for one request. Argument : u_int xarID (in) Registered xAR ID to get contents char *xarDataStream (out) Data stream stored one xAR contents (cf. Table-1, Figure-1) Return code : 0 - no error 11 - Communication error on IMS DAR server connection 12 - Communication error on IMS DAR server response 21 - xAR DB access error on connection 22 - xAR DB access error on response 23 - xAR search error : no data found 24 - xAR search error : too much data 41 - Data stream format error 42 - xAR services stopped # Name : int getSchedule(*day, *scheduleStream) Function :getting converted xAR schedule(LTS,STS,ODS) dataffor . 24 hours from request day. Argument : char *day (in) 19bytes Request day of schedule "YYYY/MM/DD hh:mm:ss" char *scheduleStream (out) Data stream stored schedule data (cf. Table-5, Figure-5) Return code : 0 - no error 11 - Communication error on IMS DAR server connection 12 - Communication error on IMS DAR server response 25 - shedule not found 41 - Data stream format error 42 - xAR services stopped # Name : int modifyDar(*modifyStream) :Sending DAR modification request. This function Eallow to Function use for the privilege user. DAR client S/W should check user ID. This function apply registered DAR only. :char *modifyStream (in) Argument Data stream stored DAR modify condition. (cf. Table-7) Return code : 0 - no error 11 - Communication error on IMS DAR server connection 12 - Communication error on IMS DAR server response 13 - Communication error on AOS xAR server connection 14 - Communication error on AOS xAR server response 31 - AOS xAR server error return : format error 32 - AOS xAR server error return : limit error 33 - AOS xAR server error return : syntax error 41 - Data stream format error 42 - xAR services stopped 50 - user cannot submit DAR This page intentionally left blank. # Appendix D. ASTER Level 1 Data Products Specification (GDS Version) # ASTER LEVEL 1 DATA PRODUCTS SPECIFICATION (GDS Version) Version ß October 18, 1996 ERSDAC Earth Remote Sensing Data Analysis Center # **PREFACE** This Specification defines Level-1A and 1B Data Products (GDS version), which are output from the software of ASTER Level-1 Data Processing Sybsystem (Version b). # **Table of Contents** | 1. Level 1 Overview | 1-1 | |---|-------------------------| | 1 1 Applicable Standards | 1-1 | | 1.1.1 Applicable Documents | 1-1 | | 1.1.2 Reference Documents | 1-1 | | | 2.1 | | 2. Level 1A Data Product | 2-1
2-1 | | 2.1. Overview | 2-1 | | 2.2. Data Structure | 2-1 | | 2.3. Data Format | 2-3 | | 2.3.1. Metadata | 2-3 | | 2.3.1.1. Inventory Metadata | 2-3 | | 2.3.1.2. ASTER GDS Generic Metadata | 2-3 | | 2.3.1.3. Product Specific Metadata (VNIR) | 4- 7
1-10 | | 2.3.1.4. Product Specific Metadata (SWIR) | 2-20 | | 2.3.1.5. Product Specific Metadata (TIR) | 4-33
3-47 | | 2.3.2. Cloud Coverage Table | 2-4/ | | 2.3.3. Ancillary Data | 2-48
2-50 | | 2.3.4. VNIR Group | 2-50 | | 2.3.4.1. Overview | 2-50 | | 2.3.4.2. VNIR Band 1 Swath | 2-50 | | 2.3.4.3. VNIR Band 2 Swath | 2-52 | | 2.3.4.4. VNIR Band 3N Swath | 2-55 | | 2.3.4.5. VNIR Band 3B Swath | 2-54 | | 2.3.4.6. Radiometric Correction Table | 2-55 | | 2.3.4.6.1. VNIR Band 1 | 2-55 | | 2.3.4.6.2. VNIR Band 2 | 2-55 | | 2.3.4.6.3. VNIR Band 3N | 2-55 | | 2.3.4.6.4. VNIR Band 3B | 2-55 | | 2.3.4.7. VNIR Supplement Data | 2-56 | | 2.3.4.8. VNIR Browse Image | 2-58 | | 2.3.5. SWIR Group | 2-59 | | 2.3.5.1. Overview | 2-59 | | 2.3.5.2. SWIR Band 4 Swath | 2-59 | | 2.3.5.3. SWIR Band 5 Swath | 2-61 | | 2.3.5.4. SWIR Band 6 Swath | 2-63 | | 2.3.5.5. SWIR Band 7 Swath | 2-65 | | 2.3.5.6. SWIR Band 8 Swath | 2-67 | | 2.3.5.7. SWIR Band 9 Swath | 2-69 | | 2.3.5.8. Radiometric Correction Table | 2-71 | | 2.3.5.8.1. SWIR Band 4 | | | 2.3.5.8.2. SWIR Band 5 | 2-71 | | 2.3.5.8.3. SWIR Band 6 | 2-71 | | 2.3.5.8.4. SWIR Band 7 | 2-71 | | 2.3.5.8.5. SWIR Band 8 | 2-72 | | 2.3.5.8.6. SWIR Band 9 | 2-72 | | 2.3.5.9. SWIR Supplement Data | 2-73 | | 2.3.5.10. SWIR Browse Image | 2-79 | | 2.3.6. TIR Group | 2-80 | | 2.3.6.1. Overview | 2-80 | | 2.3.6.2. TIR Band 10 Swath | 2-80 | | 2.3.6.3. TIR Band 11 Swath | 2-82 | | 2.3.6.4. TIR Band 12 Swath | 2-83 | | 2.3.6.5. TIR Band 13 Swath | 2-84 | | 2.3.6.6. TIR Band 14 Swath | 2-85 | | 2.3.6.7. Radiometric Correction Table | 2-86 | |---|------| | 2.3.6.7.1. TIR Band 10 | 2-86 | | 2.3.6.7.2. TIR Band 11 | 2-86 | | 2.3.6.7.3. TIR Band 12 | 2-86 | | 2.3.6.7.4. TIR Band 13 | 2-86 | | 2.3.6.7.5. TIR Band 14 | 2-87 | | 2.3.6.8. TIR Supplement Data | 2-88 | | 2.3.6.9. TIR Browse Image | 2-90 | | 3. Level 1B Data Product | 3-1 | | 3.1. Overview | 3-1 | | 3.2. Data Structure | 3-1 | | 3.3. Data Format | 3-3 | | 3.3.1. Metadata | 3-3 | | 3.3.1.1. Inventory Metadata | 3-3 | | 3.3.1.2. ASTER GDS Generic Metadata | 3-5 | | 3.3.1.3. Product Specific Metadata (VNIR) | 3-9 | | 3.3.1.4. Product Specific Metadata (SWIR) | 3-18 | | 3.3.1.5. Product Specific Metadata (TIR) | 3-37 | | 3.3.2. VNIR Group | 3-51 | | 3.3.3.1. Overview | 3-51 | | 3.3.3.2. VNIR Band 1 Swath | 3-51 | | 3.3.3.3. VNIR Band 2 Swath | 3-52 | | 3.3.3.4. VNIR Band 3N Swath | 3-53 | | 3.3.3.5. VNIR Band 3B Swath | 3-54 | | 3.3.3. SWIR Group | 3-55 | | 3.3.4.1. Overview | 3-55 | | 3.3.4.2. SWIR Band 4 Swath | 3-55 | | 3.3.4.3. SWIR Band 5 Swath | 3-56 | | 3.3.4.4. SWIR Band 6 Swath | 3-57 | | 3.3.4.5. SWIR Band 7 Swath | 3-58 | | 3.3.4.6. SWIR Band 8 Swath | 3-59 | | 3.3.4.7. SWIR Band 9 Swath | 3-60 | | 3.3.4. TIR Group | 3-61 | | 3.3.5.1. Overview | 3-61 | | 3.3.5.2. TIR Band 10 Swath | 3-61 | | 3.3.5.3. TIR Band 11 Swath | 3-62 | | 3.3.5.4. TIR Band 12 Swath | 3-63 | | 3.3.5.5. TIR Band 13 Swath | | | 3.3.5.6. TIR Band 14 Swath | 3-65 | | Appendix A. Programming Model | A-1 | | Abbreviations and Acronyms | AA-1 | # 1. Level 1 Overview # 1.1. Applicable Standards This section identifies documents that directly apply in defining this interface specification, and those reference documents that indirectly apply to obtain background information related. # 1.1.1. Applicable Documents The following documents apply to this Specification in whole, unless cited otherwise herein. | 1. ERSDAC-LEL/7-13 | Algorism Theoretical Basis Document for ASTER Level-1 Data Processing | |--------------------|--| | | (Ver.2.1), prepared by Level-1 Data Working Group, ASTER Science | | | Team, Japan, December 26, 1995 | | 2. ERSDAC-LEL/7-12 | Algorism Development Specification: ASTER Level-1 Data Processing (for | | | Ver.1.1), March 15, 1996 (in Japanese) | | 3, ERSDAC-LEL/7-11 | ASTER Level 1 Data Products Specification (Science Version, Ver.1.1), | | | March 15, 1996 | | 4. ERSDAC-LEL/7-09 | Interface Specification: ASTER Level-1 Data Processing (for Ver.1), | | | August 28, 1995 (in Japanese) | | 5. AG-S-E-0409-R03 | ASTER GDS Core Meta Data Specification (Version 1.0 Draft), July 3, | | | 1996 | ## 1.1.2. Reference Documents The following documents are used as background reference documents related to this Specification. | 1. 510-ICD-EDOS | Interface Control Document between EDOS and ASTER GDS, CDRL B311, Draft Ver.3, July 1995 | |-----------------------|---| | 2. CCSDS 641.0-B-1 | Parameter Value Language Specification (CCSD006), Blue Book, May | | 3. ERSDAC-LEL/7-5 | Interface Specification: ASTER Level-1 Data Processing (for Ver.a, Ver.b), 1994 (in Japanese) | | 4. HDF User's Guide V | ersion 4.0 | | | the National Center for Supercomputing Applications at University of | | | Illinois at Urbana-Champaign., March 1996 | | 5. HDF-EOS User's Gu | nide for the ECS Project Revision 1 (Draft) | | | EOSDIS Core System Project, April 1996 | | 6. WBS-WP-xxx-yyy | The HDF-EOS Swath Concept, June 30, 1995 | | 7. 170-WP-002-001 | The HDF-EOS Grid Concept, February 1996 | | 8.
333-CD-003-004 | Release A SCF Toolkit Users Guide for the ECS Project, May 1996 | | 9. 311-CD-002-005 | Science Data Processing Segment (SDPS) Database Design and Database Schema Specifications for the ECS Project, May 1996 | | 10. ERSDAC-LEL/8-7 | ASTER Level 1 Data Products Specification (Science Version, Ver.2.0),
September 5, 1996 | | | (This document partialy apply to this Specification.) | #### 2. Level 1A Data Product #### 2.1 Overview Level 1A Data Product is an HDF file. Each file contains a complete 1-scene image data extracted from Level-0 data and corrected for the SWIR and TIR detector's alignment. Furthermore it includes also the radiometric, the geometric and the SWIR parallax correction tables, spacecraft's supplement data, the satellite ancillary data, the calculated cloud coverage values, and Browse images (see NOTE). All of these data are stored together with Metadata, Raster, Vgroup/Vdata, and Swath Layout parts in one HDF file. (NOTE) As Browse images are divided from Level 1A Data Product in "ASTER Level 1 Data Product Specification (science version, version 2.0)", these will be stored in another HDF file as a subset of Level 1A data products in next version. #### 2.2 Data Structure (1) Data Type Level 1A Data Product within HDF file is constructed form eleven categories of HDF data object. NOTE: VNIR (4 bands) and SWIR (6 bands) image data are 8-bit unsigned integer science data, and TIR (5 bands) image data are 16-bit unsigned integer science data in each Swath object. (2) Data Structure The physical data of Level 1A Data Product is shown in Figure 2.2-1. Figure 2.2-1 Physical Data of Level 1A Data Product #### 2.3 Data Format #### 2.3.1. Metadata Level 1A Metadata consists of eight Master Groups, which are - (1) Inventory Metadata - (2) ASTER GDS Generic Metadata - (3) Product Specific Metadata(VNIR1): including the attribute about band-1 and 2 data. - (4) Product Specific Metadata(VNIR2): including the attribute about band-3N, 3B data and input (Level0)data. - (5) Product Specific Metadata(SWIR1): including the attribute about band-4, 5 and 6 data. - (6) Product Specific Metadata(SWIR2): including the attribute about band-7, 8, 9 data and input (Level0)data. - (7) Product Specific Metadata(TIR1): including the attribute about band-10,11 and 12 data. - (8) Product Specific Metadata(TIR2): including the attribute about band-13, 14 data and input (Level0)data. About concept and definition of master groups, refer to SDP Toolkit Users Guide for the ECS Project, Appendix J. #### 2.3.1.1. Inventory Metadata #### (1) Indexes of Objects The object list of Inventory Metadata is shown in Table 2.3.1-1. Inventory metadata attributes apply to the whole L1A product, and are written to the HDF file attribute coremetadata.0. Inventory metadata contains ASTER Meta-Parameters in Generic header for ASTER GDS Products (about Generic header for ASTER GDS Products, see ASTER LEVEL1 DATA PRODUCTS SPECIFICATION, science version, version 2). The attributes included in inventory metadata are associated with DID311. (In Table 2.3.1-1, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) The objects in Itaric character are not authorized by Levell WG, and will be deleted in next version. Table 2.3.1-1 List of Objects in Inventory Metadata(1/2) | No | • | Group/Object Name | type(*1) | Description | |----|---|-------------------------|----------|---| | 1 | | SizeMBDataGranule | double | The volume of data contained in the granule. | | 2 | | PlatformShortName | string | 'AM-1' fixed. | | 3 | | InstrumentShortName | string | 'ASTER' fixed. | | 4 | | BoundingRectangle | | This block contains area coverage for a granule. | | | 1 | WestBoundingCoordinate | double | Western-most coordinate of the scene expressed in longitude. | | | 2 | NorthBoundingCoordinate | double | Northern-most coordinate of the scene expressed in latitude. | | | 3 | EastBoundingCoordinate | double | Eastern-most coordinate of the scene expressed in longitude. | | | 4 | SouthBoundingCoordinate | double | Southern-most coordinate of the scene expressed in latitude. | | 5 | | SingleDateTime | | This contains the time of day and calendar date for a granule. | | | 1 | TimeofDay | string | format: HHMMSSSSSSSZ | | | 2 | CalendarDate | string | format: YYYYMMDD | | 6 | | Review | | This block provides for dates and status as applicable for collection which are active. | | 1 | FutureReviewDate | string | The date of the nearest planned QA | |---|------------------|--------|------------------------------------| | | | | peer review in future. | | | | | format: YYYYMMDD | Table 2.3.1-1 List of Objects in Inventory Metadata(2/2) | No. | | Group/Object Name | type(*1) | Description | |-----|---|--|----------|---| | 6 | 2 | ScienceReviewDate | string | The date of the last QA peer review. format: YYYYMMDD | | 7 | | QAStats | | This block contains measures of quality for a granule. | | | 1 | QAPercentMissingData | double | % of missing data of the scene. | | | 2 | QAPercentOutofBoundsData | double | % of out of bounds data of the scene. | | | 3 | QAPercentInterpolatedData | double | % of interpolated data of the scene. | | 8 | • | ReprocessingActual | string | The stating what reprocessing has been performed on this granule. {not reprocessed, reprocessed once, reprocessed twice, free text} | | 9 | | PGEVersion | string | The version of PGE | | 10 | *************************************** | ProcessingLevelID | string | The classification of the science data processing level: '1A' | | 11 | | MapProjectionName | string | The type of map projection used: 'N/A' | | 12 | | AdditionalAttributes | | This group contains the product specific attributes definition. | | | | AdditionalAttributesContaine r(n)(*2) | | This container contains the additional attributes of the product. Currently, only Day/Night Flag is contained in this container. | | | 1 | AdditionalAttributeName(n)(*2) | string | Name of additional attribute:
Day/Night Flag | | | 2 | AdditionalAttributeDescripti on(n)(*2) | string | Description of additional attribute: 'The Flag indicates observation condition' | | | 3 | AdditionalAttributeDataType (n)(*2) | string | Data type of additional attribute: 'STRING' | | 13 | | InformationContent | | This group contains the product specific attribute value. | | | | InformationContentContaine r(n)(*2) | | This container contains the information content. Currently, only Day/Night Flag is contained in this container. | | | *************************************** | ParameterValue(n)(*2) | string | Value of additional attribute: 'DT': observation in daytime 'NT': observation in nighttime | | 14 | | SensorShortName | string | The short name for sensor(s) using in generating the product: 'ASTER_VNIR','ASTER_SWIR',' ASTER_TIR','ASTER_STEREO' | #### NOTES: - (*1) Object types used in Metadata are - a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. # 2.3.1.2. ASTER GDS Generic Metadata (1) Indexes of Objects The Object list of ASTER GDS Generic metadata is shown in Table 2.3.1-2. ASTER GDS Generic metadata attributes are written to the HDF file attribute productmetadata.0. ASTER GDS Generic metadata contains ASTER Parameters in Generic Header for ASTER GDS Products (about Generic header for ASTER GDS Products, see ASTER LEVEL1 DATA PRODUCTS SPECIFICATION, science version, version 2). The ASTER Parameters are ASTER GDS specific attributes, i.e. not associated with DID311. (In Table 2.3.1-2, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) The objects in Itaric character are not authorized by Levell WG, and will be deleted in next version. Table 2.3.1-2 List of Object in ASTER GDS Generic Metadata (1/4) | No. | ····· | Group/Object Name | type(*1) | Description |
--|-------|----------------------------------|----------|--| | 1 | | IDofASTERGDSDataGranule | string | This provides a unique identifier for location of a data granule held in ASTER GDS. | | 2 | | RecievingCenter | string | 'EDOS' fixed. | | 3 | | ProcessingCenter | string | 'ASTER-GDS' fixed. | | 4 | | GenerationDateandTime | datetime | Generation date and time of this Level1A product. | | 5 | | PointingAngles | | Specification of the pointing angles of ASTER sensors. | | | | PointingAnglesContainer(n)(* 2) | | n = number of sensors | | | 1 | SensorName(n)(*2) | string | 'VNIR' or 'SWIR' or 'TIR' | | | 2 | PointingAngle(n)(*2) | double | pointing angle in degrees | | | 3 | SettingTimeofPointing(n)(*2) | datetime | YYYY-MM-
DDThh:mm:ssZ | | 6 | | GainInformation | | The information of the gain level. | | | | GainInformationContainer(n)(*2) | | This container contains the level of the data acquisition gain for VNIR and SWIR. | | | T-141 | Gain(n)(*2) | string | (Band Number, Band Gain) where , Band Number: '01','02','3N','3B','04','05 ','06','07','08','09' Band Gain: for VNIR: 'HGH': high gain 'NOR': normal gain 'LOW': low gain for SWIR: 'HGH': high gain 'NOR': normal gain 'NOR': normal gain 'LO1': low gain 1 'LO2': low gain 1 'LO2': low gain 2 when data is not acquired or doesn't exist: 'OFF' | | And the state of t | | CalibrationInformation | | Calibration information used to generate the geometric and radiometric correction tables. | Table 2.3.1-2 List of Object in ASTER GDS Generic Metadata (2/4) | No. | | | Group/Object Name | type(*1) | Description | |-------------------------|----|---|----------------------------------|----------|---| | 7 | | 1 | GeometricDBversion | string | The version information of the geometric correction data. (Version, Issuance date, Comments) | | | | 2 | RadiometricDBversion | string | The version information of the radiometric correction data. (Version, Issuance date, Comments) | | 8 | | | DataQuality | | The information about the quality of this product. | | | 1 | | CloudCoverage | | The information about the cloud coverage of the scene | | | | 1 | SceneCloudCoverage | integer | The percentage of cloud coverage for the whole scene. | | | | 2 | QuadrantCloudCoverage | integer | The percentages for 4 quarters of a scene in the order of: upper left -> upper right -> lower left -> lower right | | 9 | | | SourceDataProduct | string | The information about the input data used for generating this Level-1A product. (DataID, GenDT, Datatyp) where, DataID: ID of Level-0 Data granule. GenDT: Generation date and time. Datatyp: Data type, 'PDS' or 'EDS' | | 10 | 10 | | InstrumentInformation | | The information about sensors used to acquire data. | | | | | ASTEROperationMode | string | The types of ASTER operation. 'OBSERVATION' or 'CALIBRATION' or 'TEST' | | on-them manual transfer | 2 | | ObservationMode | | This group contains ASTER observation mode. | | | | | ObservationModeContainer(n) (*2) | | The container of ASTER observation mode. | | 1 | ASTERObservationMode(n)(* 2) | string | The observation mode of each sensor group. (SGname, Observation) where, SGname: 'VNIR1' or 'VNIR2' or 'SWIR' or 'TIR' Observation: 'ON' (data is acquired) or | |---|------------------------------|--------|---| | | | | acquired) or 'OFF' (data is not | | | | | acquired, or not existing in the granule) | Table 2.3.1-2 List of Object in ASTER GDS Generic Metadata (3/4) | No. | | Parameter Name | type(*1) | Description | |-----|--|----------------------|----------|---| | 10 | 3 | ProcessedBands | string | The status of all bands during observation. Format: set of flags described as 2-byte string. byte = 01,02,3N~14 (band 01,02,3N~14 data is acquired.) = XX (data corresponding to its band position is not acquired) Example: Value = "01023NXX0405XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | 11 | ······································ | SceneInformation | | The information about the scene concerning with the data granule. | | | 1 | ASTERSceneID | integer | The scene identifier defined
by path, row and view.
(path, row, view)
where,
path: 1-233(nominal)
row: 1-TBD
view: 1-TBD | | | 2 | AOSSceneID | string | The scene ID defined by AOS (definition: TBD). | | | 3 | OrbitNumber | integer | The orbit number of the satellite, when data is acquired. | | | 4 | RecurrentCycleNumber | integer | The satellite recurrent cycle number and the revolution number in the cycle. (cycle No., revolution No.) where, cycle: 1-260(max.) revolution: 1-233(nominal) | | | 5 | FlyingDirection | string | The satellite flight direction when observation is done. 'AS': ascending direction. 'DE': descending direction. | | | 6 | SolarDirection | double | The sun direction as seen from the scene center. (az, el) where, az: azimuth angle in degree. 0.0 <= az < 360.0 measured eastward from North. el: elevation angle in degree90.0 <= el <= 90.0 | | 7 | SpatialResolution | integer | The nominal spatial resolutions of VNIR, SWIR and TIR (unit: meter). (resolution of VNIR, resolution of SWIR, resolution of TIR) | |---|-------------------|---------|--| |---|-------------------|---------|--| Table 2.3.1-2 List of Object in ASTER GDS Generic Metadata (4/4) | No. | Parameter Name | type(*1) | Description | |-----|---------------------------------------|----------|--| | 12 | SceneCoordinates | | This group contains the information of coordinates of the scene. | | 1 | SceneCoord | | | | | SceneCoordContainer(n)(*2) | | The container of the scene coordinates, in the order of: upper left -> upper right -> lower left -> lower right | | 1 | FourCornersLongandLat(n)(*2) | double | Longitude and latitude of each corners of the full scene. unit: degree (long, lat) where, long: East longitude -180.0 <= long <= 180.0 lat: latitude -90.0 <= lat<= 90.0 | | 2 | CenterLongitudeandLatitude | double | Longitude and latitude of the scene center. unit: degree (long, lat) where, long: East longitude -180.0 <= long <= 180.0 lat: latitude -90.0 <= lat <= 90.0 | | 3 | QuadSceneCoord | | | | | QuadSceneCoordContainer(n) (*2) | | This container contains longitudes and latitudes of the quadrant scene, in the order of: upper left -> upper right -> lower left -> lower right | | | FourCornersLongndLatofQua
d(n)(*2) | double | Longitude and latitude of 4 corners of the each quadrant, in the order of: upper left -> upper right -> lower left -> lower right ((long,
lat)*4) where, long: East longitude (degree) -180.0 <= long <= 180.0 lat: latitude (degree) -90.0 <= lat <= 90.0 | | 13 | 1DofBrowseDatagranule | string | Logical reference to the browse product. | NOTES: - (*1) Object types used in Metadata are a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. #### 2.3.1.3. Product Specific Metadata(VNIR) #### (1) Indexes of Objects The Object list of Product Specific metadata(VNIR1) and Product Specific metadata(VNIR2) are shown in Table 2.3.1-3. Product Specific metadata(VNIR1) attributes (VNIRBand1Data and VNIRBand2Data Groups) are written to the HDF file attribute productmetadata.v1 and Product Specific metadata(VNIR2) attributes (VNIRBand3NData, VNIRBand3BData, Level0VNIR1Data and Level0VNIR2Data Groups) are written to productmetadata.v2. Product Specific Metadata(VNIR1) and Product Specific metadata(VNIR2) include product specific attributes, i.e. not associated with DID311. (In Table 2.3.1-3, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(1/11) | | | • | 4 | , ,,, | | |---|---|-----------------------------------|----------|--|--| | No. | | Group/Object Name | type(*1) | Description | | | 1 | *************************************** | VNIRBand1Data | | The information about VNIR band 1 of Level-1A. | | | 1 | | ExtractionfromL01 | | The information about the extraction from one or two Level 0 GROUP1 PDS (strip data) in order to make VNIR Band 1 Data. | | | | | ExtractionfromL01Container(n)(*2) | | | | | *************************************** | 1 | RSC1(n)(*2) | integer | RSC(relative scan count) of first & last scan(>=0). RSC is scan count in each PDS. | | | | 2 | SST1(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | | 3 | PDSid1(n)(*2) | string | Identifier of PDS including first & last scan. | | | 2 | | ImageDataInformation1 | integer | The information of VNIR band 1 image data. (npx, nln, bpp) where, npx: Number of pixels per line (4100: fixed) nln: Number of lines in frame (4200: nominal) bpp: Bytes per pixel (1: fixed) | | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(2/11) | No. | | Group/Object Name | type(*1) | Description | |-----|---|--------------------------------------|----------|--| | 1 3 | | GeometricCorrection1 | integer | The information of VNIR Band-1 geometric correction table. (nlpat, nlpet, dlpat, dlpet) where, nlpat: number of lattice points in along-track direction.(10: nominal) nlpet: number of lattice points in across-track direction.(11: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (410: nominal) dlpet: distance between two neighbor lattice points in across-track direction. | | 5 | | RadiometricCorrection1 DataQuality1 | integer | (400: nominal) The information of VNIR Band-1 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(4100 : fixed) npara: number of parameters (3 : fixed) | | | | DataQuanty1 | | This group contains the information about the quality of Level1A VNIR Band-1 data. | | | 1 | NumberofBadPixels1 | integer | The information of missing data. (nmp, ndd, nmg) where, nmp: number of missing pixels. ndd: number of damaged detectors. nmg: number of contiguous missing pixel groups (abbreviated 'Missing Groups') | | | 2 | ListofBadPixels1 | | This group contains the information about bad pixels. | | | | ListofBadPixels1Container(n)(*2) | | The second secon | | | | DirectionofBadPixel1(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(3/11) | No | No. | | Group/Object Name | | type(*1) | Description | |----|---|------------|-------------------|-----------------------------------|----------|--| | 1 | 5 | 2 | 2 | BadPixelLP1(n)(*2) | integer | The line number (in cross-track segment) or the pixel number (in along-track segment) including BPS. | | | | | 3 | BPSFirstLP1(n)(*2) | integer | First pixel number (in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP1(n)(*2) | integer | Last pixel number (in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel1(n)(*2) | string | The cause of bad data: 'M': Data Missing 'D': Damaged Detector | | | 6 | yanananana | | UnitConversionCoeff1 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-01 image. | | | | 1 | | Incl1 | double | Inclination | | | | 2 | | Offset1 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin1 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax l | integer | Maximum value of unsaturated pixel : 254 fixed. | | Ш | | 5 | | ConUnit1 | string | Converted Unit | | 2 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | VNIRBand2Data | | The information about VNIR band 2 of Level-1A. | | | 1 | | | ExtractionfromL02 | | The information about the extraction from one or two Level 0 GROUP1 PDS (strip data) in order to make VNIR Band 2 Data. | | | | | | ExtractionfromL02Container(n)(*2) | | | | | | 1 | | RSC2(n)(*2) | integer | RSC(relative scan count) of first & last scan(>=0). RSC is scan count in each PDS. | | | | 2 | | SST2(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | | 3 | | PDSid2(n)(*2) | string | Identifier of PDS including first & last scan. | | | 2 | | | ImageDataInformation2 | integer | The information of VNIR Band 2 image data. (npx, nln, bpp) where, npx: Number of pixels per line(4100: fixed) nln: Number of lines in frame(4200: nominal) bpp: Bytes per pixel (1: fixed) | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(4/11) | No. | | Group/Object Name | type(*1) | Description | |-----|---|--|----------|--| | 2 | 3 | GeometricCorrection2 | integer | The information of VNIR Band-2 geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction.(10: nominal) nlpct: number of lattice points in across-track direction.(11: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (410: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (400: nominal) | | 4 | 4 | RadiometricCorrection2 | integer | The information of VNIR Band-2 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(4100 : fixed) npara: number of parameters (3 : fixed) | | 5 | 5 | DataQuality2 | | This group contains the information about the quality of Level1A VNIR Band-2 data. | | | | NumberofBadPixels2 | integer | The information of missing data. (nmp, ndd, nmg) where, nmp: number of missing pixels. ndd: number
of damaged detectors. nmg: number of contiguous missing pixel groups (abbreviated 'Missing Groups') | | | 2 | ListofBadPixels2 ListofBadPixels2Container(n)(| | This group contains the information about bad pixels. | | | | *2) DirectionofBadPixel2(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | 2 | BadPixelLP2(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(5/11) | No. 1 able 2.3.1- | | <u> </u> | List of Object in Levell A Produ
Group/Object Name | type(*1) | Description Description | | |-------------------|-------------|----------|---|-------------------------------------|-------------------------|---| | L | No. 2 5 2 3 | | | | | <u> </u> | | 2 | 5 | 2 | 3 | BPSFirstLP2(n)(*2) | integer | First pixel number (in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP2(n)(*2) | integer | Last pixel number (in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel2(n)(*2) | string | The cause of bad data: 'M': Data Missing 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff2 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-02 image. | | | | 1 | | Incl2 | double | Inclination | | | | 2 | | Offset2 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin2 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax2 | integer | Maximum value of unsaturated pixel : 254 fixed. | | | | 5 | | ConUnit2 | string | Converted Unit | | 3 | <u> </u> | | | VNIRBand3NData | | The information about VNIR band 3N of Level-1A. | | | 1 | | | ExtractionfromL03N | | The information about the extraction from one or two Level 0 GROUP2 PDS (strip data) in order to make VNIR Band 3N Data. | | | | | | ExtractionfromL03NContainer (n)(*2) | | | | | | 1 | | RSC3N(n)(*2) | integer | RSC(relative scan count) of first & last scan(>=0). RSC is scan count in each PDS. | | | | 2 | | SST3N(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | | 3 | | PDSid3N(n)(*2) | string | Identifier of PDS including first & last scan. | | | 2 | | | ImageDataInformation3N | integer | The information of VNIR Band 3N image data. (npx, nln, bpp) where, npx: Number of pixels per line(4100: fixed) nln: Number of lines in frame(4200: nominal) bpp: Bytes per pixel (1: fixed) | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(6/11) | No. | | | Group/Object Name | | Description | | |-----|--|---|--|---------|---|--| | 3 | | | GeometricCorrection3N | integer | The information of VNIR Band-3N geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction.(10: nominal) nlpct: number of lattice points in across-track direction.(11: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (410: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (400: nominal) | | | 4 | | | RadiometricCorrection3N | integer | The information of VNIR Band-3N radiometric correction table. (ndet, npara) where, ndet: number of detectors used.(4100 : fixed) npara: number of parameters (3 : fixed) | | | 5 | | | DataQuality3N | | This group contains the information about the quality of Level1A VNIR Band-3N data. | | | | 1 | | NumberofBadPixels3N | integer | The information of missing data. (nmp, ndd, nmg) where, nmp: number of missing pixels. ndd: number of damaged detectors.nmg: number of contiguous missing pixel groups (abbreviated 'Missing Groups') | | | | 2 | | ListofBadPixels3N ListofBadPixels3NContainer(n | | This group contains the information about bad pixels. | | | | and the second s | 1 |)(*2)
DirectionofBadPixel3N(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP3N(n)(*2) | integer | The line number (in cross-track segment) or the pixel number (in along-track segment) including BPS. | | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(7/11) | | | 2.3 | 1-: | B List of Object in Level1A Produ | | | |--
--|-----|-------------------|-------------------------------------|----------|---| | | No. | | Group/Object Name | | type(*1) | Description First pixel number (in cross- | | 3 | 5 | 2 | 3 | BPSFirstLP3N(n)(*2) | integer | First pixel number (in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | PROPERTY OF THE TH | | 4 | BPSLastLP3N(n)(*2) | integer | Last pixel number (in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel3N(n)(*2) | string | The cause of bad data: 'M': Data Missing 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff3N | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-3N image. | | | | 1 | | Incl3N | double | Inclination | | | | 2 | | Offset3N | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin3N | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax3N | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | | ConUnit3N | string | Converted Unit | | 4 | | | | VNIRBand3BData | | The information about VNIR band 3B of Level-1A. | | | 114 | | | ExtractionfromL03B | | The information about the extraction from one or two Level 0 GROUP2 PDS (strip data) in order to make VNIR Band 3BData. | | | | | | ExtractionfromL03BContainer (n)(*2) | | | | | | 1 | | RSC3B(n)(*2) | integer | RSC(relative scan count) of first & last scan(>=0). RSC is scan count in each PDS. | | | | 2 | | SST3B(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | | 3 | | PDSid3B(n)(*2) | string | Identifier of PDS including first & last scan. | | ANTIFICAÇÃO MINIMATERIA MATERIA POR ANTIFICAÇÃO ANTIFI | 2 | | | ImageDataInformation3B | integer | The information of VNIR Band 3B image data. (npx, nln, bpp) where, npx: Number of pixels per line(5000: fixed) nln: Number of lines in frame(4600: nominal) bpp: Bytes per pixel (1: fixed) | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(8/11) | No. | | | Group/Object Name | type(*1) | Description | |-----|---|---|------------------------------------|----------|---| | 4 3 | | | GeometricCorrection3B | integer | The information of VNIR Band-3B geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction.(10::nominal) nlpct: number of lattice points in across-track direction.(12::nominal) dlpat: distance between two neighbor lattice points in along-track direction. (500: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (400: nominal) | | 4 | | | RadiometricCorrection3B | integer | The information of VNIR Band-3B radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(5000 : fixed) npara: number of parameters (3 : fixed) | | 5 | | | DataQuality3B | | This group contains the information about the quality of Level1A VNIR Band-3B data. | | | 1 | | NumberofBadPixels3B | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | 2 | | ListofBadPixels3B | | This group contains the information about bad pixels. | | | | | ListofBadPixels3BContainer(n)(*2) | | | | | *************************************** | 1 | DirectionofBadPixel3B(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | 2 | BadPixelLP3B(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(9/11) | No. | | | . 1 - | 3 List of Object in Level1A Prod
Group/Object Name | type(*1) | Description | |-----|-------------|---|-------------|---|---|--| | | | 2 | 3 | BPSFirstLP3B(n)(*2) | integer | First pixel number (in cross- | | " | , | 4 | 3 | DISTRACT SD(H)('A) | integer | track segment) or first line | | | | | | | 1 | number (in along-track | | | | | | | Ī | segment) of BPS. | | | | | 4 | BPSLastLP3B(n)(*2) | integer | Last pixel number (in cross- | | | | | , | | | track segment) or last line | | | | | | | ****** | number (in along-track | | | | | | | | segment) of BPS. | | | | | 5 | CauseofBadPixel3B(n)(*2) | string | The cause of bad data: | | | | | | | | 'M': Data Missing | | | | | | | | 'D' : Damaged Detector | | | 6 | | | UnitConversionCoeff3B | - | This group contains the | | | | | | | *************************************** | coefficients used for | | | | | | | | radiance conversion, from the pixel value of the band- | | | | | | | | 3B image. | | | | 1 | | Incl3B | double | Inclination | | | | 2 | | Offset3B | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin3B | integer | Minimum value of | | | | | | Choudvinisb | meger | unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax3B | integer | Maximum value of | | | | | | | | unsaturated pixel: | | | | | | | | 254 fixed. | | | | 5 | | ConUnit3B | string | Converted Unit | | | 7 | | | FirstPixelAddressGroup | | This group identifies the | | | | | | | 444 | address of the first available | | | | | | | | pixel in each refreshing | | | | | | | - | cycle of VNIR band-3B | | | | 1 | | Ncycles | intona | image data. Number of refreshing cycle. | | | | ı | | Neycles | integer | Since there are as many as 9 | | | | | | | | refreshing cycles in a frame | | | | | | | | data, nominal value for | | | | | | | | Neycles is 9. | | | | 2 | | FPAddress | | | | | | | | FPAddressContainer(n)(*2) | | This container contains | | | | | | | | relative scan number and | | | | | | | | address for each refreshing | | | | | | | | cycle. | | | | | 1 | FirstPixelAddress(n)(*2) | integer | (Sc-n, Ad-n) | | | | | | | | where, Sc-n: Relative scan count in | | | | | | | | n-th cycle. | | | | | | | | Ad-n: Address in n-th | | | | | | | | cycle. | | 5 | | | | Level0VNIR1Data | | The information about | | | | | | | | Level-0 VNIR Group-1 | | | | | | | *************************************** | which contains VNIR band I | | | | | | n | <u> </u> | and 2 data. | | | 1 | | | PhysicalUnit1 | Taran Library | The information about | | | | | | | | Level-0 VNIR Group-1 physical unit. | | | | Π | | BarCodeID1 | string | Bar code serial number of | | | | * | | | | the physical unit. | | | | 2 | | CompletionDate1 | datetime | Date and time of completion | | | | | | • | - | of the physical media. | | | | | | | ···· | | | | 1 | 3 | PDSCounts1 | integer | Total number of PDSs on | |---|---|---|------------|---------|----------------------------| | L | | | | | the physical unit (<=9999) | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(10/11) | N | No. | | Group/Object Name | type(*1) | Description | |---|-----|----------
--|----------|--| | | 5 2 | | L0DataSet1 | 1315. | This group contains the | | 1 | 1 - | | Lovatasett | | information of L0 VNIR | | | ļ | | | | Group-1 data set(PDSs). | | - | | | L0DataSet1Container(n)(*2) | 1 | The information about PDSs | | | | · | | | of Level-0 Group-1. | | | - | 1 | PDSid1(n)(*2) | string | Identifier of this PDS assigned by EDOS. | | | | 2 | FirstPacketTime1(n)(*2) | datetime | First packet time for this | | - | | | | | PDS. | | | 7 | 3 | LastPacketTime1(n)(*2) | datetime | Last packet time for this PDS. | | | | 4 | PacketCounts1(n)(*2) | integer | Number of packets in this PDS. | | | 3 | | L0DataType1 | string | The identifier of the input | | | | | | | data type (defined by | | | | | | | EDOS). | | | | | | | 'PDS': Production Data Set | | | | | | | 'EDS': Expedited Data Set | | | - | | LODataO14-1 | 1 | "TEST": Test Data | | | 4 | | L0DataQuality1 | - | This specifies the number of | | | | | | - | input packets used to | | | | | | 1 | generate the data granule, | | | | 1 | SensorGroupName1 | etrina | and these quality. | | | | ' | оспооготопричанет | string | Sensor group name: 'VNIR1' (fixed) | | | | 2 | Number of Packets 1 | integer | Number of packets used to | | | | | | | generate the scene data of | | | | | | 4 | each group. | | | | 3 | PercentofMissingPackets1 | double | percent of missing packets | | | | <u></u> | | | of each group. Unit: % | | | | 4 | PercentofCorrectedPackets1 | double | percent of packets with | | | | | | | errors corrected by Reed | | | | | | | Solomon (R-S) decoding. | | 6 | | <u>L</u> | Lovella VALIDAD - 4- | | Unit: % | | ٥ | | | Level0VNIR2Data | | The information about | | | | | | | Level-0 VNIR Group-2 | | | | | | | which contains VNIR band 3N and 3B data. | | | 1 | ···· | PhysicalUnit2 | | The information about | | | 1 | | z nysicaronita | | Level-0 VNIR Group-2 | | | | | | | physical unit. | | | | 1 | BarCodeID2 | string | Bar code serial number of | | | | | | | the physical unit. | | | | 2 | CompletionDate2 | datetime | Date and time of completion | | | ! | | <u> </u> | | of the physical media. | | | | 3 | PDSCounts2 | integer | Total number of PDSs on | | | | <u> </u> | | | the physical unit (<=9999) | | | 2 | | L0DataSet2 | | This group contains the | | | | | | | information of L0 VNIR | | | | | | | Group-2 data set(PDSs). | | | | | L0DataSet2Container(n)(*2) | | The information about PDSs | | - | ŗ | P | The state of s | _ | of Level-0 Group-2. | | ĺ | | 1 | PDSid2(n)(*2) | string | Identifier of this PDS | | | Į | <u> </u> | | <u></u> | assigned by EDOS. | | | 2 | FirstPacketTime2(n)(*2) | datetime | First packet time for this PDS. | |--|---|-------------------------|----------|---------------------------------| | | 3 | LastPacketTime2(n)(*2) | datetime | Last packet time for this PDS. | Table 2.3.1-3 List of Object in Level1A Product Specific Metadata(VNIR)(11/11) | N | No. | | Group/Object Name | type(*1) | Description | |---|-----|---|----------------------------|----------|--| | 6 | 2 | 4 | PacketCounts2(n)(*2) | integer | Number of packets in this PDS. | | | 3 | , | L0DataType2 | string | The identifier of the input data type (defined by EDOS). 'PDS': Production Data Set 'EDS': Expedited Data Set 'TEST': Test Data | | | 4 | | L0DataQuality2 | | This specifies the number of input packets used to generate the data granule, and these quality. | | | | 1 | SensorGroupName2 | string | Sensor group name: 'VNIR2' (fixed) | | | | 2 | NumberofPackets2 | integer | Number of packets used to generate the scene data of each group. | | | | 3 | PercentofMissingPackets2 | double | percent of missing packets of each group. Unit: % | | | | 4 | PercentofCorrectedPackets2 | double | percent of packets with
errors corrected by Reed
Solomon (R-S) decoding.
Unit: % | #### NOTES: - (*1) Object types used in Metadata are - a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. ## 2.3.1.4. Product Specific Metadata(SWIR) (1) Indexes of Objects The Object list of Product Specific metadata(SWIR1) and Product Specific metadata(SWIR2) are shown in Table 2.3.1-4. Product Specific metadata(SWIR1) attributes (SWIRBand4Data, SWIRBand5Data and SWIRBand6Data Groups) are written to the HDF file attribute productmetadata.s1 and Product Specific metadata(SWIR2) attributes (SWIRBand7Data, SWIRBand8Data, SWIRBand9Data, Level0SWIRData, SWIR Registration Quality and Parallax Correction quality Groups) are written to pruductmetadata.s2. Product Specific Metadata(SWIR1) and Product Specific metadata(SWIR2) include product specific attributes, i.e. not associated with DID311. (In Table 2.3.1-4, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(1/15) | No. | | Group/Object Name | type(*1) | Description | |--|---|-----------------------------------|----------|--| | 1 | | SWIRBand4Data | | The information about SWIR band 4 of Level-1A. | | the state of s | | ExtractionfromL04 | | The information about the extraction from one or two Level 0 GROUP3 PDS(strip data) in order to make SWIR band 4 data. | | | | ExtractionfromL04Container(n)(*2) | | | | | 1 | RSC4(n)(*2) | integer | RSC(relative scan count) of first & last scan (>=0). RSC is scan count in each PDS. | | | 2 | SST4(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | 3 | PDSid4(n)(*2) | string |
Identifier of PDS including first & last scan. | | 2 | | ImageDataInformation4 | integer | The information of SWIR band 4 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2048: fixed) nln: Number of lines in frame(2100: nominal) bpp: Bytes per pixel (1: fixed) | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(2/15) | No | No. | | | Group/Object Name | type(*1) | Description | |----|-----|-----|---|-------------------------------|--|--| | 1 | 3 | | | GeometricCorrection4 | integer | The information of SWIR Band-4 geometric correction | | | | | | | | table. | | | | | | | | (nlpat, nlpct, dlpat, dlpct) where. | | | | | | | | nlpat: number of lattice | | | | | | | | points in along-track | | | | | | | | direction.(103: nominal) | | | | | | | | nlpct: number of lattice | | | | | | | | points in across-track | | | | | | | | direction.(105: nominal) | | | | | | | | dlpat: distance between two neighbor lattice points in | | | | | | | | along-track direction. | | | | | | | | (20: nominal) | | | | | | | | dlpct: distance between two | | | | | | | | neighbor lattice points in | | | | | | | | across-track direction. | | | | | | | | (20: nominal) | | | 4 | | | RadiometricCorrection4 | integer | The information of SWIR Band-4 radiometric | | | | | | | | correction table. | | | • | | | | | (ndct, npara) | | | | | | | | where, | | | | | | | | ndct: number of detectors | | | | | | | | used.(2048 : fixed) | | | | | | | | npara: number of parameters (3: fixed) | | | 5 | | | DataQuality4 | | This group contains the | | | | | | | | information about the quality of Level1A SWIR Band-4 | | | | | | | | data. | | | | T 1 | | NumberofBadPixels4 | integer | The information about bad | | | | | | | | pixels. | | | | | | | | (nmp, ndd, nelm) | | | | | | | | where, | | | | | | | | nmp: number of missing | | | | | | | | pixels. ndd: number of damaged | | | | | | , | | detectors. | | | | | | | | nelm: number of elements of | | | | | | | | the next list of bad pixels. | | | | 2 | | ListofBadPixels4 | | This group contains the | | | | | | | | information about bad | | | | | | ListofBadPixels4Container(n)(| | pixels. | | | | | | *2) | | | | | | | 1 | DirectionofBadPixel4(n)(*2) | string | The direction of bad pixel | | | | | | | The state of s | segment. 'C' = cross-track | | | | | | | | 'A' = along-track | | | | | 2 | BadPixelLP4(n)(*2) | integer | The line number (in cross- | | | | | | | | track segment) or the pixel | | ĺ | | | | | | number (in along-track | | | l | | 1 | | 1 | segment) including BPS. | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(3/15) | No | No. | | | Group/Object Name | type(*1) | Description | |--|-----|---|---|------------------------------------|----------|--| | 1 | 5 | 2 | 3 | BPSFirstLP4(n)(*2) | integer | First pixel number (in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP4(n)(*2) | integer | Last pixel number (in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel4(n)(*2) | string | The cause of bad data: 'Me': Missing Even Pixel 'Mo': Missing Odd Pixel 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff4 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-4 image. | | | | 1 | | Incl4 | double | Inclination | | | | 2 | | Offset4 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin4 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax4 | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | | ConUnit4 | string | Converted Unit | | 2 | | | | SWIRBand5Data | | The information about SWIR band 5 of Level-1A. | | | | | | ExtractionfromL05 | | The information about the extraction from one or two Level 0 GROUP3 PDS (strip data) in order to make SWIR Band 5 Data. | | | | | | ExtractionfromL05Container(n)(*2) | | | | | | 1 | | RSC5(n)(*2) | integer | RSC(relative scan count) of first & last scan(>=0). RSC is scan count in each PDS. | | | | 2 | | SST5(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | | 3 | | PDSid5(n)(*2) | string | Identifier of PDS including first & last scan. | | Andrew Angreen, the same of th | 2 | | | ImageDataInformation5 | integer | The information of SWIR band 5 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2048: fixed) nln: Number of lines in frame(2100: nominal) bpp: Bytes per pixel (1: fixed) | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(4/15) | No | No. | | | Group/Object Name | type(*1) | Description | |--|-----|---|---|-----------------------------------|----------|--| | 2 | 3 | | | GeometricCorrection5 | integer | The information of SWIR Band-5 geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction.(103: nominal) nlpct: number of lattice points in across-track direction.(105: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (20: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (20:
nominal) | | | 4 | | | RadiometricCorrection5 | integer | The information of SWIR Band-5 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(2048 : fixed) npara: number of parameters (3 : fixed) | | | 5 | | | DataQuality5 | | This group contains the information about the quality of Level1A SWIR Band-5 data. | | | | 1 | | NumberofBadPixels5 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors.nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels5 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels5Container(n)(*2) | | | | VIEW TRANSPORTER AND | | | 1 | DirectionofBadPixel5(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixefLP5(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(5/15) | No | Э. | | | Group/Object Name | type(*1) | Description | |----|----|---|---|-----------------------------------|----------|--| | 2 | 5 | 2 | 3 | BPSFirstLP5(n)(*2) | integer | First pixel number (in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP5(n)(*2) | integer | Last pixel number (in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel5(n)(*2) | string | The cause of bad data: 'Me': Missing Even Pixel 'Mo': Missing Odd Pixel 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff5 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-5 image. | | | | 1 | | Incl5 | double | Inclination | | | | 2 | | Offset5 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin5 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax5 | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | | ConUnit5 | string | Converted Unit | | 3 | | | | SWIRBand6Data | | The information about SWIR band 6 of Level-1A. | | | 1 | | | ExtractionfromL06 | | The information about the extraction from one or two Level 0 GROUP3 PDS (strip data) in order to make SWIR Band 6 Data. | | | | | | ExtractionfromL06Container(n)(*2) | | | | | | 1 | | RSC6(n)(*2) | integer | RSC(relative scan count) of first & last scan(>=0). RSC is scan count in each PDS. | | | | 2 | | SST6(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | | 3 | | PDSid6(n)(*2) | string | Identifier of PDS including first & last scan. | | | 2 | | | ImageDataInformation6 | integer | The information of SWIR band 6 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2048: fixed) nln: Number of lines in frame(2100: nominal) bpp: Bytes per pixel (1: fixed) | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(6/15) | No | | | Group/O | bject Name | type(*1) | Description | |----|---|---|------------------|----------------------|----------|--| | 3 | 3 | | Geometri | cCorrection6 | integer | The information of SWIR Band-6 geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction.(103: nominal) nlpct: number of lattice points in across-track direction.(105: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (20: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (20: nominal) | | | 4 | | Radiomet | ricCorrection6 | integer | The information of SWIR Band-6 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(2048 : fixed) npara: number of parameters (3 : fixed) | | | 5 | | DataQua | lity6 | | This group contains the information about the quality of Level 1A SWIR Band-6 data. | | | | 1 | Numberof | BadPixels6 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | ListofBac | | | This group contains the information about bad pixels. | | | | | ListofBad
*2) | Pixels6Container(n)(| | | | | *************************************** | | | ofBadPixel6(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | BadPixelL | .P6(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(7/15) | No | ······ | | | Group/Object Name | type(*1) | Description | |--|--------|---|---|------------------------------------|----------|--| | | | | | | | First pixel number (in cross- | | 3 | 5 | 2 | 3 | BPSFirstLP6(n)(*2) | integer | track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP6(n)(*2) | integer | Last pixel number (in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel6(n)(*2) | string | The cause of bad data: 'Me': Missing Even Pixel 'Mo': Missing Odd Pixel 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff6 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-6 image. | | | | 1 | | Incl6 | double | Inclination | | | | 2 | | Offset6 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin6 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax6 | integer | Maximum value of unsaturated pixel : 254 fixed. | | | | 5 | | ConUnit6 | string | Converted Unit | | 4 | | | | SWIRBand7Data | | The information about SWIR band 7 of Level-1A. | | | 1 | | | ExtractionfromL07 | | The information about the extraction from one or two Level 0 GROUP3 PDS (strip data) in order to make SWIR Band 7 Data. | | | | | | ExtractionfromL07Container(n)(*2) | | | | | | 1 | | RSC7(n)(*2) | integer | RSC(relative scan count) of first & last scan(>=0). RSC is scan count in each PDS. | | | | 2 | | SST7(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | | 3 | | PDSid7(n)(*2) | string | Identifier of PDS including first & last scan. | | THE RESERVE OF THE PROPERTY | 2 | | | ImageDataInformation7 | integer | The information of SWIR band 7 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2048: fixed) nln: Number of lines in frame(2100: nominal) bpp: Bytes per pixel (1: fixed) | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(8/15) | No. | | Group/Object Name | type(*1) | Description | |-----|------|---|----------
--| | 4 3 | | GeometricCorrection7 | integer | The information of SWIR Band-7 geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction.(103: nominal) nlpct: number of lattice points in across-track direction.(105: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (20: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (20: nominal) | | 4 | | RadiometricCorrection7 | integer | The information of SWIR Band-7 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(2048 : fixed) npara: number of parameters (3 : fixed) | | 5 | | DataQuality7 | | The information of VNIR Band-7 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(2048 : fixed) npara: number of parameters (3 : fixed) | | | 1000 | NumberofBadPixels7 | integer | The information about bad pixels. (nmp, nelm, ndd) where, nmp: number of missing pixels. nelm: number of elements of the next list of bad pixels. ndd: number of damaged detectors. | | | 2 | ListofBadPixels7 ListofBadPixels7Container(n)(*2) | | This group contains the information about bad pixels. | | | | DirectionofBadPixel7(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(9/15) | No | Э. | | | Group/Object Name | type(*1) | Description | |---|----|---|---|-------------------------------------|-------------------|---| | 4 | 5 | 2 | 2 | BadPixelLP7(n)(*2) | integer | The line number (in cross- | | - | | | | | _ | track segment) or the pixel | | | | | | | | number (in along-track | | 1 | | | | | | segment) including BPS. | | ı | | | 3 | BPSFirstLP7(n)(*2) | integer | First pixel number (in cross- | | | | | | | l | track segment) or first line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | 1 | | | 4 | BPSLastLP7(n)(*2) | integer | Last pixel number (in cross- | | | | | | | | track segment) or last line | | | | | | | | number (in along-track | | - | | | | | | segment) of BPS. | | | | | 5 | CauseofBadPixel7(n)(*2) | string | The cause of bad data: | | | | | | | | 'Me': Missing Even Pixel | | 1 | | | | | | 'Mo': Missing Odd Pixel | | 1 | | | | | | 'D': Damaged Detector | | I | 6 | | | UnitConversionCoeff7 | | This group contains the | | 1 | | | ı | | | coefficients used for | | | | | l | | | radiance conversion, from | | ı | | | | | | the pixel value of the band-7 | | į | | | | | | image. | | ı | | 1 | | Incl7 | double | Inclination | | | | 2 | | Offset7 | double | Offset: 0.0 fixed. | | 1 | | 3 | | UnSatMin7 | integer | Minimum value of | | I | | | | | | unsaturated pixel: 0 fixed. | | l | | 4 | | UnSatMax7 | integer | Maximum value of | | | | | | | | unsaturated pixel: | | | | | | | | 254 fixed. | | | | 5 | | ConUnit7 | string | Converted Unit | | 5 | | | | SWIRBand8Data | | The information about | | r | | | | | | SWIR band 8 of Level-1A. | | - 1 | 1 | | | ExtractionfromL08 | | The information about the | | 1 | | | | | | extraction from one or two | | ı | | | | | | Level 0 GROUP3 PDS (strip | | - 1 | | | | | | data) in order to make SWIR | | | | | | *** | | Band 8 Data. | | | | | | ExtractionfromL08Container(n)(*2) | | | | | | 1 | | RSC8(n)(*2) | integer | RSC(relative scan count) of | | | | | | | | first & last scan(>=0). RSC | | | | | | | , | is scan count in each PDS. | | • | | 2 | | SST8(n)(*2) | datetime | SST(scan start time) of first | | | | | | | | & last scan. | | | | | 1 | | , | | | | | 3 | | PDSid8(n)(*2) | string | Identifier of PDS including | | | | 3 | | | | first & last scan. | | | 2 | 3 | | PDSid8(n)(*2) ImageDataInformation8 | string
integer | first & last scan. The information of SWIR | | | 2 | 3 | | | | first & last scan. The information of SWIR band 7 image data. | | | 2 | 3 | | | | first & last scan. The information of SWIR | | | 2 | 3 | | | | first & last scan. The information of SWIR band 7 image data. | | | 2 | 3 | | | | first & last scan. The information of SWIR band 7 image data. (npx, nln, bpp) | | *************************************** | 2 | 3 | | | | first & last scan. The information of SWIR band 7 image data. (npx, nln, bpp) where, | | 164-204 (1971-1971-1971-1971-1971-1971-1971-1971 | 2 | 3 | | | | first & last scan. The information of SWIR band 7 image data. (npx, nln, bpp) where, npx: Number of pixels per | | A CAMPAGE THE PROPERTY OF | 2 | 3 | | | | first & last scan. The information of SWIR band 7 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2048: fixed) | | tiden is de un est de manier en mente de l'entre en le manuer en en en entre de la manier de l'est de la colon | 2 | 3 | | | | first & last scan. The information of SWIR band 7 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2048: fixed) nln: Number of lines in | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(10/15) | No | Э. | | Group/Object Name | type(*1) | Description | |----|----|---------------------|-----------------------------------|---------------------------|--| | 5 | 3 | | GeometricCorrection8 | integer | The information of SWIR Band-8 geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction.(103: nominal) nlpct: number of lattice points in across-track direction.(105: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (20: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (20: nominal) | | | 4 | | RadiometricCorrection8 | integer | The information of SWIR Band-8 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(2048 : fixed) npara: number of parameters (3 : fixed) | | | 5 | | DataQuality8 | | This group contains the information about the quality of Level1A SWIR Band-8 data. | | | | Yeard | NumberofBadPixels8 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | ListofBadPixels8 | | This group contains the information about bad pixels. | | | | TT-Vermonterstrikel | ListofBadPixels8Container(n)(*2) | - Professional Profession | | | | | | DirectionofBadPixel8(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 BadPixelLP8(n)(*2) | integer | The line number (in cross-track segment) or the pixel number (in along-track segment) including BPS. | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(11/15) | N | 0. | | | Group/Object Name | type(*1) | Description | |---|----|---|---|-----------------------------------|----------
--| | 5 | 5 | 2 | 3 | BPSFirstLP8(n)(*2) | integer | First pixel number (in cross-track segment) or first line number (in along-track segment) of BPS. | | | | | 4 | BPSLastLP8(n)(*2) | integer | Last pixel number (in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel8(n)(*2) | string | The cause of bad data: 'Me': Missing Even Pixel 'Mo': Missing Odd Pixel 'D': Damaged Detector | | | 6 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | UnitConversionCoeff8 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-8 image. | | | | 1 | | Incl8 | double | Inclination | | | | 2 | | Offset8 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin8 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax8 | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | | ConUnit8 | string | Converted Unit | | 6 | | | | SWIRBand9Data | | The information about SWIR band 9 of Level-1A. | | *************************************** | 1 | | - | ExtractionfromL09 | | The information about the extraction from one or two Level 0 GROUP3 PDS (strip data) in order to make SWIR Band 9 Data. | | | | | | ExtractionfromL09Container(n)(*2) | | | | | | 1 | | RSC9(n)(*2) | integer | RSC(relative scan count) of first & last scan(>=0). RSC is scan count in each PDS. | | | | 2 | | SST9(n)(*2) | datetime | SST(scan start time) of first & last scan. | | | | 3 | | PDSid9(n)(*2) | string | Identifier of PDS including first & last scan. | | | 2 | | | ImageDataInformation9 | integer | The information of SWIR band 9 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2048: fixed) nln: Number of lines in frame(2100: nominal) bpp: Bytes per pixel (1: fixed) | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(12/15) | No. | | Group/Object Name | type(*1) | Description | |--|---|-----------------------------------|----------|--| | 6 | 3 | GeometricCorrection9 | integer | The information of SWIR Band-9 geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction.(103: nominal) nlpct: number of lattice points in across-track direction.(105: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (20: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (20: nominal) | | | 4 | RadiometricCorrection9 | integer | The information of SWIR Band-9 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(2048 : fixed) npara: number of parameters (3 : fixed) | | | 5 | DataQuality9 | | This group contains the information about the quality of Level1A SWIR Band-9 data. | | | 1 | NumberofBadPixels9 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | *************************************** | 2 | ListofBadPixels9 | | This group contains the information about bad pixels. | | | | ListofBadPixels9Container(n)(*2) | - Atrian | The direction of bad pixel | | Total control of the state t | | DirectionofBadPixel9(n)(*2) | string | segment. 'C' = cross-track 'A' = along-track | | An equippe are consisted with the first of t | 2 | BadPixelLP9(n)(*2) | integer | The line number (in cross-track segment) or the pixel number (in along-track segment) including BPS. | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(13/15) | No | No.
5 5 2 | | | Group/Object Name | type(*1) | Description | |----|------------------|---|----------|---------------------------|----------|---| | 6 | 5 | 2 | 3 | BPSFirstLP9(n)(*2) | integer | First pixel number (in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP9(n)(*2) | integer | Last pixel number (in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel9(n)(*2) | string | The cause of bad data: 'Me': Missing Even Pixel 'Mo': Missing Odd Pixel 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff9 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-9 image. | | | | Ī | ••• | Incl9 | double | Inclination | | | | 2 | | Offset9 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin9 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax9 | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | | ConUnit9 | string | Converted Unit | | 7 | | | | Level0SWIRData | | The information about
Level-0 SWIR which
contains VNIR band 3N and
3B data. | | | 1 | | | PhysicalUnit | | The information about Level-0 SWIR physical unit. | | | | | | BarCodeID | string | Bar code serial number of the physical unit. Date and time of completion | | | | 3 | <u>-</u> | CompletionDate PDSCounts | datetime | of the physical media. Total number of PDSs on | | | | 3 | | PDSCounts | imegei | the physical unit (<=9999) | | | 2 | | | L0DataSet | | This group contains the information of L0 SWIR data set(PDSs). | | | | | | L0DataSetContainer(n)(*2) | | The information about PDSs of Level-0 Group-3. | | | | | | PDSid(n)(*2) | string | Identifier of this PDS assigned by EDOS. | | + | | 2 | | FirstPacketTime(n)(*2) | datetime | First packet time for this PDS. | | | | 3 | | LastPacketTime(n)(*2) | datetime | Last packet time for this PDS. | | | | 4 | | PacketCounts(n)(*2) | integer | Number of packets in this PDS. | | | 3 | | ···· | L0DataType | string | The identifier of the input data type (defined by EDOS). 'PDS': Production Data Set 'EDS': Expedited Data Set 'TEST': Test Data | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(14/15) | No | · | Group/Object Name | type(*1) | Description | |----|-------------|---------------------------|----------|--| | 7/ | 4 | L0DataQuality | | This specifies the number of input packets used to generate the data granule, and these quality. | | | I | SensorGroupName | string | Sensor group name: 'SWIR' (fixed) | | | 2 | NumberofPackets | integer | Number of packets used to generate the scene data of each group. | | | 3 | PercentofMissingPackets | double | percent of missing packets
of each group. Unit: % | | | 4 | PercentofCorrectedPackets | double | percent of packets with
errors corrected by Reed
Solomon (R-S) decoding.
Unit: % | | 3 | | SWIRRegistrationQuality | | The registration information of SWIR based on VNIR. | | | 1 | ProcessingFlag | integer | O: no output, because processing is impossible. 1: output is the result computed. 2: output is extracted from registration file. 4: output obtained by other method. | | | 2 | NumberofMeasurements | integer | The number of measurements | | | 3 | MeasurementPointNumber | integer | The number of measurement points. | | | 4 | AverageOffset | double |
Average offset value. (LAOset, PAOset) where, LAOset: Line direction average offset. PAOset: Pixel direction average offset. | | | 5 | StandardDeviationOffset | double | Standard deviation offset value. (LSDOset, PSDOset) where, LSDOset: Line direction SD offset. PSDOset: Pixel direction SD offset. | | | 6 | Threshold | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | |) | | ParallaxCorrectionQuality | | The information of SWIR parallax correction. | Table 2.3.1-4 List of Object in Level1A Product Specific Metadata(SWIR)(15/15) | N | o. | Group/Object Name | type(*1) | Description | |---|----|-------------------|----------|--| | 9 | 1 | PctImageMatch | integer | The percent of image matching used in the SWIR parallax collection processing. | | | 2 | AvgCorrelCoef | double | The Average Correlation Coefficient. | | | 3 | Cthled | double | The Correlation Threshold value. | ### NOTES: - (*1) Object types used in Metadata are - a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. # 2.3.1.5. Product Specific Metadata(TIR) (1) Indexes of Objects The Object list of Product Specific metadata(TIR1) and Product Specific metadata(TIR2) are shown in Table 2.3.1-5. Product Specific metadata(TIR1) attributes(TIRBand10Data, TIRBand11Data and TIRBand12Data Groups) are written to the HDF file attribute productmetadata.t1 and Product Specific metadata(TIR2) attributes(TIRBand13Data, TIRBand14Data, Level0TIRData and TIRRegistrationQuality Groups) are written to the HDF file attribute productmetadata.t2. Product Specific Metadata(TIR1) and Product Specific metadata(TIR2) include product specific attributes, i.e. not associated with DID311. (In Table 2.3.1-5, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(1/12) | No. | | Group/Object Name | type(*1) | Description | |-----|---|------------------------|----------|--| | 1 | | TIRBand10Data | | The information about TIR band 10 of Level-1A. | | | | ExtractionfromL010 | | The information about the extraction from level 0 strip data. | | | 1 | RSC10 | integer | RSC(relative scan count) of first & last scan (>=0). RSC is scan count in each PDS. | | | 2 | SST10 | datetime | SST(scan start time) of first & last scan. | | | 3 | PDSid10 | string | Identifier of PDS including first & last scan. | | 2 | | ImageDataInformation10 | integer | The information of TIR band 10 image data. (npx, nln, bpp) where, npx: number of pixels per line(716: fixed) nln: number of line in frame(700: nominal) bpp: bytes per pixel (0: fixed) | | | | GeometricCorrection10 | integer | The information of TIR geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction. (11: nominal) nlpct: number of lattice points in across-track direction. (10: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (70: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (70: nominal) | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(2/12) | N | No. | | | Group/Object Name | type(*1) | Description | |---|--|---|-------------|------------------------------------|----------|---| | 1 | The state of s | | | RadiometricCorrection10 | integer | The information of TIR Band-10 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(10: fixed) npara: number of parameters (3: fixed) | | | 5 | | | DataQuality10 | | This group contains the information about the quality of Level1A TIR data. | | | | | | NumberofBadPixels10 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | *************************************** | 2 | | ListofBadPixels10 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels10Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel10(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP10(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP10(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP10(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel10(n)(*2) | string | The cause of bad data: 'M': Data missing 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff10 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-10 image. | | | | 1 | | Incl10 | double | Inclination | | - | | 2 | | Offset10 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin10 | integer | Minimum value of unsaturated pixel: 0 fixed. | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(3/12) | N | 0. | | Group/Object Name | type(*1) | Description | |---|----------|---|-------------------------|----------|--| | T | 6 | 4 | UnSatMax10 | integer | Maximum value of unsaturated pixel. | | | | 5 | ConUnit10 | string | Converted Unit. | | 2 | I | | TIRBand11Data | | The information about TIR band 11 of Level-1A. | | *************************************** | 1 | | ExtractionfromL011 | | The information about the extraction from level 0 strip data. | | *************************************** | | 1 | RSC11 | integer | RSC(relative scan count) of first & last scan (>=0). RSC is scan count in each PDS. | | | | 2 | SST11 | datetime | SST(scan start time) of first & last scan. | | | | 3 | PDSid11 | string | Identifier of PDS including first & last scan. | | | 2 | | ImageDataInformation11 | | The information of TIR band 11 image data. (npx, nln, bpp) where, npx: number of pixels per line(716: fixed) nln: number of line in frame(700: nominal) bpp: bytes per pixel (0: fixed) | | | 3 | | GeometricCorrection 1 1 | integer | The information of TIR geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction. (11: nominal) nlpct: number of lattice points in across-track direction. (10: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (70: nominal) dlpct: distance between two
neighbor lattice points in across-track direction. (70: nominal) | | | 4 | | RadiometricCorrection11 | ínteger | The information of TIR Band-11 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(10: fixed) npara: number of parameters (3: fixed) | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(4/12) | N | No. | | | Group/Object Name | type(*1) | Description | |---|-----|--|---|------------------------------------|----------|---| | 2 | 5 | | | DataQuality11 | | This group contains the information about the quality of Level1A TIR data. | | | | Provided in the Control of Contr | | NumberofBadPixels11 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels11 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels11Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel11(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP11(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP11(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP11(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel11(n)(*2) | string | The cause of bad data: 'M': Data missing 'D': Damaged Detector | | *************************************** | 6 | | | UnitConversionCoeff11 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-11 image. | | | I | 1 | 7 | Incl11 | double | Inclination | | | | 2 | 7 | Offset 1 1 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin11 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax11 | integer | Maximum value of unsaturated pixel. | | | | 5 | | ConUnit11 | string | Converted Unit. | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(5/12) | N | No. | | Group/Object Name | type(*1) | Description | |---|-----|---|-------------------------|----------|--| | 3 | | | TIRBand12Data | | The information about TIR band 12 of Level-1A. | | | 7 | | ExtractionfromL012 | | The information about the extraction from level 0 strip data. | | | | 1 | RSC12 | integer | RSC(relative scan count) of first & last scan (>=0). RSC is scan count in each PDS. | | | | 2 | SST12 | datetime | SST(scan start time) of first & last scan. | | | | 3 | PDSid12 | string | Identifier of PDS including first & last scan. | | | 2 | | ImageDataInformation12 | | The information of TIR band 12 image data. (npx, nln, bpp) where, npx: number of pixels per line(716: fixed) nln: number of line in frame(700: nominal) bpp: bytes per pixel (0: fixed) | | | 3 | | GeometricCorrection12 | integer | The information of TIR geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction. (11: nominal) nlpct: number of lattice points in across-track direction. (10: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (70: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (70: nominal) | | | 4 | | RadiometricCorrection12 | integer | The information of TIR Band-12 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(10: fixed) npara: number of parameters (3: fixed) | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(6/12) | N | No. | | | Group/Object Name | type(*1) | Description | |--|-----|--------|---|------------------------------------|----------|---| | 3 | 5 | | | BandDataQuality12 | | This group contains the information about the quality of Level 1A TIR data. | | | | Kenner | | NumberofBadPixels12 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels12 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels12Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel12(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP12(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP12(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP12(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel12(n)(*2) | string | The cause of bad data: 'M':
Data missing 'D': Damaged Detector | | Prince Prince and the Prince of the State | 6 | | | UnitConversionCoeff12 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-12 image. | | | | 1 | | Incl12 | double | Inclination | | | | 2 | | Offset12 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin12 | integer | Minimum value of unsaturated pixel: 0 fixed. | | *************************************** | | 4 | | UnSatMax12 | integer | Maximum value of unsaturated pixel. | | | | 5 | | ConUnit12 | string | Converted Unit. | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(7/12) | No. | ····· | Group/Object Name | type(*1) | Description | |-----|-------|-------------------------|----------|--| | 4 | | TIRBand13Data | ata | The information about TIR band 13 of Level-1A. | | 1 | | ExtractionfromL013 | | The information about the extraction from level 0 strip data. | | | 1 | RSC13 | integer | RSC(relative scan count) of first & last scan (>=0). RSC is scan count in each PDS. | | | 2 | SST13 | datetime | SST(scan start time) of first & last scan. | | | 3 | PDSid13 | string | Identifier of PDS including first & last scan. | | 2 | | ImageDataInformation13 | | The information of TIR band 13 image data. (npx, nln, bpp) where, npx: number of pixels per line(716: fixed) nln: number of line in frame(700: nominal) bpp: bytes per pixel (0: fixed) | | 3 | | GeometricCorrection13 | integer | The information of TIR geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction. (11: nominal) nlpct: number of lattice points in across-track direction. (10: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (70: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (70: nominal) | | 4 | | RadiometricCorrection13 | integer | The information of TIR Band-13 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(10: fixed) npara: number of parameters (3: fixed) | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(8/12) | N | o. | | | Group/Object Name | type(*1) | Description | |---|----|--|---|------------------------------------|----------|---| | 4 | 5 | | | BandDataQuality13 | | This group contains the information about the quality of Level1A TIR data. | | VANTORINA TORRITORINA CONTRACTORINA LA LA LA CONTRACTORINA CONTRA | | | | NumberofBadPixels13 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels13 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels13Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel13(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | ************************************** | 2 | BadPixelLP13(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP13(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP13(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel13(n)(*2) | string | The cause of bad data: 'M': Data missing 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff13 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-13 image. | | | | T | | Incl13 | double | Inclination | | | | 2 | | Offset13 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin13 | integer | Minimum value of unsaturated pixel: 0 fixed. | | - | | 4 | | UnSatMax13 | integer | Maximum value of unsaturated pixel. | | | | 5 | | ConUnit13 | string | Converted Unit. | | | | | | | | | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(9/12) | No.
5 | | Group/Object Name | type(*1) | Description | | |---|---|-------------------------|----------|---|--| | 5 | | TIRBand14Data | | The information about TIR band 14 of Level-1A. | | | - benef | | ExtractionfromL014 | | The information about the extraction from level 0 strip data. | | | *************************************** | 1 | RSC14 | integer | RSC(relative scan count) of first & last scan (>=0). RSC is scan count in each PDS. | | | | 2 | SST14 | datetime | SST(scan start time) of first & last scan. | | | | 3 | PDSid14 | string | Identifier of PDS including first & last scan. | | | 2 | | ImageDataInformation14 | | The information of TIR band 14 image data. (npx, nln, bpp) where, npx: number of pixels per line(716: fixed) nln: number of line in frame(700: nominal) bpp: bytes per pixel (0: fixed) | | | 3 | | GeometricCorrection14 | integer | The information of TIR geometric correction table. (nlpat, nlpct, dlpat, dlpct) where, nlpat: number of lattice points in along-track direction. (11: nominal) nlpct: number of lattice points in across-track direction. (10: nominal) dlpat: distance between two neighbor lattice points in along-track direction. (70: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (70: nominal) dlpct: distance between two neighbor lattice points in across-track direction. (70: nominal) | | | 4 | | RadiometricCorrection14 | integer | The information of TIR Band-14 radiometric correction table. (ndct, npara) where, ndct: number of detectors used.(10: fixed) npara: number of parameters (3: fixed) | | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(10/12) | N | o. | | | Group/Object Name | type(*1) | Description | |---|------------------------------------|----------|---|-----------------------------------|----------|---| | 5 | 5 | | | BandDataQuality14 | | This group contains the information about the quality of Level1A TIR data. | | | | Y | | NumberofBadPixels14 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels14 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels14Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel14(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | - manual designation of the second | | 2 | BadPixelLP14(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP14(n)(*2) | integer | First pixel number in
cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP14(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel14(n)(*2) | string | The cause of bad data: 'M': Data missing 'D': Damaged Detector | | | 6 | | | UnitConversionCoeff14 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-14 image. | | | | П | | Incl14 | double | Inclination | | | | 2 | | Offset14 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin14 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | | UnSatMax14 | integer | Maximum value of unsaturated pixel. | | | | 5 | | ConUnit14 | string | Converted Unit. | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(11/12) | ЙO. | ~ | Group/Object Name | type(*1) | Description | |-------|---|---------------------------|----------|--| |) | | Level0TIRData | | The information about Level-0 TIR data. | | 1 | | PhysicalUnit | | The information about Level-0 TIR physical unit. | | | | BarCodeID | string | Bar code serial number of the physical unit. | | - | 2 | CompletionDate | datetime | Date and time of completio of the physical media. | | | 3 | PDSCounts | integer | Total number of PDSs on the physical unit (<=9999) | | 2 | | L0Dataset | | This group contains the information of L0 TIR Group-10 data set(PDSs). | | | | L0DataSetContainer(n)(*2) | | The information about PDS of Level-0 TIR data. | | | | PDSid(n)(*2) | string | Identifier of this PDS assigned by EDOS. | | | 2 | FirstPacketTime(n)(*2) | datetime | First packet time for this PDS. | | | 3 | LastPacketTime(n)(*2) | datetime | Last packet time for this PDS. | | | 4 | PacketCounts(n)(*2) | integer | Number of packets in this PDS. | | 3 | | L0DataType | string | The identifier of the input data type (defined by EDOS). 'PDS': Production Data Se 'EDS': Expedited Data Set 'TEST': Test Data | | 4 | | L0DataQuality | | This specifies the number of input packets used to generate the data granule, and these quality. | | | 1 | SensorGroupName | string | Sensor group name: 'TIR' (fixed) | | | 2 | NumberofPackets | integer | Number of packets used to generate the scene data of each group. | | | 3 | PercentofMissingPackets | double | percent of missing packets of each group. Unit: % | | | 4 | PercentofCorrectedPackets | double | percent of packets with
errors corrected by Reed
Solomon (R-S) decoding.
Unit: % | | 7 | | TIRRegistrationQuality | | The registration informatio of TIR based on VNIR. | | 100.8 | | ProcessingFlag | integer | O: no output, because processing is impossible. 1: output is the result computed. 2: output is extracted from registration file. 4: output obtained by other method. | Table 2.3.1-5 List of Object in Level1A Product Specific Metadata(TIR)(12/12) | N | 0. | Group/Object Name | type(*1) | Description | |---|----|-------------------------|----------|--| | 7 | 2 | NumberofMeasurements | integer | The number of measurements | | | 3 | MeasurementPointNumber | integer | The number of measurement points. | | | 4 | AverageOffset | double | Average offset value. (LAOset, PAOset) where, LAOset: Line direction average offset. PAOset: Pixel direction average offset. | | | 5 | StandardDeviationOffset | double | Standard deviation offset value. (LSDOset, PSDOset) where, LSDOset: Line direction SD offset. PSDOset: Pixel direction SD offset. | | | 6 | Threshold | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | ### NOTES: - (*1) Object types used in Metadata are - a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. # 2.3.2. Cloud Coverage Table (1) Description Cloud coverage table is available for Level 1A Product corresponding to each ASTER Observation (OBS) modes. ### (2) Characteristics(TBD) - a) Data model: SDS (2 Dimension Array) - b) Object Name: Cloud_Coverage_Table - c) Format: Refer to Table 2.3.2-1 - d) Contents: each element is 1 byte data, indicates clear (= 0) or cloudy (= 1) for the rectangular area which is centered by the SWIR Band 6 lattice point. Table 2.3.2-1 Size of Cloud Coverage Data | Reference Coordinates | Dimension Size | Variable Type | |-----------------------|----------------|---------------| | SWIR | [n][103]* | UINT8 | | VNIR | [n][10]* | UINT8 | | TIR | [n][11]* | UINT8 | ^{*} Line size (n: 105 or 106 in case of SWIR) is depending on a processing scene. Note 1: Reference Coordinates will change depending on condition of observation. - a) In nominal case, the lattice coordinates of SWIR Geometric Correction Table(GCT) is used as center of evaluation rectangle. - b) If SWIR data is not available, the lattice coordinate of VNIR GCT will be used as center instead. - c) If both SWIR and VNIR data are not available, the lattice coordinate of TIR GCT will be used . Note 2: Evaluation area size is shown as follows. | Reference Coordinate | SWIR | VNIR | TIR | |----------------------|------|--|-----| | Evaluation area size | 20P | 410P | 70P | | | | To you are a second and a second an | | | | 20L | 400L | 70L | # 2.3.3. Ancillary Data ### (1) Description Ancillary Data include the satellite's orbit/attitude data, and their time tags. Since ancillary data appended to onboard instrument data are updated once per major cycle time (1.024 sec), in order to match with the scene observation time of 9.5 sec (63 km), an extra number of ancillary data will be extracted and provided. To ensure the conformity with instrument data, "zeroes" are assigned to the leading ancillary data of each sensor, and called Relative Scan Number. This is used as control data for extracted Image Data. ### (2) Characteristics (TBD) - a) Data model: Vdata - b) Object Name: Ancillary_Data - c) Class Name: Anci_Record.n (n: Record count number) - d) Format and contents: Table 2.3.3-1 shows the format and the contents of Ancillary Data. Some Ancillary Data contains multiple entries per field. Order which is the number of components in a field is shown in Table 2.3.3-1. Table 2.3.3-1 Format of Ancillary Data (1/2) | Field Name | Order | Variable Size | Description | |------------------|-------|---|---| | Relative_Scan_No | 3 | UINT32 | Relative Scan Number | | Primary_Header | 6 | UINT8 | CCSDS Primary Packet Header for downlink, | | | | | used for ground routing and processing. | | Secondary_Header | 8 | UINT8 | This field is part of the secondary header of the | | | | | packet for downlink. | | | | | Bit 0: Secondary Header ID Flag (always a | | | | | data zero) | | | | | Bit 1-63: Time Stamp - Epoch of the data in | | | | | the ancillary data message. Spacecraft clock | | | | | time in CCSDS Day-Segmented Format. The code epoch is January 1, 1958. | | Flag_Byte | ĺ | UINT8 | Flag Byte - Flags for ground data processing | | riag_byte | ı | Ollvio | control. First (most significant) bit is the "quick | | | | | look" bit. Other bits are reserved and will | | | | | contain data zero. This field is part of the | | | | | secondary header of the packet for downlink. | | Time_Conversion | 3 | UINT8 | Time Conversion - Estimated difference | | | | | between UTC and the
Spacecraft Clock. This | | | | | may be added to the Spacecraft Clock time to | | | | | derive UTC time. | | Position | 3 | UINT32 | Spacecraft Position (x, y, z) - Estimated | | | | | position of the spacecraft, expressed in Earth | | | | | Centered Inertial frame (mean Equator and | | | 2 | FILLETON | Equinox of J2000). | | Velocity | 3 | UINT32 | Spacecraft Velocity (x, y, z) - Estimated | | | | | velocity of the spacecraft, expressed in Earth
Centered Inertial frame (mean Equator and | | | | | Equinox of J2000). | | Attitude_Angle | 3 | UINT16 | Attitude Angle (Roll, Pitch, Yow) - The | | rimuc_mgr | | Onviio | estimated attitude of the spacecraft, expressed | | - | | *************************************** | in the Orbital Reference frame. | | Attitude_Rate | 3 | UINT16 | Attitude Rate (Roll, Pitch, Yow) - The | | ***** | ~ | | estimated attitude rate of the spacecraft, | | | | | expressed in the Orbital Reference frame. | | Magnetic_Coil | 3 | UINT8 | Magnetic Coil Current (x, y, z) - Currents | | - | | | flowing in each of the magnetic torque coils | | | | | used for Spacecraft momentum unloading. | | Solar_Arrary | 1 | UINT8 | Solar Array Current - Current flowing from the | |--------------|---|-------|--| | , | | | Spacecraft solar array. | | | | | | Table 2.3.3-1 Format of Ancillary Data (2/2) | Field Name | Component | Variable Size | Description | |----------------|-----------|---------------|--| | Solar_Position | 3 | UINT8 | Solar Position (x, y, z) - Components of unit vector, expressed in the Spacecraft Reference frame, pointing in the direction of the Sun. | | Moon_Position | 3 | UINT8 | Moon Position (x, y, z) - Components of the unit vector, expressed in the Spacecraft Reference frame, pointing in the direction of the Moon. | Note: Resolution and Range are shown as follows. | Ancillary Data | Resolution | Range | |---------------------|--|-----------| | Primary Header | N/A | N/A | | Secondary Header | N/A | N/A | | Time Stamp | 1 msec | 1958-2047 | | Flag Byte | N/A | N/A | | Time Conversion | 1 msec | A + 27 | msec | | Spacecraft Position | 0.125 m | m | | Spacecraft Velocity | Attitude Angle | 1.0 arcsec | | | | *************************************** | | | | ADMINISTRATION OF THE PROPERTY | | | | 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | | | | E-vocation and the state of | | | | FEB. STATE OF THE | arcsec | | | L | | | Attitude Rate | 0.5 arcsec | | |-----------------------|------------|----------| | | | | | | | 1 | | | | | | | | 1 | | | | | | | | | | | | L | | | | arcsec | | Magnetic Coil Current | | | | Ŭ | l L | | | A | <u> </u> | | Solar Array Current | 1.0 A | 0-256 A | | Solar Position | | 1 | Moon Position | | 1 | l | ## 2.3.4. VNIR Group ### 2.3.4.1 Overview VNIR Group contains a Vdata, and a RIS24, a series of Swath Objects through the use of the Vgroup API. Vgroup name which establishes access to a Vgroup is as follows. vgroup name: VNIR_Group ### 2.3.4.2. VNIR Band 1 Swath #### (1) Structure A single swath contains any number of Tables and Multidimensional Arrays. There is however one type of information that is special: geolocation information. In a swath, geolocation information is stored as a series of arrays. We require that every swath contain some geolocation component. The data itself is stored in multidimensional arrays in the swath. The only limitation is that the first dimension is the Track dimension. Each Band is stored as separate Swath structure, one per geolocation object. Consider Figure 2.3.4-1, which is represent of a swath consisting of a combination of 2D and 3D data arrays, a series of 2D geolocation arrays, a series of data tables, and a single 1D geolocation tables. Figure 2.3.4-1 Conceptual View of Example of Swath (2) Characteristics Table 2.3.4-1 shows the List of data items in VNIR Band 1 Swath. a) Data model: Swath b) Object Name: VNIR_Band1 c) Format: Table 2.3.4-1 shows the contents of Swath Object. Table 2.3.4-2 shows the format of one. Table 2.3.4-1 List of data items in Level 1A VNIR Band 1 Swath | No. | Field Name | Туре | Unit | Comments | |---------|---|-------------------|-------------|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital | | | | · | | Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8 | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | aresec | satellite attitude angle (roll, pitch, yow) in | | <i></i> | 711111111111111111111111111111111111111 | | | Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, | | 10. | | | | yow) | | 11. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.4-2 Format of data items in VNIR Band 1 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][10] | DOUBLE | geolocation field (Array) | | Longitude | [n][10] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][10][2] | INT32 | mapping to geolocation array | | SightVector | [n][10][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][10] | DOUBLE | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [4200][4100] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 400 410 | ### 2.3.4.3. VNIR Band 2 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.4-3 shows the List of data items in VNIR Band 2 Swath. a) Data model: Swath b) Object Name: VNIR_Band2 c) Format: Table 2.3.4-3 shows the contents of Swath Object. Table 2.3.4-4 shows the format of one. Table 2.3.4-3 List of data items in Level 1A VNIR Band 2 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|---| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D
Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital
Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in
Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, yow) | | 11. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.4-4 Format of data items in VNIR Band 2 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][10] | DOUBLE | geolocation field (Array) | | Longitude | [n][10] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][10][2] | INT32 | mapping to geolocation array | | SightVector | [n][10][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][10] | DOUBLE | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [4200][4100] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size | Table | Geolocation Array | |-------|-------------------| | | | ### 2.3.4.4. VNIR Band 3N Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.4-5 shows the List of data items in VNIR Band 3N Swath. a) Data model: Swath b) Object Name: VNIR_Band3N c) Format: Table 2.3.4-5 shows the contents of Swath Object. Table 2.3.4-6 shows the format of one. Table 2.3.4-5 List of data items in Level 1A VNIR Band 3N Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital | | | | | | Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in | | | _ | | İ | Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, | | | | | | yow) | | 11. | Observation Time | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.4-6 Format of data items in VNIR Band 3N Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][10] | DOUBLE | geolocation field (Array) | | Longitude | [n][10] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][10][2] | INT32 | mapping to geolocation array | | SightVector | [n][10][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][10] | DOUBLE | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | (n)[3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [4200][4100] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size | Table | Geolocation Array | |-------|-------------------| | | <u> </u> | | | | | Block size | | |------------|-----| | | | | | | | | | | | 400 | | | 410 | # 2.3.4.5. VNIR Band 3B Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.4-7 shows the List of data items in VNIR Band 3B Swath. a) Data model: Swath b) Object Name: VNIR_Band3B c) Format: Table 2.3.4-7 shows the contents of Swath Object. Table 2.3.4-8 shows the format of one. Table 2.3.4-7 List of data items in Level 1A VNIR Band 3B Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital | | | | | | Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in | | | | | | Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, | | | | | | yow) | | 11. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.4-8 Format of data items in VNIR Band 3B Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][10] | DOUBLE | geolocation field (Array) | | Longitude | [n][10] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][10][2] | INT32 | mapping to geolocation Array | | SightVector | [n][10][3] | DOUBLE | mapping to geolocation Array | | Altitude | [n][10] | DOUBLE | mapping to geolocation Array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation Table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation Table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation Table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation Table | | ObservationTime | [n] | DOUBLE | mapping to geolocation Table | | ImageData | [4600][5000] | UINT8 | mapping to geolocation Array | n: revised to accommodate a processing scene. (3) Block Size | | | | | |-------------|-------------------|--|--| | Table | Geolocation Array | | | | | | | | #### 2.3.4.6. Radiometric Correction Table VNIR Radiometric Correction Table Group contains a series of SDS Objects through the use of the Vgroup API. Each SDS object named as follows. Characteristics of each SDS object are described later subsection. - (1) VNIR Band 1 - (2) VNIR Band 2 - (3) VNIR Band 3N - (4) VNIR Band 3B | Radiometric | correction | coefficients | of | |-------------|------------|--------------|----| | | | | | First entry in coefficients dimension is **Dv**. vgroup name which establishes access to a Vgroup is as follows. vgroup name: VNIR_Radiometric #### 2.3.4.6.1. VNIR Band 1 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_1 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [4100][2] | FLOAT | # 2.3.4.6.2. VNIR Band 2 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_2 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [4100][2] | FLOAT | #### 2.3.4.6.3. VNIR Band 3N a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_3N c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [4100][2] | FLOAT | #### 2.3.4.6.4. VNIR Band 3B a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_3B c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [5000][2] | FLOAT | # 2.3.4.7. VNIR Supplement Data (1) Description VNIR Supplement Data contain VNIR status data, calibration data, and pointing angles etc. (2) Characteristics (TBD) a) Data model: Vdata b) Object Name: VNIR_Supplement c) Class Name: VNIR_Supple_Record.n (n: Record count number) d) Format: Each record is stored in class. Table 2.3.4-9 shows the format and the contents of Supplement Data. Table 2.3.4-9 Format of Supplement Data (1/2) | Field Name | Variable Size | Description | | |------------------|---------------|----------------------------------|--| | Relative_Scan_No | UNIT32 | Relative Scan Number | | | B1_DET_Temp | UINT8 | Band 1 Detector
Temperature | | | B2_DET_Temp | UINT8 | Band 2 Detector Temperature | | | B3N_DET_Temp | UINT8 | Band 3N Detector Temperature | | | B3B_DET_Temp | UINT8 | Band 3B Detector Temperature | | | LAMP_A_Temp | UINT8 | Calibration Lamp A Temperature | | | LAMP_B_Temp | UINT8 | Calibration Lamp B Temperature | | | MON_AMP_Temp | UINT8 | Monitor Amp. Temperature | | | PD_1_Temp | UINT8 | Photodiode 1 Temperature | | | PD_2A_Temp | UINT8 | Photodiode 2A Temperature | | | PD_2B_Temp | UINT8 | Photodiode 2B Temperature | | | VSP1_Temp | UINT8 | VSP 1 Temperature | | | VSP2_Temp | UINT8 | VSP 2 Temperature | | | VEL_RAD_Temp | UINT8 | VEL Base Plate Temperature | | | TELSCP_Temp1N | UINT8 | Nadir Telescope Temperature 1 | | | TELSCP_Temp2N | UINT8 | Nadir Telescope Temperature 2 | | | TELSCP_Temp3N | UINT8 | Nadir Telescope Temperature 3 | | | TELSCP_Temp1B | UINT8 | Backward Telescope Temperature 1 | | | TELSCP_Temp2B | UINT8 | Backward Telescope Temperature 2 | | | TELSCP_Temp3B | UINT8 | Backward Telescope Temperature 3 | | | PS_Vol | UINT8 | VPS Lamp Power Supply Voltage | | | PD_1A_OUT | UINT8 | Photodiode 1A Output | | | PD_IB_OUT | UINT8 | Photodiode 1B Output | | | PD_2A_OUT | UINT8 | Photodiode 2A Output | | | PD_2B_OUT | UINT8 | Photodiode 2B Output | | | ECAL_Vol1 | UINT8 | Electric Calibration Voltage.1 | | | ECAL_Vol2 | UINT8 | Electric Calibration Voltage.2 | | | ECAL_Vol3 | UINT8 | Electric Calibration Voltage.3 | | | ECAL_Vol4 | UINT8 | Electric Calibration Voltage.4 | | | VSP1_APS_Vol+ | UINT8 | VSP1 APS Vol. +10V | | | VSP1_APS_Vol- | UINT8 | VSPI APS Vol10V | | | Ptg_Angl1 | UINT8 | Pointing Angle 1 | | | Ptg_Angl2 | UINT8 | Pointing Angle 2 | | | Init_E_Address1 | UINT8 | Initial Extract Address 1 | | | Init_E_Address2 | UINT8 | Initial Extract Address 2 | | | Platform_Pos1 | UINT8 | Platform Position (Z) 1 | | | Platform_Pos2 | UINT8 | Platform Position (Z) 2 | | Table 2.3.4-9 Format of Supplement Data (2/2) | Field Name | Variable Size | Description | | |------------|---------------|--|--| | GAIN_SEL | UINT8 | Bit-0: Band 1 Normal/High Gain Selection | | | | VALUE | Bit-1: Band 1 Normal/Low Gain Selection | | | | 74 | Bit-2: Band 2 Normal/High Gain Selection | | | | | Bit-3: Band 2 Normal/Low Gain Selection | | | | | Bit-4: Band 3 Normal/High Gain Selection | | | | | Bit-5: Band 3 Normal/Low Gain Selection | | | | | Bit-6: Band 3 A/B Selection | | | | | Bit-7: OPE. Optical/Electric Calibration Selection | | | On/Off | UINT8 | Bit-0: Calibration Lamp A/B Selection | | | | - | Bit-1: PS1 On/Off | | | | | Bit-2: PS3 On/Off | | | | *** | Bit-3: Table Cancel On/Off | | | | | Bit-4: PS4 On/Off | | | | | Bit-5: TBD | | | | | Bit-6: TBD | | | | | Bit-7: TBD | | | R1 | UINT8 | TBD | | | R2 | UINT8 | TBD | | | R3 | UINT8 | TBD | | | R4 | UINT8 | TBD | | | R5 | UINT8 | TBD | | | R6 | UINT8 | TBD | | | R7 | UINT8 | TBD | | | R8 | UINT8 | TBD | | | R9 | UINT8 | TBD | | | R10 | UINT8 | TBD | | | R11 | UINT8 | TBD | | | R12 | UINT8 | TBD | | # 2.3.4.8. VNIR Browse Image #### (1) Description VNIR Browse Image is compressed, using the standard features of the HDF libraries. As Browse images are divided from Level 1A Data Product in "ASTER Level 1 Data Product Specification (science version, version 2.0)", these will be stored in another HDF file as a subset of Level 1A data products in next version. #### (2) Characteristics (TBD) a) Color Assignment: Current base line is as follows. | | В | G | R | |----------|---|---|----| | Band No. | 1 | 2 | 3N | b) Sampling Method: average sampling c) Sampling Rate: 1/20.5 d) Format: Table 2.3.4-10 shows the format Table 2.3.4-10 Format of Browse Image | Object Name | Dimension Size | Data Model | Compression
Method | Quality Factor | |-------------|----------------|------------|-----------------------|----------------| | VNIR_Browse | 200 | RIS24 | JPEG | 50 | # 2.3.5. SWIR Group ### 2.3.5.1 Overview SWIR Group contains a Vdata, and a RIS24, a series of Swath Objects through the use of the Vgroup API. Vgroup name which establishes access to a Vgroup is as follows. vgroup name: SWIR_Group #### 2.3.5.2. SWIR Band 4 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.5-1 shows the List of data items in SWIR Band 4 Swath. a) Data model: Swath b) Object Name: SWIR_Band4 c) Format: Table 2.3.5-1 shows the contents of Swath Object. Table 2.3.5-2 shows the format of one. Table 2.3.5-1 List of data items in Level 1A SWIR Band 4 Swath | No. | Field Name | Туре | Unit | Comments | | |-----|-------------------|-------------------|-------------|--|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital | | | 1 | | | | Reference frame | | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | | 7. | ParallaxOffset | 3D Data Array | pixel | parallax correction | | | 8. | Evaluation | 2D Data Array | - | 1: Image matching | | | | | | | 2: using DEM | | | | | | | 3: Interpolation | | | 9. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | | 10. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | | 11. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in | | | | | | | Orbital Reference frame | | | 12. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, | | | | | | | yow) | | | 13. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | | 14. | ImageData | 2D Data Array | m | Level 1A spectral band image data | | Table 2.3.5-2 Format of data items in SWIR Band 4 Swath (1/2) | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][103] | DOUBLE | geolocation field (Array) | | Longitude | [n][103] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][103][2] | INT32 | mapping to geolocation array | | SightVector | [n][103][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][103] | DOUBLE | mapping to geolocation array | | ParallaxOffset | [n][103][2] | DOUBLE | mapping to geolocation array | | Evaluation | [n][103] | INT32 | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | Table 2.3.5-2 Format of data items in SWIR Band 4 Swath (2/2) | Field Name | Dimension Size | Variable Type | Remarks | |-----------------|----------------|---------------|------------------------------| | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [2100][2048] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. # (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |------------|-------------------| | Block size | | | | | | | | | | | | | | | | | | | 20 | | | 20 | | | 20 | #### 2.3.5.3. SWIR Band 5 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.5-3 shows the List of data items in SWIR Band 5 Swath. a) Data model: Swath b) Object Name: SWIR_Band5 c) Format: Table 2.3.5-3 shows the contents of Swath Object. Table 2.3.5-4 shows the format of one. Table 2.3.5-3 List of data items in Level 1A SWIR Band 5 Swath | No. | Field Name | Туре | Unit | Comments | |------------|-------------------|-------------------|-------------|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4, | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital | | | | | | Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7 . | ParallaxOffset | 3D Data Array | pixel | parallax correction | | 8. | Evaluation | 2D Data Array | - | 1: Image matching | | | | | | 2: using DEM | | | | | | 3: Interpolation | | 9, | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 10. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 11. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in | | | | | | Orbital Reference frame | | 12. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, | | | | | | yow) | | 13. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 14. | ImageData | 2D Data Агтау | m | Level 1A spectral band image data | Table 2.3.5-4 Format of data items in SWIR Band 5 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][103] | DOUBLE | geolocation field (Array) | | Longitude | [n][103] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][103][2] | INT32 | mapping to geolocation
array | | SightVector | [n][103][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][103] | DOUBLE | mapping to geolocation array | | ParallaxOffset | [n][103][2] | DOUBLE | mapping to geolocation агтау | | Evaluation | [n][103] | INT32 | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n](3) | DOUBLE | mapping to geolocation table | | ObservationTime | (n) | DOUBLE | mapping to geolocation table | | ImageData | [2100][2048] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 20 | # 2.3.5.4. SWIR Band 6 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.5-5 shows the List of data items in SWIR Band 6 Swath. a) Data model: Swath b) Object Name: SWIR_Band6 c) Format: Table 2.3.5-5 shows the contents of Swath Object. Table 2.3.5-6 shows the format of one. Table 2.3.5-5 List of data items in Level 1A SWIR Band 6 Swath | No. | Field Name | Туре | Unit | Comments | |----------|-------------------|-------------------|-------------|---| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | ParallaxOffset | 3D Data Array | pixel | parallax correction | | 8. | Evaluation | 2D Data Array | - | 1: Image matching | | | | | | 2: using DEM | | <u> </u> | | | | 3: Interpolation | | 9. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 10. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 11. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in
Orbital Reference frame | | 12. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, yow) | | 13. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 14. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.5-6 Format of data items in SWIR Band 6 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][103] | DOUBLE | geolocation field (Array) | | Longitude | [n][103] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][103][2] | INT32 | mapping to geolocation array | | SightVector | [n][103][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][103] | DOUBLE | mapping to geolocation array | | ParallaxOffset | [n][103][2] | DOUBLE | mapping to geolocation array | | Evaluation | [n][103] | INT32 | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [2100][2048] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 20 | # 2.3.5.5. SWIR Band 7 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.5-7 shows the List of data items in SWIR Band 7 Swath. a) Data model: Swath b) Object Name: SWIR_Band7 c) Format: Table 2.3.5-7 shows the contents of Swath Object. Table 2.3.5-8 shows the format of one. Table 2.3.5-7 List of data items in Level 1A SWIR Band 7 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|---| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital
Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | ParallaxOffset | 3D Data Array | pixel | parallax correction | | 8. | Evaluation | 2D Data Аггау | - | 1: Image matching | | | | | | 2: using DEM | | | | | | 3: Interpolation | | 9. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 10. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 11. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in
Orbital Reference frame | | 12. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, yow) | | 13. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 14. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.5-8 Format of data items in SWIR Band 7 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][103] | DOUBLE | geolocation field (Array) | | Longitude | [n][103] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][103][2] | INT32 | mapping to geolocation array | | SightVector | [n][103][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][103] | DOUBLE | mapping to geolocation array | | ParallaxOffset | [n][103][2] | DOUBLE | mapping to geolocation array | | Evaluation | [n][103] | INT32 | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | Observation Time | [n] | DOUBLE | mapping to geolocation table | | ImageData | [2100][2048] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |------------|-------------------| | Block size | | | | | | | | | | | | | | | | 20 | | | 20 | # 2.3.5.6. SWIR Band 8 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.5-9 shows the List of data items in SWIR Band 8 Swath. a) Data model: Swath b) Object Name: SWIR_Band8 c) Format: Table 2.3.5-9 shows the contents of Swath Object. Table 2.3.5-10 shows the format of one. Table 2.3.5-9 List of data items in Level 1A SWIR Band 8 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital
Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | ParallaxOffset | 3D Data Array | pixel | parallax correction | | 8. | Evaluation | 2D Data Array | - | 1: Image matching | | | | | | 2: using DEM 3: Interpolation | | 9. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 10. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 11. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in Orbital Reference frame | | 12. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, yow) | | 13. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 14. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.5-10 Format of data items in SWIR Band 8 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][103] | DOUBLE | geolocation field (Array) | | Longitude | [n][103] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][103][2] | INT32 | mapping to geolocation array | | SightVector | [n][103][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][103] | DOUBLE | mapping to geolocation array | | ParallaxOffset | [n][103][2] | DOUBLE | mapping to geolocation array | | Evaluation | [n][103] | INT32 | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE |
mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n](3) | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [2100][2048] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 20 | #### 2.3.5.7. SWIR Band 9 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.5-11 shows the List of data items in SWIR Band 9 Swath. a) Data model: Swath b) Object Name: SWIR_Band9 c) Format: Table 2.3.5-11 shows the contents of Swath Object. Table 2.3.5-12 shows the format of one. Table 2.3.5-11 List of data items in Level 1A SWIR Band 9 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|---| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital
Reference frame | | 6. | Altitude | 2D Data Алгау | m | earth's surface altitude from WGS84 | | 7. | ParallaxOffset | 3D Data Array | pixel | parallax correction | | 8. | Evaluation | 2D Data Array | - | 1: Image matching | | | | | | 2: using DEM | | | | | | 3: Interpolation | | 9. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 10. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 11. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in
Orbital Reference frame | | 12. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, | | 1 7 | OL | 1 D. T. 11 | | yow) | | 13. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 14. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.5-12 Format of data items in SWIR Band 9 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][103] | DOUBLE | geolocation field (Array) | | Longitude | [n][103] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][103][2] | INT32 | mapping to geolocation array | | SightVector | [n][103][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][103] | DOUBLE | mapping to geolocation array | | ParallaxOffset | [n][103][2] | DOUBLE | mapping to geolocation array | | Evaluation | [n][103] | INT32 | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [2100][2048] | UINT8 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 20 | #### 2.3.5.8. Radiometric Correction Table SWIR Radiometric Correction Table Group contains a series of SDS Objects through the use of the Vgroup API. Each SDS object named as follows. Characteristics of each SDS object are described later subsection. - (1) SWIR Band 4 - (2) SWIR Band 5 - (3) SWIR Band 6 - (4) SWIR Band 7 - (5) SWIR Band 8 - (6) SWIR Band 9 Radiometric correction coefficients of First entry in coefficients dimension is Dv. vgroup name which establishes access to a Vgroup is as follows. vgroup name: SWIR_Radiometric #### 2.3.5.8.1. SWIR Band 4 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_4 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [2048][2] | FLOAT | #### 2.3.4.6.2. SWIR Band 5 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_5 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [2048][2] | FLOAT | #### 2.3.5.8.3. SWIR Band 6 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_6 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [2048][2] | FLOAT | #### 2.3.5.8.4. SWIR Band 7 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_7 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [2048][2] | FLOAT | # 2.3.5.8.5. SWIR Band 8 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_8 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [2048][2] | FLOAT | # 2.3.5.8.6. SWIR Band 9 a) Data model: SDS (2 Dimension Array)b) Object Name: Radiometric_Corr_9 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [2048][2] | FLOAT | # 2.3.5.9. SWIR Supplement Data (1) Description SWIR Supplement Data contain SWIR status data, calibration data, and pointing angles etc. (2) Characteristics (TBD) a) Data Model: Vdata b) Object Name: SWIR_Supplement c) Class Name: SWIR_Supple_Record.n (n: Record count number) d) Format: Each record is stored in class. Since SWIR Supplement Data are updated once per cycle time (4.398msec), Increment of frame number is attended on this update. Table 2.3.5-13 shows the contents of each entry. Table 2.3.5-14-18 show the format and the contents of Supplement Data in detail. Table 2.3.5-13 Contents of Supplement Data | Frame Number | Contents of the Entries | | |--------------|--|--| | 0 | all of synchronous code, frame number, and reserved field and Major Frame No. 0 & 1 (MF-0,1) from WORD#38 to WORD#53 in Table 2.3.5-14~18. | | | 1 | all of synchronous code, frame number, and reserved field and Major Frame No. 2 & 3 (MF-2,3) from WORD#38 to WORD#53 in Table 2.3.5-14~18. | | | 2 | all of synchronous code, frame number, and reserved field and Major Frame No. 4 & 5 (MF-4,5) from WORD#38 to WORD#53 in Table 2.3.5-14~18. | | | 3 | all of synchronous code, frame number, and reserved field and Major Frame No. 6 & 7 (MF-6,7) from WORD#38 to WORD#53 in Table 2.3.5-14~18. | | | **** | write following entries repeatedly concerning above four frames. | | Table 2.3.5-14 Format of Supplement Data (1/4) | Field Name | Variable Size | Description | |------------------|---------------|--| | Relative_Scan_No | UINT32 | Relative Scan Number | | SynchronousCode1 | UINT8 | Synchronous Code (6DE2B846) | | SynchronousCode2 | UINT8 | | | SynchronousCode3 | UINT8 | | | SynchronousCode4 | UINT8 | | | FrameNumber1 | UINT8 | Frame Number (sequential number from 0 to 10 ²⁴ -1) | | FrameNumber2 | UINT8 | | | FrameNumber3 | UINT8 | | | WORD#38 | UINT16 | WORD#38 | | | | MF-0: Optics monitor voltage A | | er Landers | | MF-1: Cooler current 3 | | | | MF-2: Optics monitor voltage A | | | | MF-3: Cooler current 3 | | | | MF-4: Optics monitor voltage A | | | | MF-5: Cooler current 3 | | | | MF-6: Optics monitor voltage A | | | | MF-7: Cooler current 3 | Table 2.3.5-14 Format of Supplement Data (2/4) | Field Name | Variable Size | Description | | |
--|---------------|---|--|--| | WORD#39 | UINT16 | WORD#39 | | | | | | MF-0: Spare | | | | 1 | | MF-1: Cooler current 4 | | | | The state of s | | MF-2: Spare | | | | | | MF-3: Cooler current 4 | | | | | | MF-4: Spare | | | | three | | MF-5: Cooler current 4 | | | | - | | MF-6: Spare | | | | A STATE OF THE STA | | MF-7: Cooler current 4 | | | | WORD#40 | UINT16 | WORD#40 | | | | | 42,113 | MF-0: Optics monitor voltage B | | | | | | MF-1: Detector temperature (NARROW) | | | | *** | • | MF-2: Optics monitor voltage B | | | | *** | | MF-3: Detector temperature (NARROW) | | | | - | | MF-4: Optics monitor voltage B | | | | P | | MF-5: Detector temperature (NARROW) | | | | | | MF-6: Optics monitor voltage B | | | | | | MF-7: Detector temperature (NARROW) | | | | WORD#41 | UINT16 | WORD#41 | | | | TO CONTACT | Untill | MF-0: Spare | | | | | | MF-1: TLM/CMD circuit reference voltage 1 | | | | *** | | MF-2: Spare | | | | | | MF-3: TLM/CMD circuit reference voltage 1 | | | | | | | | | | | | MF-4: Spare MF-5: TLM/CMD circuit reference voltage 1 | | | | | | · · · · · · · · · · · · · · · · · · · | | | | 4-f- | | MF-6: Spare | | | | WAR HAR | T.TT3.7771.6 | MF-7: TLM/CMD circuit reference voltage 1 | | | | WORD#42 | UINT16 | WORD#42 | | | | | | MF-0: Cooler current 1 | | | | THE PERSON NAMED IN COLUMN TO I | | MF-1: TLM/CMD circuit reference voltage 2 | | | | | | MF-2: Cooler current 1 | | | | and | | MF-3: TLM/CMD circuit reference voltage 2 | | | | | | MF-4: Cooler current 1 | | | | | | MF-5: TLM/CMD circuit reference voltage 2 | | | | | | MF-6: Cooler current 1 | | | | | | MF-7: TLM/CMD circuit reference voltage 2 | | | | WORD#43 | UINT16 | WORD#43 | | | | | | MF-0: Cooler current 2 | | | | | | MF-1: TLM/CMD circuit reference voltage 3 | | | | | | MF-2: Cooler current 2 | | | | | | MF-3: TLM/CMD circuit reference voltage 3 | | | | | | MF-4: Cooler current 2 | | | | | | MF-5: TLM/CMD circuit reference voltage 3 | | | | | | MF-6: Cooler current 2 | | | | | | MF-7: TLM/CMD circuit reference voltage 3 | | | | WORD#44 | UINT16 | WORD#44 | | | | | | See Table 2.3.5-14 | | | | WORD#45 | UINT16 | WORD#45 | | | | ·· ·- | | MF-0: See Table 2.3.5-15 | | | | | | MF-1: Drive plus width | | | | | | MF-2: See Table 2.3.5-15 | | | | | | MF-3: Drive plus width | | | | | | MF-4: See Table 2.3.5-15 | | | | H1 | | MF-5: Drive plus width | | | | PER | | MF-6: See Table 2.3.5-15 | | | | | | | | | | Ĺ | | MF-7: Drive plus width | | | Table 2.3.5-14 Format of Supplement Data (3/4) | Field Name | Variable Size | Description | | | |------------|---------------|---|--|--| | WORD#46 | UINT16 | WORD#46 | | | | | | MF-0: A/D reference voltage (Band 4) | | | | | | MF-1: Calibration lamp voltage A | | | | | | MF-2: Calibration lump temperature A | | | | | | MF-3: Support STR temperature 5 | | | | | | MF-4: Collector module temperature 1A | | | | | | MF-5: Electric circuit temperature 1 | | | | | | MF-6: Spare | | | | | | MF-7: Spare | | | | WORD#47 | UINT16 | WORD#47 | | | | | | MF-0: A/D reference voltage (Band 5) | | | | | | MF-1: Calibration lamp voltage B | | | | | | MF-2: Calibration lump temperature B | | | | | | MF-3: Support STR temperature 6 | | | | | | MF-4: Collector module temperature 2A | | | | | | MF-5: Electric circuit temperature 2 | | | | | | MF-6: Spare | | | | | | MF-7: Spare | | | | WORD#48 | UINT16 | WORD#48 | | | | | 1 | MF-0: A/D reference voltage (Band 6) | | | | | | MF-1: Detector temperature (Wide) | | | | | | MF-2: Support STR temperature 1 | | | | | | MF-3: Support STR temperature 7 | | | | | | MF-4: Detector preamp/dewar temperature A | | | | | | MF-5: Electric circuit temperature 3A | | | | | | MF-6: Spare | | | | | | MF-7: Spare | | | | WORD#49 | UINT16 | WORD#49 | | | | | | MF-0: A/D reference voltage (Band 7) | | | | | | MF-1: Monitor amplitude | | | | | | MF-2: Support STR temperature 2 | | | | | | MF-3: Support STR temperature 8 | | | | | | MF-4: Pointing mechanism temperature | | | | | | MF-5: Electric circuit temperature 4 | | | | | } | MF-6: Spare | | | | ····· | | MF-7: Spare | | | | WORD#50 | UINT16 | WORD#50 | | | | | | MF-0: A/D reference voltage (Band 8) | | | | | | MF-1: Spare | | | | | | MF-2: Support STR temperature 3 | | | | | | MF-3: Support STR temperature 9 | | | | | | MF-4: Cooler temperature 1 | | | | | | MF-5: Optics monitor temperature A | | | | | | MF-6: Spare | | | | | | MF-7: Spare | | | | WORD#51 | UINT16 | WORD#51 | | | | | | MF-0: A/D reference voltage (Band 9) | | | | | | MF-1: Spare | | | | | | MF-2: Support STR temperature 4 | | | | | | MF-3: Support STR temperature 10 | | | | | | MF-4: Cooler temperature 2 | | | | | | MF-5: Optics monitor temperature B | | | | | | MF-6: Spare | | | | | 1 | MF-7: Spare | | | Table 2.3.5-14 Format of Supplement Data (4/4) | Field Name | Variable Size | Description | | |------------|---------------|---------------------------|--| | WORD#52 | UINT16 | WORD#52 | | | | | MF-0: Drive plus number 1 | | | | | MF-1: See Table 2.3.5-16 | | | | | MF-2: See Table 2.3.5-16 | | | | | MF-3: See Table 2.3.5-16 | | | | | MF-4: See Table 2.3.5-16 | | | | | MF-5: Spare | | | | | MF-6: Spare | | | | | MF-7: Spare | | | WORD#53 | UINT16 | | | | | | MF-0: Drive plus number 1 | | | | | MF-1: See Table 2.3.5-17 | | | | | MF-2: See Table 2.3.5-17 | | | | | MF-3: See Table 2.3.5-17 | | | | | MF-4: See Table 2.3.5-17 | | | | | MF-5: Spare | | | | | MF-6: Spare | | | | | MF-7: Spare | | | R1 | UINT8 | reserved | | | R2 | UINT8 | reserved | | Table 2.3.5-15 WORD#44 | Major Frame | Contents | | | | |-------------|-------------------------------------|--|--|--| | 0, 2, 4, 6 | Bit-0: Pointing mirror encoder 1 | | | | | | Bit-1: Pointing mirror encoder 1 | | | | | | Bit-2: Pointing mirror encoder 1 | | | | | | Bit-3: Pointing mirror encoder 1 | | | | | | Bit-4: Pointing mirror encoder 1 | | | | | | Bit-5: Pointing mirror encoder 1 | | | | | | Bit-6: Pointing mirror encoder 1 | | | | | | Bit-7: Pointing mirror encoder 1 | | | | | 1, 3, 5, 7 | Bit-0: Pointing mirror encoder 3 | | | | | | Bit-1: Mirror position status | | | | | | Bit-2: Mirror position status | | | | | | Bit-3: Mirror position limit status | | | | | | Bit-4: Limit ENA/DISA | | | | | | Bit-5: Pointing motor ENA/DISA | | | | | | Bit-6: Encoder on/off | | | | | | Bit-7: Monitor rotation CW/CCW | | | | Table 2.3.5-16 WORD#45 | Major Frame | Contents | | | |-------------|---------------------------------------|--|--| | 0, 2, 4, 6 | Bit-0: Thermal control circuit on/off | | | | İ | Bit-1: CLR DRV circuit PS on/off | | | | | Bit-2: Calibration circuit on/off | | | | | Bit-3: Spare | | | | | Bit-4: Spare | | | | | Bit-5: Spare | | | | | Bit-6: Spare | | | | | Bit-7: Spare | | | Table 2.3.5-17 WORD#52 (1/2) | Major Frame | Contents | | | | |-------------|------------------------------------|--|--|--| | 1 | Bit-0: Band 4 gain status | | | | | | Bit-1: Band 4 gain status | | | | | 1 | Bit-2: Band 5 gain status | | | | | | Bit-3: Band 5 gain status | | | | | | Bit-4: Band 6 gain status | | | | | | Bit-5: Band 6 gain status | | | | | | Bit-6: Spare | | | | | | Bit-7: Spare | | | | | 2 | Bit-0: DIG SIG PROC PWR | | | | | | Bit-1: TML/CMD PWR on/off | | | | | | Bit-2: Analog circuit power on/off | | | | | | Bit-3: Spare | | | | | | Bit-4: Spare | | | | | | Bit-5: Detector DRV PWR | | | | | | Bit-6: Pointing CIR PWR | | | | | | Bit-7: Spare | | | | | 3 | Bit-0: THER CIR PWR | | | | | | Bit-1: Heater 1 on/off | | | | | | Bit-2: Heater 2 on/off | | | | | | Bit-3: Heater 3 on/off | | | | | | Bit-4: Heater 4 on/off | | | | | -Oursessur | Bit-5: Heater 5 on/off | | | | | | Bit-6: Detector heater | | | | | | Bit-7: Spare | | | | Table 2.3.5-17 WORD#52 (1/2) | Major Frame | Contents | | | |-------------|---------------------------|--|--| | 4 | Bit-0: Party flag status | | | | | Bit-1: ERR CMD DIS status | | | | | Bit-2: ERR CMD DIS status
| | | | | Bit-3: ERR CMD DIS status | | | | | Bit-4: ERR CMD DIS status | | | | | Bit-5: ERR CMD DIS status | | | | | Bit-6: Spare | | | | | Bit-7: Spare | | | Table 2.3.5-18 WORD#53 | Major Frame | Contents | | | | |-------------|--|--|--|--| | 1 | Bit-0: Band 7 gain status | | | | | | Bit-1: Band 7 gain status | | | | | | Bit-2: Band 8 gain status | | | | | | Bit-3: Band 8 gain status | | | | | | Bit-4: Band 9 gain status | | | | | | Bit-5: Band 9 gain status | | | | | | Sit-6: Spare | | | | | | Bit-7: Spare | | | | | 2 | Bit-0: Calibration lamp power on/off | | | | | | Bit-1: Calibration lamp A/B selection | | | | | | Bit-2: CAL CIR PWR on/off | | | | | | Bit-3: Cooler DRV CIR PWR | | | | | | Bit-4: Spare | | | | | | Bit-5: Spare | | | | | | Bit-6: Spare | | | | | | Bit-7: Spare | | | | | 3 | Bit-0: CLR monitor amplitude 1 status | | | | | | Bit-1: CLR monitor amplitude 1 status | | | | | | Bit-2: CLR monitor amplitude 1 status | | | | | | Bit-3: CLR monitor amplitude 1 status | | | | | | Bit-4: Detector temperature set status | | | | | | Bit-5: Detector temperature set status | | | | | | Bit-6: Spare | | | | | | Bit-7: Spare | | | | | 4 | Bit-0: Thermal control circuit on/off | | | | | | Bit-1: Thermal control circuit on/off | | | | | | Bit-2: Spare | | | | | | Bit-3: Spare | | | | | | Bit-4: Spare | | | | | | Bit-5: Spare | | | | | | Bit-6: Spare | | | | | | Bit-7: Spare | | | | # 2.3.5.10. SWIR Browse Image #### (1) Description SWIR Browse Image is compressed, using the standard features of the HDF libraries. As Browse images are divided from Level 1A Data Product in "ASTER Level 1 Data Product Specification (science version, version 2.0)", these will be stored in another HDF file as a subset of Level 1A data products in next version. # (2) Characteristics (TBD) a) Color Assignment: Current base line is as follows. | *************************************** | В | G | R | |---|---|---|---| | Band No. | 4 | 5 | 9 | b) Sampling Method: average sampling c) Sampling Rate: 1/10.2 c) Format: Table 2.3.5-19 shows the format Table 2.3.5-19 Format of Browse Image | Object Name | Dimension Size | Data Model | Compression
Method | Quality Factor | |-------------|----------------|------------|-----------------------|----------------| | SWIR_Browse | 200 | RIS24 | JPEG | 50 | | | 210 | | | | # 2.3.6. TIR Group #### **2.3.6.1** Overview TIR Group contains a Vgroup, and a RIS24, a series of Swath Objects through the use of the Vgroup API. Vgroup name which establishes access to a Vgroup is as follows. vgroup name: TIR_Group # 2.3.6.2. TIR Band 10 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.5-1 shows the List of data items in TIR Band 10 Swath. a) Data model: Swath b) Object Name: TIR_Band10 c) Format: Table 2.3.6-1 shows the contents of Swath Object. Table 2.3.6-2 shows the format of one. Table 2.3.6-1 List of data items in Level 1A TIR Band 10 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|---| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital
Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in
Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, yow) | | 11. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.6-2 Format of data items in TIR Band 10 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][11] | DOUBLE | geolocation field (Array) | | Longitude | [n][11] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][11][2] | INT32 | mapping to geolocation array | | SightVector | [n][11][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][11] | DOUBLE | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [700][716] | UINT16 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 70 | | | 70 | #### 2.3.6.3. TIR Band 11 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.6-3 shows the List of data items in TIR Band 11 Swath. a) Data model: Swath b) Object Name: TIR_Band11 c) Format: Table 2.3.6-3 shows the contents of Swath Object. Table 2.3.6-4 shows the format of one. Table 2.3.6-3 List of data items in Level 1A TIR Band 11 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital | | | | - | | Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7 | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in | | | | | | Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, | | | | | | yow) | | 11. | Observation Time | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.6-4 Format of data items in TIR Band 11 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][11] | DOUBLE | geolocation field (Array) | | Longitude | [n][11] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][11][2] | INT32 | mapping to geolocation array | | SightVector | [n][11][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][11] | DOUBLE | mapping to geolocation array | | SatellitePosition | [n](3) | DOUBLE | mapping to geolocation table | | SatelliteVelocity | (n)(3) | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [700][716] | UINT16 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | | | |-------|-------------------| | Table | Geolocation Array | # 2.3.6.4. TIR Band 12 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3.6-5 shows the List of data items in TIR Band 12 Swath. a) Data model: Swath b) Object Name: TIR_Band12 c) Format: Table 2.3.6-5 shows the contents of Swath Object. Table 2.3.6-6 shows the format of one. Table 2.3.6-5 List of data items in Level 1A TIR Band 12 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|---| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital
Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in
Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, yow) | | 11. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData |
2D Data Array | m | Level 1A spectral band image data | Table 2.3.6-6 Format of data items in TIR Band 12 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][11] | DOUBLE | geolocation field (Array) | | Longitude | [n][11] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][11][2] | INT32 | mapping to geolocation array | | SightVector | [n][11][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][11] | DOUBLE | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [700][716] | UINT16 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | |---|--| | Table | Geolocation Array | | *************************************** | | #### 2.3.6.5. TIR Band 13 Swath #### (1) Structure Refer to VNIR Band 1 Swath in page 2-50. #### (2) Characteristics Table 2.3.6-7 shows the List of data items in TIR Band 13 Swath. a) Data model: Swath b) Object Name: TIR_Band13 c) Format: Table 2.3.6-7 shows the contents of Swath Object. Table 2.3.6-8 shows the format of one. Table 2.3.6-7 List of data items in Level 1A TIR Band 13 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|---| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | aresec | line of sight vector (roll, pitch, yow) in Orbital Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in
Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, yow) | | 11. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.6-8 Format of data items in TIR Band 13 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][11] | DOUBLE | geolocation field (Array) | | Longitude | [n][11] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][11][2] | INT32 | mapping to geolocation array | | SightVector | [n][11][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][11] | DOUBLE | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [700][716] | UINT16 | mapping to geolocation array | n: revised to accommodate a processing scene. #### (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |-------|-------------------| | | | # 2.3.6.6. TIR Band 14 Swath (1) Structure Refer to VNIR Band 1 Swath in page 2-50. (2) Characteristics Table 2.3,6-9 shows the List of data items in TIR Band 14 Swath. a) Data model: Swath b) Object Name: TIR_Band14 c) Format: Table 2.3.6-9 shows the contents of Swath Object. Table 2.3.6-10 shows the format of one. Table 2.3.6-9 List of data items in Level 1A TIR Band 14 Swath | No. | Field Name | Туре | Unit | Comments | |-----|-------------------|-------------------|-------------|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | geocentric longitude -180.0 ~ +180.0 | | 3. | SceneLineNumber | Geolocation Table | n | coordinates based on Strip Image | | 4. | LatticePoint | 3D Data Array | pixel, line | Lattice point coordinates based on image data | | 5. | SightVector | 3D Data Array | arcsec | line of sight vector (roll, pitch, yow) in Orbital | | | | | | Reference frame | | 6. | Altitude | 2D Data Array | m | earth's surface altitude from WGS84 | | 7. | SatellitePosition | Data Table | m | satellite position vector (x, y, z) at ECI | | 8. | SatelliteVelocity | Data Table | m/sec | satellite velocity vector (x, y, z) at ECI | | 9. | AttitudeAngle | Data Table | arcsec | satellite attitude angle (roll, pitch, yow) in | | | | | | Orbital Reference frame | | 10. | AttitudeRate | Data Table | arcsec/sec | satellite attitude angular velocity (roll, pitch, | | | | · | | yow) | | 11. | ObservationTime | Data Table | msec | observation time of this lattice point [UTC] | | 12. | ImageData | 2D Data Array | m | Level 1A spectral band image data | Table 2.3.6-10 Format of data items in TIR Band 14 Swath | Field Name | Dimension Size | Variable Type | Remarks | |-------------------|----------------|---------------|------------------------------| | Latitude | [n][ll] | DOUBLE | geolocation field (Array) | | Longitude | [n][11] | DOUBLE | geolocation field (Array) | | SceneLineNumber | [n] | INT32 | geolocation field (Table) | | LatticePoint | [n][11][2] | INT32 | mapping to geolocation array | | SightVector | [n][11][3] | DOUBLE | mapping to geolocation array | | Altitude | [n][11] | DOUBLE | mapping to geolocation array | | SatellitePosition | [n][3] | DOUBLE | mapping to geolocation table | | SatelliteVelocity | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeAngle | [n][3] | DOUBLE | mapping to geolocation table | | AttitudeRate | [n][3] | DOUBLE | mapping to geolocation table | | ObservationTime | [n] | DOUBLE | mapping to geolocation table | | ImageData | [700][716] | UINT16 | mapping to geolocation array | n: revised to accommodate a processing scene. (3) Block Size Block size is shown as follows. | Table | Geolocation Array | |-------|-------------------| | | | Scan Line No. is skipped along line dimension. (one per 70 lines in image data). ### 2.3.6.7. Radiometric Correction Table SWIR Radiometric Correction Table Group contains a series of SDS Objects through the use of the Vgroup API. Each SDS object named as follows. Characteristics of each SDS object are described later subsection. (2) TIR Band 11 (3) TIR Band 12 (4) TIR Band 13 (5) TIR Band 14 Radiometric correction coefficients of First entry in coefficients dimension is C_0 . vgroup name which establishes access to a Vgroup is as follows. vgroup name: TIR_Radiometric ### 2.3.6.7.1. TIR Band 10 equation: a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_10 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [10][3] | FLOAT | # 2.3.6.7.2. TIR Band 11 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_11 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [10][3] | FLOAT | ### 2.3.6.7.3. TIR Band 12 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_12 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [10][3] | FLOAT | ### 2.3.6.7.4. TIR Band 13 a) Data model: SDS (2 Dimension Array) b) Object Name: Radiometric_Corr_13 c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [10][3] | FLOAT | # 2.3.6.7.5. TIR Band 14 a) Data model: SDS (2 Dimension Array)b) Object Name: Radiometric_Corr_14c) Format: Dimension size and variable type are as follows. | Dimension Size | Variable Type | |----------------|---------------| | [10][3] | FLOAT | # 2.3.6.8. TIR Supplement Data ### (1) Description TIR Supplement Data contain TIR status data, calibration data, and pointing angles etc. TIR Supplement Data contains a single Vdata Object (Temperature) and a series of Vdata Objects (Chopper, Encoder) through the use of the Vgroup API. vgroup name which establishes access to a Vgroup is as follows. vgroup name: TIR_Supplement ### (2) Characteristics (TBD) Three categories in Vgroup object are shown as follows. #### Supplement Data about Temperature a) Data Object: Vdata b) Object Name: TIR_Supplement_Temp c) Class Name: TIR_Supple_Temp.n (n: Record count number) d) Format: Table 2.3.6-11 show the format and contents of Supplement Data about temparetures. Table 2.3.6-11 Format of Supplement Data (Temperature) | Field Name | Variable Size | Description | | |------------------|---------------|-----------------------------|--| | Relative_Scan_No | UINT32 | Relative Scan Number | | | Detector_Temp | UINT32 | Detector Temperature | | | Black-Body_Temp1 | UINT32 | Temperature of Black-Body 1 | | | Black-Body_Temp2 | UINT32 |
Temperature of Black-Body 2 | | | Black-Body_Temp3 | UINT32 | Temperature of Black-Body 3 | | | Black-Body_Temp4 | UINT32 | Temperature of Black-Body 4 | | | Black-Body_Temp5 | UINT32 | Temperature of Black-Body 5 | | | Chopper_Temp1 | UINT32 | Temperature of Chopper 1 | | | Chopper_Temp2 | UINT32 | Temperature of Chopper 2 | | | Chopper_Temp3 | UINT32 | Temperature of Chopper 3 | | | Telescope_Temp | UINT32 | Temperature of Telescope | | | Lens_Temp | UINT32 | Temperature of Lens | | ### Supplement Data about Chopper a) Data Object: SDS (4 Dimension Array)b) Object Name: TIR_Supplement_Chopper c) Format: Table 2.3.6-12 show the format and contents of Supplement Data about chopper images. Table 2.3.6-12 Format of Supplement Data (Chopper) | Dimension Size | Variable Type | |------------------|---------------| | [n][100][10][8]* | UINT8 | n: revised to accommodate a processing scene. | *: chopper image is stored | i as record | | line | | |----------------------------|-------------|-----|------|--| | | | | | | | detector | compone | nt. | | | # Supplement Data about Encoder a) Data Object: SDS (2 Dimension Array)b) Object Name: TIR_Supplement_Encoder c) Format: Table 2.3.6-13 show the format and contents of Supplement Data about encoder data. Table 2.3.6-13 Format of Supplement Data (Chopper) | Dimension Size | Variable Type | |----------------|---------------| | [n][935] | UINT16 | n: revised to accommodate a processing scene. # 2.3.6.9. TIR Browse Image ### (1) Description TIR Browse Image is compressed, using the standard features of the HDF libraries. Converting TIR data from 16-bits format into 8-bits format subject to HDF Raster Images. As Browse images are divided from Level 1A Data Product in "ASTER Level 1 Data Product Specification (science version, version 2.0)", these will be stored in another HDF file as a subset of Level 1A data products in next version. # (2) Characteristics (TBD) a) Color Assignment: Current base line is as follows. | | В | G | R | |----------|----|----|----| | Band No. | 10 | 12 | 14 | b) Sampling Method: average sampling c) Sampling Rate: 1/3.5 c) Format: Table 2.3.6-14 shows the format Table 2.3.6-14 Format of Browse Image | Object Name | Dimension Size | Data Model | Compression
Method | Quality Factor | |-------------|----------------|------------|-----------------------|----------------| | TIR_Browse | 200 | RIS24 | JPEG | 50 | | | 210 | | | | ### 3. Level 1B Data Product #### 3.1 Overview Level 1B Data Products is an HDF file. Each file contains a complete 1-scene image data generated from Level 1A Data. All of these data are stored together with Metadata and Swath Layout parts in one HDF file (see Note1). Level 1B Product is created by performing the geometric and radiometric corrections on the original Level 1A image data, and the final result is projected onto map at full instrument resolutions. The Level 1B Data generation includes also scene registrations for SWIR and TIR data. And furthermore for SWIR in particular, the parallax errors due to the spatial locations of all of its bands are also corrected. Note1: As Ancillary Data and Supplement Data (VNIR, SWIR and TIR) are included in Level 1B Data Product in "ASTER Level 1 Data Product Specification (science version, version 2.0)", these will be stored in Level 1B data product HDF in next version. Note2: Resolution is shown as follows. | Subsystem | VNIR | SWIR | TIR | |------------|------|------|------| | Resolution | 15 m | 30 m | 90 m | #### 3.2 Data Structure #### (1) Data Type There are five categories of HDF data type included in Level 1B data product. NOTE: VNIR (4 bands) and SWIR (6 bands) image data are 8-bit unsigned integer science data, and TIR (5 bands) image data are 16-bit unsigned integer science data in each categories. ### (2) Data Structure The physical data of Level 1B Data Product is shown in Figure 3.2-1. Figure 3.2-1 Physical Data of Level 1B Data Product #### 3.3 Data Format ### 3.3.1. Metadata Level 1B Metadata consists of five Master Groups, which are - (1) Inventory Metadata - (2) ASTER GDS Generic Metadata - (3) Product Specific Metadata(VNIR1): including the attribute about band-1 and 2 data. - (4) Product Specific Metadata(VNIR2): including the attribute about band-3N and 3B data. - (5) Product Specific Metadata(SWIR1): including the attribute about band-4, 5 and 6 data. - (6) Product Specific Metadata(SWIR2): including the attribute about band-7, 8 and 9 data - (7) Product Specific Metadata(TIR1): including the attribute about band-10,11 and 12 data. (8) Product Specific Metadata(TIR2): including the attribute about band-13 and 14 data. About concept and definition of master groups, refer to SDP Toolkit Users Guide for the ECS Project, Appendix J. # 3.3.1.1. Inventory Metadata #### (1) Indexes of Objects The object list of Inventory Metadata is shown in Table 3.3.1-1. Inventory metadata attributes apply to the whole L1B product, and are written to the HDF file attribute coremetadata.0. Inventory metadata contains ASTER Meta-Parameters in Generic header for ASTER GDS Products (about Generic header for ASTER GDS Products, see ASTER LEVEL1 DATA PRODUCTS SPECIFICATION, science version, version2). The attributes included in inventory metadata are associated with DID311. (In Table 3.3.1-1, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) The objects in Itaric character are not authorized by Level 1 WG, and will be deleted in next version. Table 3.3.1-1 List of Objects in Inventory Metadata(1/2) No. Group/Object Name type(*1) Description | No | | Group/Object Name | type(*1) | Description | |----|---|-------------------------|----------|---| | 1 | | sizeMBDataGranule | double | The volume of data contained in the granule. | | 2 | | PlatformShortName | string | 'AM-1' fixed. | | 3 | | InstrumentShortName | string | 'ASTER' fixed. | | 4 | | BoundingRectangle | | This block contains area coverage for a granule. | | | 1 | WestBoundingCoordinate | double | Western-most coordinate of the scene expressed in longitude. | | | 2 | NorthBoundingCoordinate | double | Northern-most coordinate of the scene expressed in latitude. | | | 3 | EastBoundingCoordinate | double | Eastern-most coordinate of the scene expressed in longitude. | | | 4 | SouthBoundingCoordinate | double | Southern-most coordinate of the scene expressed in latitude. | | 5 | | SingleDateTime | | This contains the time of day and calendar date for a granule. | | | 1 | TimeofDay | string | format: HHMMSSSSSSSZ | | | 2 | CalendarDate | string | format: YYYYMMDD | | 6 | | Review | | This block provides for dates and status as applicable for collection which are active. | | | 1 | FutureReviewDate | string | The date of the nearest planned QA peer review in future. format: YYYYMMDD | | 2 | ScienceReviewDate | string | The date of the last QA peer | |---|-------------------|--------|------------------------------| | | | | review. | | | | | format: YYYYMMDD | Table 3.3.1-1 List of Objects in Inventory Metadata(2/2) | No. | | Group/Object Name | type(*1) | Description | |-----|---|--|----------|---| | 7 | *************************************** | QAStats | | This block contains measures of quality for a granule. | | | 1 | QAPercentMissingData | double | % of missing data of the scene. | | | 2 | QAPercentOutofBoundsData | double | % of out of bounds data of the scene. | | | 3 | QAPercentInterpolatedData | double | % of interpolated data of the scene. | | 8 | | ReprocessingActual | string | The stating what reprocessing has been performed on this granule. {not reprocessed, reprocessed once, reprocessed twice, free text} | | 9 | | PGEVersion | string | The version of PGE | | 10 | | ProcessingLevelID | string | The classification of the science data processing level: '1B' | | 11 | | MapProjectionName | string | The name of the mapping method for the data. | | 12 | | AdditionalAttributes | | This group contains the product specific attributes definition. | | | | AdditionalAttributesContaine r(n)(*2) | | This container contains the additional attributes of the product. Currently, only Day/Night Flag is contained in this container. | | | 1 | AdditionalAttributeName(n)(*2) | string | Name of additional attribute:
Day/Night Flag | | | 2 | AdditionalAttributeDescripti on(n)(*2) | string | Description of additional attribute: 'The Flag indicates observation condition' | | | 3 | AdditionalAttributeDataType (n)(*2) | string | Data type of additional attribute: 'STRING' | | 13 | | InformationContent | | This group contains the product specific attribute value. | | | | InformationContentContaine r(n)(*2) | | This container contains the information content. Currently, only Day/Night Flag is contained in this container. | | | **** | ParameterValue(n)(*2) | string | Value of additional attribute: 'DT': observation in daytime 'NT': observation in nighttime | | 14 | | SensorShortName | string | The short name for sensor(s) using in generating the product: 'ASTER_VNIR','ASTER_SWIR',' ASTER_TIR','ASTER_STEREO' | # NOTES: - (*1) Object types used in Metadata are - a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. # 3.3.1.2. ASTER GDS Generic Metadata # (1) Indexes of Objects The Object list of ASTER GDS Generic metadata is shown in Table 3.3.1-2. ASTER GDS Generic metadata attributes are written to the HDF file attribute productmetadata.0. ASTER GDS Generic metadata contains ASTER Parameters in Generic Header for ASTER GDS Products (about Generic header for ASTER GDS Products, see ASTER LEVEL1 DATA
PRODUCTS SPECIFICATION, science version, version2). The ASTER Parameters are ASTER GDS specific attributes, i.e. not associated with DID311. (In Table 3.3.1-2, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) The objects in Itaric character are not authorized by Level 1 WG, and will be deleted in next version. Table 3.3.1-2 List of Object in ASTER GDS Generic Metadata (1/4) | No. | | Group/Object Name | type(*1) | Description | |---|---|----------------------------------|----------|--| | 1 | | IDofASTERGDSDataGranule | string | This provides a unique identifier for location of a data granule held in ASTER GDS. | | 2 | | RecievingCenter | string | 'EDOS' fixed. | | 3 | | ProcessingCenter | string | 'ASTER-GDS' fixed. | | 4 | | GenerationDateandTime | datetime | Generation date and time of this Level1B product. | | 5 | | PointingAngles | | Specification of the pointing angles of ASTER sensors. | | | | PointingAnglesContainer(n)(* 2) | | n = number of sensors | | | 1 | SensorName(n)(*2) | string | 'VNIR' or 'SWIR' or 'TIR' | | | 2 | PointingAngle(n)(*2) | double | pointing angle in degrees | | | 3 | SettingTimeofPointing(n)(*2) | datetime | YYYY-MM-
DDThh:mm:ssZ | | 6 | | GainInformation | | The information of the gain level. | | Potate manadavoka manindar eka manindar oka per | | GainInformationContainer(n)(*2) | | This container contains the level of the data acquisition gain for VNIR and SWIR. | | | | Gain(n)(*2) | string | (Band Number, Band Gain) where, Band Number: '01','02','3N','3B','04','05' ','06','07','08','09' Band Gain: for VNIR: 'HGH': high gain 'NOR': normal gain 'LOW': low gain for SWIR: 'HGH': high gain 'LOU': low gain 'LOU': low gain 'LOI': low gain 'LOI': low gain 1 'LO2': low gain 2 when data is not acquired or doesn't exist: 'OFF' | | 7 | | CalibrationInformation | | Calibration information used to generate the geometric and radiometric correction tables. | Table 3.3.1-2 List of Object in ASTER GDS Generic Metadata (2/4) | No | | | Group/Object Name | type(*1) | Description | |----|---|------|---|----------|---| | 7 | | | GeometricDBversion | string | The version information of the geometric correction data. (Version, Issuance date, Comments) | | | | 2 | RadiometricDBversion | string | The version information of the radiometric correction data. (Version, Issuance date, Comments) | | 8 | | | DataQuality | | The information about the quality of this product. | | | 1 | | CloudCoverage | | The information about the cloud coverage of the scene | | | | **** | SceneCloudCoverage | integer | The percentage of cloud coverage for the whole scene. | | | | 2 | QuadrantCloudCoverage | integer | The percentages for 4 quarters of a scene in the order of: upper left -> upper right -> lower left -> lower right | | 9 | | | SourceDataProduct | string | The information about the input data used for generating this Level-1B product. (DataID, GenDT, Datatyp) where, DataID: ID of ASTER GDS Data granule. GenDT: Generation date and time. Datatyp: Data type, 'PDS' or 'EDS' | | 10 | | | InstrumentInformation | | The information about sensors used to acquire data. | | | I | | ASTEROperationMode | string | The types of ASTER operation. 'OBSERVATION' or 'CALIBRATION' or 'TEST' | | | 2 | | ObservationMode ObservationModeContainer(n) | | This group contains ASTER observation mode. The container of ASTER | | | | | (*2) | | observation mode. | | 1 | ASTERObservationMode(n)(* | string | The observation mode of | |---|---------------------------|--------|----------------------------| | | 2) | | each sensor group. | | | | | (SGname, Observation) | | | | | where, | | | | | SGname: 'VNIR1' or | | | | | 'VNIR2' or 'SWIR' or | | | | | 'TIR' | | | | | Observation: 'ON' (data is | | | | | acquired) or | | | | | 'OFF' (data is not | | | | | acquired, or not existing | | | | | in the granule) | Table 3.3.1-2 List of Object in ASTER GDS Generic Metadata (3/4) | No. | | Parameter Name | type(*1) | Description | |-----|---|----------------------|----------|--| | 10 | 3 | ProcessedBands | string | The status of all bands during observation. Format: set of flags described as 2-byte string. byte = 01,02,3N~14 (band 01,02,3N~14 data is acquired.) = XX (data corresponding to its band position is not acquired) Example: Value = "01023NXX0405XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX | | 11 | | SceneInformation | | The information about the scene concerning with the data granule. | | | 1 | ASTERSceneID | integer | The scene identifier defined
by path, row and view.
(path, row, view)
where,
path: 1-233(nominal)
row: 1-TBD
view: 1-TBD | | | 2 | AOSSceneID | string | The scene ID defined by AOS (definition: TBD). | | | 3 | OrbitNumber | integer | The orbit number of the satellite, when data is acquired. | | | 4 | RecurrentCycleNumber | integer | The satellite recurrent cycle number and the revolution number in the cycle. (cycle No., revolution No.) where, cycle: 1-260(max.) revolution: 1-233(nominal) | | | 5 | FlyingDirection | string | The satellite flight direction when observation is done. 'AS': ascending direction. 'DE': descending direction. | | | 6 | SolarDirection | double | The sun direction as seen from the scene center. (az, el) where, az: azimuth angle in degree. 0.0 <= az < 360.0 measured eastward from North. el: elevation angle in degree90.0 <= el <= 90.0 | | resolution of TIR) | |--------------------| |--------------------| Table 3.3.1-2 List of Object in ASTER GDS Generic Metadata (4/4) | No. | | Parameter Name | type(*1) | Description | |-----|------------|---------------------------------------|----------|--| | 12 | | SceneCoordinates | | This group contains the information of coordinates of the scene. | | 1 | | SceneCoord | | | | | | SceneCoordContainer(n)(*2) | | The container of the scene coordinates, in the order of: upper left -> upper right -> lower left -> lower right | | | *** | FourCornersLongandLat(n)(*
2) | double | Longitude and latitude of each corners of the full scene. unit: degree (long, lat) where, long: East longitude -180.0 <= long <= 180.0 lat: latitude -90.0 <= lat<= 90.0 | | 2 | , | CenterLongitudeandLatitude | double | Longitude and latitude of the scene center. unit: degree (long, lat) where, long: East longitude -180.0 <= long <= 180.0 lat: latitude -90.0 <= lat <= 90.0 | | 3 | | QuadSceneCoord | | | | | | QuadSceneCoordContainer(n) (*2) | | This container contains longitudes and latitudes of the quadrant scene, in the order of: upper left -> upper right -> lower left -> lower right | | | | FourCornersLongndLatofQua
d(n)(*2) | double | Longitude and latitude of 4 corners of the each quadrant, in the order of: upper left -> upper right -> lower left -> lower right ((long, lat)*4) where, long: East longitude (degree) -180.0 <= long <= 180.0 lat: latitude (degree) -90.0 <= lat <= 90.0 | | 13 | | IDofBrowseDatagranule | string | Logical reference to the browse product. | NOTES: - (*1) Object types used in Metadata are a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. # 3.3.1.3. Product Specific Metadata(VNIR) #### (1) Indexes of Objects The Object list of Product Specific metadata(VNIR1) and Product Specific metadata(VNIR2) are shown in Table 3.3.1-3. Product Specific metadata(VNIR1) attributes (VNIRBand1Data and VNIRBand2Data Groups) are written to the HDF file attribute productmetadata.v1 and Product Specific metadata(VNIR2) attributes (VNIRBand3NData and VNIRBand3BData Groups) are written to productmetadata.v2. Product Specific Metadata(VNIR1) and Product Specific metadata(VNIR2) include product specific attributes, i.e. not associated with DID311. (In Table 3.3.1-3, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) The objects in Itaric character are not authorized by Level 1 WG, and will be changed in next version. Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(1/9) | No. | Group/Object Name | type(*1) | Description | |-----|----------------------------|----------|--| | | VNIRBand1Data | | The information about VNIR band 1 of Level-1B | | 1 | ImageDataInformation1 | integer | The information of VNIR band I image data. (npx, nln, bpp) where, npx: Number of pixels per line(4980: nominal) nln: Number of lines in frame(4200: nominal) bpp: Bytes per pixel (1: fixed) | | 2 | ImageStatistics1 | | The statistical information about the quality of Level1B VNIR band 1 data. | | 1 | MinimumValue1 | integer |
Minimum value in this band of Level1B VNIR image data: 0 <= min. <= 255 | | 2 | MaximumValue1 | integer | Maximum value in this band of Level1B VNIR image data: 0 <= max. <= 255 | | 3 | MeanValue1 | double | Mean value in this band of
Level1B VNIR image data:
0.0 <= mean <= 255.0 | | 4 | Standard Deviation Value I | double | Standard deviation value in this band of Level 1B VNIR image data. | | 5 | ModeValue1 | integer | Mode value in this band of Level1B VNIR image data: 0 <= mode <= 255 | | 6 | Median Value 1 | integer | Median value in this band of Level1B VNIR image data: 0 <= med. <= 255 | | 3 | DataQuality1 | | This group contains the information about the quality of Level 1B band 1 VNIR data. | Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(2/9) | N | 0. | | | Group/Object Name | type(*1) | Description | |---------|---|---|----------|-------------------------------|----------|--| | 1 | 3 | 1 | | NumberofBadPixels1 | integer | The information about bad | | | | | | | | pixels. | | | | | | | | (nmp, ndd, nelm) | | | | | | | | where, | | ŀ | | | | | | nmp: number of missing | | 1 | | | | | | pixels. | | | l | | | | | ndd: number of damaged | | | | | | | | detectors. | | | | | | | | nelm: number of elements of | | | | <u></u> | | ListofBadPixels1 | | the next list of bad pixels. This group contains the | | | | 2 | | ListotBadrixeist | | information about bad | | | | | | | | pixels. | | | | | | ListofBadPixels1Container(n)(| | DIACIS. | | | | | | *2) | | | | | | | 1 | DirectionofBadPixel1(n)(*2) | string | The direction of bad pixel | | | | | | | | segment. | | | | | | | | 'C' = cross-track | | | | | <u> </u> | | | 'A' = along-track | | | l | | 2 | BadPixelLP1(n)(*2) | integer | The line number (in cross- | | | | | | | | track segment) or the pixel | | | | | | | | number (in along-track | | | | | _ | DDOT' I DI ()(+0) | | segment) including BPS. | | | | | 3 | BPSFirstLP1(n)(*2) | integer | First pixel number in cross- | | | | | | | | track segment) or first line | | | | | | | | number (in along-track segment) of BPS. | | | | | 4 | BPSLastLP1(n)(*2) | integer | Last pixel number in cross- | | | | | 7 | DI BLASIEI I(II)(2) | integer | track segment) or last line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 5 | CauseofBadPixel1(n)(*2) | string | The cause of bad data: | | | | | | | | 'M': Data missing | | | | | | | | 'D' : Damaged Detector | | | | | | | | 'I': Interpolated Data | | | 4 | | | ProcessingParameters1 | | This group contains the | | | | | | | | parameters used by Level- | | | | | | | | 1B generation processing. | | | 1 | 1 | - | CorIntel1 | string | Correction of the | | | | | | | | intertelescope error of SWIR | | | | <u></u> | | | | and TIR: 'N/A' fixed. | | | | 2 | | CorParal | string | Correction of the SWIR parallax error: 'N/A' fixed. | | | | 3 | | ResMethod I | etrino | Resampling Method: | | | | 3 | | Respictive i | string | 'BL' or 'NN' or 'CC' | | | *************************************** | 4 | | SceneRotationAngle1 | double | Scene rotation angle of | | | | <u></u> | | | | Level-1B Band-1 image. | | | | 5 | | ProjectionParameters1 | double | Parameters used in GCTP | | | | F | | IITH7C.L. | intace | Map projection. Zone code for UTM | | | | 6 | | UTMZoneCode1 | integer | Zone code for UTM projection (when mapping | | | | | | | | without UTM: 0 fixed). | | | | 7 | | SpheroidCode1 | integer | Spheroid code used in | | | *************************************** | | | | | processing. | | Aumonos | | *************************************** | **** | | | | Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(3/9) | No. | | Group/Object Name | type(*1) | Description | |-----|---|-------------------------|----------|--| | 1 | 5 | UnitConversionCoeff1 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-1 image. | | j | 1 | Incll | double | Inclination. | | | 2 | Offset1 | double | Offset: 0.0 fixed. | | | 3 | UnSatMin1 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | 4 | UnSatMax1 | integer | Maximum value of unsaturated pixel: 254 fixed. | | | 5 | ConUnit1 | string | Converted Unit | | 2 | | VNIRBand2Data | | The information about VNIR band 2 of level-1B. | | | 1 | ImageDataInformation2 | integer | The information of VNIR band 2 image data. (npx, nln, bpp) where, npx: Number of pixels per line(4980: nominal) nln: Number of lines in frame(4200: nominal) bpp: Bytes per pixel (1: fixed) | | | 2 | ImageStatistics2 | | The statistical information about the quality of Level1B VNIR data. | | | 1 | MinimumValue2 | integer | Minimum value in this band of Level1B VNIR image data: 0 <= min. <= 255 | | | 2 | MaximumValue2 | integer | Maximum value in this band of Level 1B VNIR image data: 0 <= max. <= 255 | | | 3 | MeanValue2 | double | Mean value in this band of
Level1B VNIR image data:
0.0 <= mean <= 255.0 | | | 4 | StandardDeviationValue2 | double | Standard deviation value in this band of Level1B VNIR image data. | | | 5 | ModeValue2 | integer | Mode value in this band of
Level1B VNIR image data:
0 <= mode <= 255 | | | 6 | MedianValue2 | integer | Median value in this band of Level1B VNIR image data: 0 <= med. <= 255 | | | 3 | DataQuality2 | | This group contains the information about the quality of Level1B VNIR data. | Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(4/9) | N | 0. | | | Group/Object Name | type(*1) | Description | |---|-------------------------------|--|---|--|-----------|------------------------------| | | $\frac{100}{2 \mid 3 \mid 1}$ | | | NumberofBadPixels2 | integer | The information about bad | | - | ' | | | T THISTOPS DESCRIPTION OF THE PROPERTY | | pixels. | | | | | | | | (nmp, ndd, nelm) | | | | İ | | | | where, | | | | | | | | nmp: number of missing | | | Ì | ĺ | | | | | | | | | | | | pixels. | | | | | | | | ndd: number of damaged | | | | | | | | detectors. | | | | ĺ | | | | nelm: number of elements of | | | | <u> </u> | | | | the next list of bad pixels. | | | | 2 | | ListofBadPixels2 | | This group contains the | | | | | | | | information about bad | | | | | | | | pixels. | | | | | | ListofBadPixels2Container(n)(| | | | | | | | *2) | | The diameter of the terms | | | | | 1 | DirectionofBadPixel2(n)(*2) | string | The direction of bad pixel | | | | | | | | segment. | | | | | | | | 'C' = cross-track | | | | | | | | 'A' = along-track | | | | | 2 | BadPixelLP2(n)(*2) | integer | The line number (in cross- | | | | ĺ | | | | track segment) or the pixel | | | | | | | | number (in along-track | | | | | | | | segment) including BPS. | | | | | 3 | BPSFirstLP2(n)(*2) | integer | First pixel number in cross- | | | | | | | | track segment) or first line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 4 | BPSLastLP2(n)(*2) | integer | Last pixel number in cross- | | | | | | | _ | track segment) or last line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 5 | CauseofBadPixel2(n)(*2) | string | The cause of bad data: | | | | | | | ٠ | 'M': Data missing | | | | | | | | 'D' : Damaged Detector | | 1 | | | | | | T: Interpolated Data | | | 4 | | | ProcessingParameters2 | | This group contains the | | | <u>`</u> | | | | | parameters used by Level- | | | | | | | | 1B generation processing. | | | | П | | CorIntel2 | string | Correction of the | | | | ' | | ₩ V4 A44EW4AW | ~ <u></u> | intertelescope error of SWIR | | | | | | | | and TIR:
'N/A' fixed. | | | | 2 | | CorPara2 | string | Correction of the SWIR | | | | 14 | | COIFAIAL | sumg | parallax error: 'N/A' fixed. | | | | 3 | | ResMethod2 | | | | | | 1 3 | | Resivieurou2 | string | Resampling Method: | | | | | | S. and B. and C. | J 1. 1 | 'BL' or 'NN' or 'CC' | | | | 4 | | SceneRotationAngle2 | double | Scene rotation angle of | | | | <u> </u> | | | | Level-1B Band-2 image. | | | | 5 | | ProjectionParameters2 | double | Parameters used in GCTP | | | | <u> </u> | | | | Map projection. | | | | 6 | | UTMZoneCode2 | integer | Zone code for UTM | | | | | | | | projection (when mapping | | | | | | | | without UTM: 0 fixed). | | | | 7 | | SpheroidCode2 | integer | Spheroid code used in | | | | | | | | processing. | | ŧ | | L | | | | 1 5 | | 5 | UnitConversionCoeff2 | This group contains the | |---|----------------------|-------------------------------| | | | coefficients used for | | | | radiance conversion, from | | | | the pixel value of the band-2 | | | | image. | Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(5/9) | N | No. | | Group/Object Name | type(*1) | Description | |---|----------|---|--------------------------|----------|--| | 2 | 5 1 | | Incl2 | double | Inclination. | | | | 2 | Offset2 | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin2 | integer | Minimum value of | | | | 4 | UnSatMax2 | integer | unsaturated pixel: 0 fixed. Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | ConUnit2 | string | Converted Unit | | 3 | . | • | VNIRBand3NData | | The information about VNIR band 3N of level-1B. | | | ymrid | | ImageDataInformation3N | integer | The information of VNIR band 1 image data. (npx, nln, bpp) where, npx: Number of pixels per line(4980: nominal) nln: Number of lines in frame(4200: nominal) bpp: Bytes per pixel (1: fixed) | | | 2 | | ImageStatistics3N | | The statistical information about the quality of Level 1B VNIR data. | | | | 1 | MinimumValue3N | integer | Minimum value in this band of Level1B VNIR image data: 0 <= min. <= 255 | | | | 2 | MaximumValue3N | integer | Maximum value in this band of Level1B VNIR image data: 0 <= max. <= 255 | | | | 3 | MeanValue3N | double | Mean value in this band of Level1B VNIR image data: 0.0 <= mean <= 255.0 | | | | 4 | StandardDeviationValue3N | double | Standard deviation value in this band of Level B VNIR image data. | | | | 5 | ModeValue3N | integer | Mode value in this band of Level1B VNIR image data: 0 <= mode <= 255 | | | | 6 | MedianValue3N | integer | Median value in this band of Level1B VNIR image data: 0 <= med. <= 255 | | | 3 | | DataQuality3N | | This group contains the information about the quality of Level1B VNIR data. | Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(6/9) | No | No. | | | Group/Object Name | type(*1) | Description | |---|-----|---|---|-----------------------------------|----------|---| | 3 | 3 | 1 | | NumberofBadPixels3N | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels3N | | This group contains the information about bad pixels. | | | | | | ListofBadPixels3NContainer(n)(*2) | | | | | | | 1 | DirectionofBadPixel3N(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP3N(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP3N(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP3N(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel3N(n)(*2) | string | The cause of bad data: 'M': Data missing 'D': Damaged Detector 'I': Interpolated Data | | | 4 | | | ProcessingParameters3N | | This group contains the parameters used by Level-1B generation processing. | | | | 1 | | CorIntel3N | string | Correction of the intertelescope error of SWIR and TIR: 'N/A' fixed. | | | | 2 | | CorPara3N | string | Correction of the SWIR parallax error: 'N/A' fixed. | | | | 3 | | ResMethod3N | string | Resampling Method:
'BL' or 'NN' or 'CC' | | | | 4 | | SceneRotationAngle3N | double | Scene rotation angle of Level-1B Band-3N image. | | | | 5 | | ProjectionParameters3N | double | Parameters used in GCTP Map projection. | | | | 6 | | UTMZoneCode3N | integer | Zone code for UTM projection (when mapping without UTM: 0 fixed). | | *************************************** | | 7 | | SpheroidCode3N | integer | Spheroid code used in processing. | | | 5 | UnitConversionCoeff3N | This group contains the | |---|---|-----------------------|------------------------------| | | | | coefficients used for | | | | | radiance conversion, from | | | | | the pixel value of the band- | | ĺ | | | 3N image. | Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(7/9) | No.
3 5 1 | | | Group/Object Name Incl3N | type(*1) | Description Inclination | |---|---|---|--------------------------|----------|--| | 3 | 5 | 1 | Incl3N | double | Inclination. | | | | 2 | Offset3N | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin3N | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | UnSatMax3N | integer | Maximum value of unsaturated pixel : 254 fixed. | | | | 5 | ConUnit3N | string | Converted Unit | | 4 | | | VNIRBand3BData | | The information about VNIR band 3B of Level-1B. | | | | | ImageDataInformation3B | integer | The information of VNIR band 3B image data. (npx, nln, bpp) where, npx: Number of pixels per line(4980: nominal) nln: Number of lines in frame(4200: nominal) bpp: Bytes per pixel (1: fixed) | | | 2 | | InitialExtractAddress | integer | The extract address of the first available pixel in each refreshing cycle of VNIR band-3B image data. Since, there are as many as 9 refreshing cycles in a frame data (nominal = 9 for a 9.5 sec frame), there extract addresses will form a list consisting of 9 elements. (ExtrAd-1, ExtrAd-2,, ExtrAd-nrc) ExtrAd : 0-899 | | | 3 | | ImageStatistics3B | | The statistical information about the quality of Level 1B VNIR data. | | | | 1 | MinimumValue3B | integer | Minimum value in this band of Level 1B VNIR image data: 0 <= min. <= 255 | | | | 2 | MaximumValue3B | integer | Maximum value in this band of Level1B VNIR image data: 0 <= max. <= 255 | | | | 3 | MeanValue3B | double | Mean value in this band of Level1B VNIR image data: 0.0 <= mean <= 255.0 | | *************************************** | | 4 | StandardDeviationValue3B | double | Standard deviation value in this band of Level1B VNIR image data. | | | 5 | ModeValue3B | J | Mode value in this band of Level1B VNIR image data: 0 <= mode <= 255 | |--|---|---------------|---|--| | | 6 | MedianValue3B | • | Median value in this band of Level1B VNIR image data: 0 <= med. <= 255 | Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(8/9) | o. | | Group/Object Name | type(*1) | Description | |-----|----------|-----------------------------------|----------|--| | 4 | | DataQuality3B | | This group contains the information about the quality of Level1B VNIR data. | | | | NumberofBadPixels3B | integer | The information about bad pixels. (nmp, ndd, nelm) | | | | | | where, nmp: number of missing pixels. ndd: number of damaged detectors. | | | | | | nelm: number of elements of
the next list of bad pixels. | | 2 | | ListofBadPixels3B | | This group contains the information about bad pixels. | | | | ListofBadPixels3BContainer(n)(*2) | | | | | 1 | DirectionofBadPixel3B(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | 2 | BadPixelLP3B(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | 3 | BPSFirstLP3B(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | 4 | BPSLastLP3B(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | 5 | CauseofBadPixel3B(n)(*2) | string | The cause of bad data: 'M': Data missing 'D': Damaged Detector 'I': Interpolated Data | | 5 | <u>t</u> | ProcessingParameters3B | | This group contains the parameters used by Level-1B generation processing. | | | ĺ | CorIntel3B | string | Correction of the intertelescope error of SWII and TIR: 'N/A' fixed. | | 1 7 | 2 | CorPara3B | string | Correction of the SWIR parallax error: 'N/A' fixed. | | | 3 | ResMethod3B | string | Resampling Method:
'BL' or 'NN' or 'CC' | | | 1 | SceneRotationAngle3B | double | Scene rotation angle of Level-1B Band-3B image. | | | 5 | ProjectionParameters3B | double | Parameters used in GCTP Map projection. | | | 5 | UTMZoneCode3B | integer |
Zone code for UTM projection (when mapping without UTM: 0 fixed). | | | 7 | SpheroidCode3B | integer | Spheroid code used in processing. | Table 3.3.1-3 List of Object in Level 1B Product Specific Metadata(VNIR)(9/9) | N | o. | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Group/Object Name | type(*1) | Description | |---|----|---|-----------------------|----------|---| | 4 | 6 | | UnitConversionCoeff3B | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-3B image. | | | | | Incl3B | double | Inclination. | | | | 2 | Offset3B | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin3B | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | UnSatMax3B | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | ConUnit3B | string | Converted Unit | # NOTES: - (*1) Object types used in Metadata are - a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. # 3.3.1.4. Product Specific Metadata(SWIR) ### (1) Indexes of Objects The Object list of Product Specific metadata(SWIR1) and Product Specific metadata(SWIR2) are shown in Table 3.3.1-4. Product Specific metadata(SWIR1) attributes (SWIRBand4Data, SWIRBand5Data and SWIRBand6Data Groups) are written to the HDF file attribute productmetadata.s1 and Product Specific metadata(SWIR2) attributes (SWIRBand7Data, SWIRBand8Data and SWIRBand9Data Groups) are written to the HDF file attribute productmetadata.s2. Product Specific Metadata(SWIR1) and Product Specific metadata(SWIR2) include product specific attributes, i.e. not associated with DID311. (In Table 3.3.1-4, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) The objects in Itaric character are not authorized by Level 1 WG, and will be changed in next version. Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(1/19) | No. | Group/Object Name | type(*1) | Description | |-----|-------------------------|----------|--| | 1 | SWIRBand4Data | - | The information about SWIR band 4 of Level-1B. | | | ImageDataInformatiln4 | integer | The information of SWIR band 4 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2490: nominal) nln: Number of lines in frame(2100: nominal) bpp: Bytes per pixel (1: fixed) | | 2 | ImageStatistics4 | | The statistical information about the quality of Level1B SWIR data. | | | MinimumValue4 | integer | Minimum value in this band of Level1B SWIR image data: 0 <= min. <= 255 | | 2 | MaximumValue4 | integer | Maximum value in this band of Level1B SWIR image data: 0 <= max. <= 255 | | 3 | MeanValue4 | double | Mean value in this band of
Level1B SWIR image data:
0.0 <= mean <= 255.0 | | 4 | StandardDeviationValue4 | double | Standard deviation value in this band of Level1B SWIR image data. | | 5 | ModeValue4 | integer | Mode value in this band of Level1B SWIR image data: 0 <= mode <= 255 | | 6 | MedianValue4 | integer | Median value in this band of Level1B SWIR image data: 0 <= med. <= 255 | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(2/19) | No | No. | | | Group/Object Name | type(*1) | Description | |----|-----|---|----------|---|-------------|--| | T | 3 | | | DataQuality4 | | This group contains the | | | | | | | | information about the quality | | | | | | | | of Level 1B SWIR data. | | | | Π | | NumberofBadPixels4 | integer | The information about bad | | | | | | | | pixels. | | | | | | | | (nmp, ndd, nelm) | | | | | | | | where, | | | | | 1 | | | nmp: number of missing | | | | | | | | pixels. | | | | | | | | ndd: number of damaged | | | | | | | | detectors. | | | | | | | | nelm: number of elements of | | | | | | | | the next list of bad pixels. | | | | 2 | | ListofBadPixels4 | | This group contains the | | | | | | | | information about bad | | | | | | | | pixels. | | | | | | ListofBadPixels4Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel4(n)(*2) | string | The direction of bad pixel | | | | | | | | segment. | | | | | | | | 'C' = cross-track | | | | | | | | 'A' = along-track | | | | | 2 | BadPixelLP4(n)(*2) | integer | The line number (in cross- | | | | | | | | track segment) or the pixel | | | | | | | | number (in along-track | | 1 | | | _ | BBGE INC. VAO | | segment) including BPS. | | | | | 3 | BPSFirstLP4(n)(*2) | integer | First pixel number in cross- | | | | | | | | track segment) or first line | | | | | | | | number (in along-track segment) of BPS. | | | | | 4 | BPSLastLP4(n)(*2) | integer | Last pixel number in cross- | | | • | | 4 | Br SLastLr 4(II)(2) | micgei | track segment) or last line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 5 | CauseofBadPixel4(n)(*2) | string | The cause of bad data: | | | | | | | | 'Me' : Missing Even Pixel | | ' | | | | | 1 | 'Mo' : Missing Odd Pixel | | | | | | - | | 'D': Damaged Detector | | | 1 | | | | | 'I': Interpolated Data | | | | 3 | | SWIRRegistrationQuality4 | | The registration information | | | | | , | | | of SWIR based on VNIR. | | | | | 1 | ProcessingFlag4 | integer | 0: no output, because | | | | | | | | processing is impossible. | | | | | | | | 1: output is the result | | | | | | | | computed. | | | | | | | | 2: output is extracted from | | | | | l | | | registration file. | | | | | 1 | • | | 4: output obtained by other method. | | | | 1 | 2 | NumberofMeasurements4 | integer | The number of | | 1 | | | - | 1 Transcrottvicasurements* | meger | measurements | | | | | 3 | MeasurementPointNumber4 | integer | The number of measurement | | | | | 1 | WARRANT TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TO THE TOTAL TOTAL TO THE TOTAL TOTAL TO THE TOTAL TO THE TOTAL TOTAL TOTAL TOTAL TO THE TOTAL | 0 | points. | | · | | 4 | | <u> </u> | | | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(3/19) | No. | | | | Group/Object Name | type(*1) | Description | |---------|-----|-----|---|----------------------------
--|--| | 1 3 3 4 | | | 4 | AverageOffset4 | double | Average offset value. | | | ı | | | Ü | | (LAOset, PAOset) | | | | Ì | | | *************************************** | where, | | | | - | | | *************************************** | LAOset: Line direction | | | | ļ | | | THE STATE OF S | average offset. | | | | | | | 1 | PAOset: Pixel direction | | | 1 | | | | ###################################### | average offset. | | | 1 | ŀ | 5 | StandardDeviationOffset4 | double | Standard deviation offset | | | | | , | Standarde Videon Strate | T dodoic | value. | | | 1 | - 1 | | | E-MATERIAL PROPERTY OF THE PRO | (LSDOset, PSDOset) | | - | | | | | and a supplemental | where. | | ĺ | - | | | | T-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A | LSDOset: Line direction | | ļ | | l | | | 1 | SD offset. | | | | | | | | PSDOset: Pixel direction | | | 1 | | | | | SD offset. | | | 1 | ŀ | _ | Threshold4 | double | Threshold value. | | | l | | 6 | i nresnoid4 | double | 1 | | | 1 | | | | | (CThid, LOThid, POThid, | | 1 | | 1 | | | | VOThId) | | | | 1 | | | | where, | | | | 1 | | | | CThld: Correction threshold | | | ı | 1 | | | | LOThld: Line direction | | | | | | | | offset threshold | | | | 1 | | | | POThld: Pixel direction | | | | 1 | | | | offset threshold | | | | ı | | | | VOThld: Vector offset | | | L | | | | | threshold | | | - 1 | 4 | | ParallaxCorrectionQuality4 | | The information of SWIR | | | - | | | | | parallax correction. | | | ı | | 1 | PctImageMatch4 | integer | The percent of image | | | | - 1 | | | | matching used in the SWIR | | | | | | | | parallax collection | | | | | | | ļ | processing. | | | | Γ | 2 | AvgCorrelCoef4 | double | The Average Correlation | | | | | | _ | | Coefficient. | | | | Ī | 3 | Cthld4 | double | The Correlation Threshold | | | | | | | | value. | | | 4 | | | ProcessingParameters4 | | This group contains the | | | | | I | | | parameters used by Level- | | | | | ı | | | 1B generation processing. | | | Γ | 1 | | CorIntel4 | string | Correction of the | | | | - | 1 | | | intertelescope error of SWIR | | | 1 | | 1 | | | and TIR: | | | 1 | | 1 | | | 'Corrected Intertelescope | | | l | | I | | | Error' or 'Uncorrected | | i | | | 1 | | | Intertelescope Error' | | | | | 1 | C-D4 | string | Correction of the SWIR | | | H | 7 | | | i SHIHE | | | | | 2 | | CorPara4 | | 3 | | | | 2 | | Corpara4 | | parallax error: | | | | 2 | | Corpara4 | 0 | parallax error:
'Corrected Parallax Error' or | | | | | | | | parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' | | | | 3 | | ResMethod4 | string | parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' Resampling Method: | | | | 3 | | ResMethod4 | string | parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' Resampling Method: 'BL' or 'NN' or 'CC' | | | | | | | | parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' Resampling Method: | | | | 3 | | ResMethod4 | string | parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' Resampling Method: 'BL' or 'NN' or 'CC' | | | | 3 | | ResMethod4 | string | parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' Resampling Method: 'BL' or 'NN' or 'CC' Scene rotation angle of | | | 6 | UTMZoneCode4 | integer | Zone code for UTM | |---|---|--------------|---------|---------------------------| | | | | | projection (when mapping | | ļ | | | : | without UTM: 0 fixed). | Table 3.3.1-4 List of Object in Level1B Product Specific Metadata(SWIR)(4/19) | No | No. | | Group/Object Name | type(*1) | Description | |----|---|---|-------------------------|----------|--| | 1 | 4 | 7 | SpheroidCode4 | integer | Spheroid code used in | | | | | | | processing. | | | 5 | | UnitConversionCoeff4 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-4 image. | | | | 1 | Incl4 | double | Inclination. | | | | 2 | Offset4 | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin4 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | UnSatMax4 | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | ConUnit4 | string | Converted Unit | | 2 | | | SWIRBand5Data | | The information about | | | 1 | | ImageDataInformation5 | integer | SWIR band 5 of Level-1B. The information of SWIR band 5 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2490: nominal) nln: Number of lines in frame(2100: nominal) bpp: Bytes per pixel (1: fixed) | | | 2 | | ImageStatistics5 | | The statistical information about the quality of Level1B SWIR data. | | | | 1 | MinimumValue5 | integer | Minimum value in this band of Level1B SWIR image data: 0 <= min. <= 255 | | | | 2 | MaximumValue5 | integer | Maximum value in this band of Level1B SWIR image data: 0 <= max. <= 255 | | | | 3 | MeanValue5 | double | Mean value in this band of
Level1B SWIR image data:
0.0 <= mean <= 255.0 | | | | 4 | StandardDeviationValue5 | double | Standard deviation value in this band of Level1B SWIR image data. | | | | 5 | ModeValue5 | integer | Mode value in this band of Level1B SWIR image data: 0 <= mode <= 255 | | | THE TAX TO | 6 | MedianValue5 | integer | Median value in this band of Level1B SWIR image data: 0 <= med. <= 255 | | | 3 | | DataQuality5 | | This group contains the information about the quality of Level1B SWIR data. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(5/19) | N | 0. | | | Group/Object Name | type(*1) | Description | |---|----------|---
---------|-------------------------------|--------------|------------------------------| | 2 | 3 | 1 | | NumberofBadPixels5 | integer | The information about bad | | | | | | | | pixels. | | | | | Ì | | | (nmp, ndd, nelm) | | | | | | | | where, | | | | | | | | nmp: number of missing | | | | | | | | pixels. | | | | | | | | ndd: number of damaged | | | | | | | | detectors. | | | | | | | | nelm: number of elements of | | | | | | | | the next list of bad pixels. | | | | 2 | | ListofBadPixels5 | | This group contains the | | 1 | | | | | | information about bad | | | | | | | | pixels. | | | | | | ListofBadPixels5Container(n)(| | | | | | | | *2) | | | | | | | 1 | DirectionofBadPixel5(n)(*2) | string | The direction of bad pixel | | | | | | · | | segment. | | | | | | | | 'C' = cross-track | | | | | | | | 'A' = along-track | | | | | 2 | BadPixelLP5(n)(*2) | integer | The line number (in cross- | | | | | | | | track segment) or the pixel | | 1 | | | | | | number (in along-track | | | | | | | | segment) including BPS. | | | ŀ | | 3 | BPSFirstLP5(n)(*2) | integer | First pixel number in cross- | | | ļ | | | | | track segment) or first line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 4 | BPSLastLP5(n)(*2) | integer | Last pixel number in cross- | | | | | | | | track segment) or last line | | ŀ | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | 1 | | | 5 | CauseofBadPixel5(n)(*2) | string | The cause of bad data: | | | | | | | | 'Me': Missing Even Pixel | | | | | | | | 'Mo': Missing Odd Pixel | | | | | | | | 'D' : Damaged Detector | | 1 | | | <u></u> | | | 'I': Interpolated Data | | | | 3 | | SWIRRegistrationQuality5 | | The registration information | | | | | | | | of SWIR based on VNIR. | | l | | | 1 | ProcessingFlag5 | integer | 0: no output, because | | | | | | | | processing is impossible. | | *************************************** | | | | | | 1: output is the result | | | | 1 | | *** | | computed. | | | 1 | | | | | 2: output is extracted from | | 1 | | | | | | registration file. | | | | | | | | 4: output obtained by other | | | | | <u></u> | N S S S | 1 : | method. The number of | | | | | 2 | NumberofMeasurements5 | integer | | | | | | Ļ | 3.5 | | measurements | | | | | 3 | MeasurementPointNumber5 | integer | The number of measurement | | <u> </u> | <u> </u> | | | | <u> </u> | points. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(6/19) | No. | | | | Group/Object Name | type(*1) | Description | |---|--|---|---|----------------------------|----------|--| | 2 | 3 | 3 | 4 | AverageOffset5 | double | Average offset value. | | <i>ح</i> د | , | 3 | 4 | AverageOffsets | double | (LAOset, PAOset) where, LAOset: Line direction average offset. | | | | | | | | PAOset: Pixel direction average offset. | | | | | 5 | StandardDeviationOffset5 | double | Standard deviation offset value. (LSDOset, PSDOset) where, LSDOset: Line direction SD offset. PSDOset: Pixel direction SD offset. | | | | | 6 | Threshold5 | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | | | | 4 | | ParallaxCorrectionQuality5 | | The information of SWIR parallax correction. | | | | | 1 | PctImageMatch5 | integer | The percent of image matching used in the SWIR parallax collection processing. | | | | | 2 | AvgCorrelCoef5 | double | The Average Correlation Coefficient. | | | | | 3 | Cthled5 | double | The Correlation Threshold value. | | | 4 | | | ProcessingParameters5 | | This group contains the parameters used by Level-1B generation processing. | | | | | | CorIntel5 | string | Correction of the intertelescope error of SWIR and TIR: 'Corrected Intertelescope Error' or 'Uncorrected Intertelescope Error' | | ************************************** | | 2 | | CorPara5 | string | Correction of the SWIR parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' | | | | 3 | | ResMethod5 | string | Resampling Method:
'BL' or 'NN' or 'CC' | | *************************************** | | 4 | | SceneRotationAngle5 | double | Scene rotation angle of Level-1B Band-5 image. | | | eranco manocimino de la composición de la composición de la composición de la composición de la composición de | 5 | | ProjectionParameters5 | double | Parameters used in GCTP Map projection. | | | 6 | UTMZoneCode5 | integer | Zone code for UTM | |----------|---|--------------|---------|---------------------------| | | | | | projection (when mapping | | <u> </u> | | | | without UTM: 0 fixed). | Table 3.3.1-4 List of Object in Level1B Product Specific Metadata(SWIR)(7/19) | No | Э. | | Group/Object Name | type(*1) | Description | |----|----|--|-------------------------|----------|--| | 2 | 4 | 7 | SpheroidCode5 | integer | Spheroid code used in processing. | | | 5 | I | UnitConversionCoeff5 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-5 image. | | | | [1 | Incl5 | double | Inclination. | | | | 2 | Offset5 | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin5 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | UnSatMax5 | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | ConUnit5 | string | Converted Unit | | 3 | | | SWIRBand6Data | | The information about SWIR band 6 of Level-1B. | | | 1 | | ImageDataInformation6 | integer | The information of SWIR band 5 image data. (npx, nln, bpp) where, npx: Number of pixels per line(2490: nominal) nln: Number of lines in frame(2100: nominal) bpp: Bytes per pixel (1: fixed) | | | 2 | | ImageStatistics6 | | The statistical information about the quality of Level 1B SWIR data. | | | | | MinimumValue6 | integer | Minimum value in this band of Level1B SWIR image data: 0 <= min. <= 255 | | | | 2 | MaximumValue6 | integer | Maximum value in this band of Level1B SWIR image data: 0 <= max. <= 255 | | | | 3 | MeanValue6 | double | Mean value in this band of Level1B SWIR image data: 0.0 <= mean <= 255.0 | | | | 4 | StandardDeviationValue6 | double | Standard deviation value in
this band of Level 1B SWIR
image data. | | | | 5 | ModeValue6 | integer | Mode value in this band of Level1B SWIR image data: 0 <= mode <= 255 | | | | 6 | MedianValue6 | integer | Median value in this band of Level1B SWIR image data: 0 <= med. <= 255 | | | 3 | de constant de la con | DataQuality6 | | This group contains the information about the quality of Level1B SWIR data. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(8/19) | N | No. | | | Group/Object Name | type(*1) | Description | |------------------------------
--|---|---|-----------------------------------|----------|---| | 3 | 3 | 1 | | NumberofBadPixels6 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels6 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels6Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel6(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP6(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP6(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP6(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel6(n)(*2) | string | The cause of bad data: 'Me': Missing Even Pixel 'Mo': Missing Odd Pixel 'D': Damaged Detector 'I': Interpolated Data | | | | 3 | | SWIRRegistrationQuality6 | | The registration information of SWIR based on VNIR. | | | | | 1 | ProcessingFlag6 | integer | O: no output, because processing is impossible. 1: output is the result computed. 2: output is extracted from registration file. 4: output obtained by other method. | | - Marketin Marketin Marketin | and the second s | | 2 | Number of Measurements 6 | integer | The number of measurements | | | | | 3 | MeasurementPointNumber6 | integer | The number of measurement points. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(9/19) | No. Group/Object Name | | | Group/Object Name | type(*1) | Description | | |-----------------------|---|----------|-------------------|----------------------------|-------------|--| | 3 | 3 | 3 | 4 | AverageOffset6 | double | Average offset value. | | 3 | ٦ | 3 | " | AverageOffseto | double | (LAOset, PAOset) | | | | | | | | where. | | | | | | | | LAOset: Line direction | | | | | | | | average offset. | | | | | | | | PAOset: Pixel direction | | | | | | | | average offset. | | | | | | | double | Standard deviation offset | | | | | 5 | StandardDeviationOffset6 | donnie | value. | | | | | | | | (LSDOset, PSDOset) | | | | | | | | where, | | | | | | | | LSDOset: Line direction | | | | | | | | SD offset. | | | | | | | | PSDOset: Pixel direction | | | | | | | | SD offset. | | | | | ┝┯┩ | 753 5 5 5 6 | 1 | Threshold value. | | | | | 6 | Threshold6 | double | 1 ' | | | | | | | | (CThid, LOThid, POThid, VOThid) | | | | | | | | where. | | | | | | | 1 | CThld: Correction threshold | | | | | | | | LOThld: Line direction | | | | | | | | offset threshold | | | | | | | | POThld: Pixel direction | | | | | | | | offset threshold | | | | | | | | VOThld: Vector offset | | | | | | | | threshold | | | | <u> </u> | <u> </u> | | <u> </u> | The information of SWIR | | | | 4 | | ParallaxCorrectionQuality6 | | parallax correction. | | | | | | Daring March (| l | The percent of image | | | | | 1 | PctImageMatch6 | integer | matching used in the SWIR | | | | | | | | parallax collection | | 1 | | | | | | processing. | | | | | <u> </u> | AC1C56 | double | The Average Correlation | | | | | 2 | AvgCorrelCoef6 | donoie | Coefficient. | | | 1 | | <u>_</u> | C4.1. 36 | double | The Correlation Threshold | | | | | 3 | Cthled6 | double | value. | | | - | L | <u> </u> | B | | This group contains the | | | 4 | | | ProcessingParameters6 | | 1 | | | | | | | | parameters used by Level-
1B generation processing. | | | | T 1 | | Carlatalé | ctring | Correction of the | | | | 1 | | CorIntel6 | string | intertelescope error of SWIR | | 1 | | 1 | | | | and TIR: | | | | | | | | 'Corrected Intertelescope | | | | | | | | Error' or 'Uncorrected | | | 1 | | | | 1 | Intertelescope Error' | | | | <u></u> | | CP6 | l atria a | Correction of the SWIR | | | | 2 | | CorPara6 | string | parallax error: | | | | | | | | 'Corrected Parallax Error' or | | | | | | E-mining-sea | - | 'Uncorrected Parallax Error' | | | | <u>_</u> | | | | | | | | 3 | | ResMethod6 | string | Resampling Method: | | | | _ | | | <u> </u> | 'BL' or 'NN' or 'CC' | | | - | 4 | | SceneRotationAngle6 | double | Scene rotation angle of | | | | | | | <u> </u> | Level-1B Band-6 image. | | 1 | | | | Designation Descenatores | double | Parameters used in GCTP | | | | 5 | | ProjectionParameters6 | double | Map projection. | | | 6 | UTMZoneCode6 | integer | Zone code for UTM | |--|---|--------------|---------|---------------------------| | | | | | projection (when mapping | | | | | | without UTM: 0 fixed). | Table 3.3.1-4 List of Object in Level1B Product Specific Metadata(SWIR)(10/19) | N | 0. | | Group/Object Name | type(*1) | Description | |----------|------------|----------|--|------------------|---| | 3 | 4 | 7 | SpheroidCode6 | integer | Spheroid code used in | | | <u> </u> | <u> </u> | | | processing. | | | 5 | | UnitConversionCoeff6 | | This group contains the | | | | | | | coefficients used for radiance conversion, from | | | | | | | the pixel value of the band-6 | | | | | | | image. | | | | 1 | Incl6 | double | Inclination. | | | | 2 | Offset6 | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin6 | integer | Minimum value of | | | | | | | unsaturated pixel: 0 fixed. | | | | 4 | UnSatMax6 | integer | Maximum value of | | | | | | | unsaturated pixel: | | | | 5 | ConUnit6 | | 254 fixed. Converted Unit | | <u> </u> | <u> </u> | <u> </u> | 1 | string | | | 4 | |
| SWIRBand7Data | *** | The information about SWIR band 7 of Level-1B. | | | Γ <u>1</u> | | ImageDataInformation7 | integer | The information of SWIR | | | 1 | | | i integer | band 7 image data. | | | | | | | (npx, nln, bpp) | | | | | | | where, | | | | | | ŀ | npx: Number of pixels per | | | | | Valentin | | line(2490: nominal) | | | | | | | nln: Number of lines in frame(2100: nominal) | | | | | | | bpp: Bytes per pixel | | | | | ************************************** | | (1: fixed) | | | 2 | | ImageStatistics7 | | The statistical information | | | | | • | Ì | about the quality of Level1B | | | | , | | | SWIR data. | | | | 1 | MinimumValue7 | integer | Minimum value in this band | | | | | | | of Level1B SWIR image | | | | | | | data:
0 <= min. <= 255 | | | | 2 | MaximumValue7 | integer | Maximum value in this band | | | | ~ | | 1 | of Level1B SWIR image | | | | | | | data: | | | | | | | 0 <= max. <= 255 | | | | 3 | MeanValue7 | double | Mean value in this band of | | | | | **** | | Level 1B SWIR image data: | | | | 4 | StandardDeviationValue7 | double | 0.0 <= mean <= 255.0
Standard deviation value in | | | | " | StandardDeviation value/ | double | this band of Level1B SWIR | | | | | | | image data. | | | | 5 | ModeValue7 | integer | Mode value in this band of | | | | | | | Level 1B SWIR image data: | | | | <u> </u> | | | 0 <= mode <= 255 | | | | 6 | MedianValue7 | integer | Median value in this band of | | | | - | | , particular (1) | Level1B SWIR image data: 0 <= med. <= 255 | | | 3 | <u> </u> | DataQuality7 | | This group contains the | | | , | | Vara County | | information about the quality | | | | | The state of s | | of Level1B SWIR data. | | | | | | | | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(11/19) | N | o. | | | Group/Object Name | type(*1) | Description | |---|---------|----------|---|--|----------|---| | 4 | 3 | 1 | *************************************** | NumberofBadPixels7 | integer | The information about bad pixels. | | | | | | ************************************** | | (nmp, ndd, nelm)
where, | | | | | | · | <u>.</u> | nmp: number of missing | | | | | | | | pixels. ndd: number of damaged | | | | | | | | detectors. | | | | | | | | nelm: number of elements of | | | | <u> </u> | · | | | the next list of bad pixels. | | | | 2 | | ListofBadPixels7 | | This group contains the | | | | | | | | information about bad pixels. | | | | | | ListofBadPixels7Container(n)(| _ | pixeis. | | | | | | *2) | | | | | | | 1 | DirectionofBadPixel7(n)(*2) | string | The direction of bad pixel | | | | | | | | segment. | | | | | | | | 'C' = cross-track | | | | | 2 | BadPixelLP7(n)(*2) | integer | 'A' = along-track The line number (in cross- | | | | | _ | Baux ixeiLi /(ii)(2) | integer | track segment) or the pixel | | | | | | | | number (in along-track | | | | | | | | segment) including BPS. | | | | | 3 | BPSFirstLP7(n)(*2) | integer | First pixel number in cross- | | | | | | | | track segment) or first line | | | | | | | | number (in along-track | | | | | 4 | BPSLastLP7(n)(*2) | integer | segment) of BPS. Last pixel number in cross- | | | | | 7 | Di Stasti, (ii)(2) | integer | track segment) or last line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 5 | CauseofBadPixel7(n)(*2) | string | The cause of bad data: | | | | | | | | 'Me': Missing Even Pixel | | | | | | | | 'Mo' : Missing Odd Pixel 'D' : Damaged Detector | | | | | | | | 'I': Interpolated Data | | | | 3 | | SWIRRegistrationQuality7 | | The registration information | | | | , | | | | of SWIR based on VNIR. | | | | | 1 | ProcessingFlag7 | integer | 0: no output, because | | | | | | | | processing is impossible. | | | | | | | | 1: output is the result computed. | | | | | | | | 2: output is extracted from | | | | | | | | registration file. | | | | | | | | 4: output obtained by other | | | | | | | | method. | | | | | 2 | NumberofMeasurements7 | integer | The number of | | | | | 3 | MeasurementPointNumber7 | intager | The number of measurement | | | | | 3 | wicasuicinciniruinununidei/ | integer | points. | | | لـــــا | | | | L | ponto. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(12/19) | No. Group | | | T | Group/Object Name | type(*1) | Description | |---|---------|----------|------|----------------------------|-----------|---| | | 4 3 3 4 | | | AverageOffset7 | double | Average offset value. | | 7 | | 7 | | 1110145011 | | (LAOset, PAOset) | | | | | | | | where, | | | | | | | | LAOset: Line direction | | | | | | | | average offset: | | | | | | | İ | PAOset: Pixel direction | | | | | | | | average offset. | | | | | 5 | StandardDeviationOffset7 | double | Standard deviation offset | | | | | | | | value. | | | | | | | | (LSDOset, PSDOset) | | | | | | | | where, | | | | | | | | LSDOset: Line direction | | | | | | | | SD offset. | | | | | | | | PSDOset: Pixel direction | | l | | | | | 1 1 - 1 - | SD offset. Threshold value. | | | | | 6 | Threshold7 | double | (CThid, LOThid, POThid, | | | | | | | | VOThid) | | | | | | | | where, | | | | | | | | CThld: Correction threshold | | | | | | | | LOThld: Line direction | | | | | | | | offset threshold | | | | | | | | POThld: Pixel direction | | | | | | | | offset threshold | | | | | | | | VOThld: Vector offset | | | | | | | | threshold | | | | 4 | | ParallaxCorrectionQuality7 | | The information of SWIR | | | | | | | | parallax correction. | | | | | 1 | PctImageMatch7 | integer | The percent of image | | | | | | | | matching used in the SWIR | | | | | | | | parallax collection | | | | | Ļ | | double | processing. The Average Correlation | | | | | 2 | AvgCorrelCoef7 | double | Coefficient. | | | | | 3 | Cthled7 | double | The Correlation Threshold | | | | I | | | | value. | | | 4 | Ь | 1 | ProcessingParameters7 | | This group contains the | | | ' | | | | 1 | parameters used by Level- | | | | | | | - | 1B generation processing. | | | 1 | T | **** | CorIntel7 | string | Correction of the | | | | | | | | intertelescope error of SWIR | | Ì | | | | metal-t- | | and TIR: | | | | | | | | 'Corrected Intertelescope | | | | | | sooneense | 1 | Error' or 'Uncorrected | | | 1 | _ | | | ļ | Intertelescope Error | | | | 2 | | CorPara7 | string | Correction of the SWIR | | | | | | | | parallax error: 'Corrected Parallax Error' or | | | | - | | | | 'Uncorrected Parallax Error' | | | | 1 | | DasMathod7 | + ctring | | | | | 3 | | ResMethod7 | string | Resampling Method: 'BL' or 'NN' or 'CC' | | | | 4 | | SceneRotationAngle7 | double | Scene rotation angle of | | | | 14 | | ScenerotationAngie/ | double | Level-1B Band-7 image. | | | | 5 | | ProjectionParameters7 | double | Parameters used in GCTP | | *************************************** | | | | 1 Tojoutom mamoure. | | Map projection. | | ŧ | ì | L | | | | | | | | 6 | UTMZoneCode7 | integer | Zone code for UTM | |---|-----|---|--------------|---------|---------------------------| | | | | | | projection (when mapping | | | | | | | without UTM: 0 fixed). | | } | 1 . | 1 | <u> </u> | | | Table 3.3.1-4 List of Object in Level1B Product Specific Metadata(SWIR)(13/19) | No | Э. | | Group/Object Name | type(*1) | Description | |----|----------|----------|--|--------------|-------------------------------| | 4 | 4 | 7 | SpheroidCode7 | integer | Spheroid code used in | | | | | | | processing. | | | 5 | | UnitConversionCoeff7 | | This group contains the | | | | | | | coefficients used for | | | | | | | radiance conversion, from | | | | | | | the pixel value of the band-7 | | | | | | | image. | | | | 1 | Incl7 | double | Inclination. | | | | 2 | Offset7 | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin7 | integer | Minimum value of | | | | | | | unsaturated pixel: 0 fixed. | | | | 4 | UnSatMax7 | integer | Maximum value of | | | | | | _ | unsaturated pixel: | | | | | | | 254 fixed. | | | | 5 | ConUnit7 | string | Converted Unit | | 5 | 1 | 1 | SWIRBand8Data | | The information about | | | | | | | SWIR band 8 of Level-1B. | | | Γī | ···· | ImageDataInformation8 | integer | The information of SWIR | | | * | | ,g | | band 8 image data. | | l | | | | | (npx, nln, bpp) | | | | | | | where, | | | | | | | npx: Number of pixels per | | | | | | | line(2490: nominal) | | 1 | 1 | | | | nln: Number of lines in | | | | | | 1 | frame(2100: nominal) | | | l | | | | bpp: Bytes per pixel | | | | | | | (1: fixed) | | | 2 | | ImageStatistics8 | | The statistical information | | | | | | - | about the quality of Level 1B | | | | | | | SWIR data. | | | | 1 | MinimumValue8 | integer | Minimum value in this band | | | | | | | of Level1B SWIR image | | | | | | | data: | | | | | | | 0 <= min. <= 255 | | | | 2 | MaximumValue8 | integer | Maximum value in this band | | | | | | | of Level 1B SWIR image | | | | | | | data: | | | 1 | <u> </u> | | | 0 <= max. <= 255 | | | | 3 | MeanValue8 | double | Mean value in this band of | | | | | | 1. | Level1B SWIR image data: | | | 1 | | | | 0.0 <= mean <= 255.0 | | | - | 4 | StandardDeviationValue8 | double | Standard deviation value in | | | | | | | this band of Level1B SWIR | | | | ļ | | | image data. | | | | 5 | ModeValue8 | integer | Mode value in this band of | | | | | ununununun nama nama nama nama nama nama | | Level1B SWIR image data: | | | | <u></u> | | | 0 <= mode <= 255 | | | | 6 | MedianValue8 | integer | Median value in this band of | | | | | | | Level1B SWIR image data: | | | | <u> </u> | | | 0 <= med. <= 255 | | | 3 | } | BandDataQuality8 | Bould-strong | This group contains the | | | | | | | information about the quality | | | | | | | of Level1B SWIR data. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(14/19) | N | o. | | | Group/Object Name | type(*1) |
Description | |---|----|--------|---|---|-------------|------------------------------| | 5 | 3 | 1 | | NumberofBadPixels8 | integer | The information about bad | | | | | | AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA | - | pixels. | | | | | | 1 | | (nmp, ndd, nelm) | | | | | | | | where, | | | | | | THE PARTY AND | | nmp: number of missing | | | | | | | | pixels. | | | | | | | | ndd: number of damaged | | | | | | | | detectors. | | | | | | | 1 | nelm: number of elements of | | | | | | | | the next list of bad pixels. | | | | 2 | *************************************** | ListofBadPixels8 | | This group contains the | | | | | | 2 | | information about bad | | l | Ì | | | | | pixels. | | | | | | ListofBadPixels8Container(n)(| | | | | | Ì | | *2) | | | | | | | 1 | DirectionofBadPixel8(n)(*2) | string | The direction of bad pixel | | | | | | | | segment. | | | | | | | | 'C' = cross-track | | | | | L | | | 'A' = along-track | | - | | | 2 | BadPixelLP8(n)(*2) | integer | The line number (in cross- | | | | | | | | track segment) or the pixel | | | | | | | | number (in along-track | | | | | <u> </u> | | | segment) including BPS. | | | | | 3 | BPSFirstLP8(n)(*2) | integer | First pixel number in cross- | | | | | | | ű | track segment) or first line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 4 | BPSLastLP8(n)(*2) | integer | Last pixel number in cross- | | | | | | | | track segment) or last line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 5 | CauseofBadPixel8(n)(*2) | string | The cause of bad data: | | | | | | | | 'Me': Missing Even Pixel | | | | | | | | 'Mo': Missing Odd Pixel | | | | | | | | 'D': Damaged Detector | | | | لــِـا | L | | | 'I': Interpolated Data | | | | 3 | | SWIRRegistrationQuality8 | | The registration information | | | | | 1 | Propagain a Flora | · · · · · · | of SWIR based on VNIR. | | | | | 1 | ProcessingFlag8 | integer | 0: no output, because | | | | | | | | processing is impossible. | | | | | | | | 1: output is the result | | | | | | | | computed. | | | | | | | | 2: output is extracted from | | | | | | | | registration file. | | | | | | | | 4: output obtained by other | | | | | 2 | NumberofMeasurements8 | lm*n | method. | | | | | 2 | ramocionvicasurementso | integer | The number of | | | | | 3 | MeasurementPointNumber8 | 1 | measurements | | | | | ٥ | Measurementrointhumbers | integer | The number of measurement | | Ш | | | | | | points. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(15/19) | No. | | | Group/Object Name | type(*1) | Description | |-----|--|---|----------------------------|----------|--| | 5 3 | 3 | 4 | AverageOffset8 | double | Average offset value. (LAOset, PAOset) where, LAOset: Line direction average offset. PAOset: Pixel direction average offset. | | | the behave the behave considered and the construction constructi | 5 | StandardDeviationOffset8 | double | Standard deviation offset value. (LSDOset, PSDOset) where, LSDOset: Line direction SD offset. PSDOset: Pixel direction SD offset. | | | | 6 | Threshold8 | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | | | 4 | | ParallaxCorrectionQuality8 | | The information of SWIR | | | | 1 | PctImageMatch8 | integer | parallax correction. The percent of image matching used in the SWIR parallax collection processing. | | | | 2 | AvgCorrelCoef8 | double | The Average Correlation Coefficient. | | | | 3 | Cthled8 | double | The Correlation Threshold value. | | 4 | | | ProcessingParameters8 | | This group contains the parameters used by Level-1B generation processing. | | | 1 | | CorIntel8 | string | Correction of the intertelescope error of SWII and TIR: 'Corrected Intertelescope Error' or 'Uncorrected Intertelescope Error' | | | 2 | | CorPara8 | string | Correction of the SWIR parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' | | | 3 | | ResMethod8 | string | Resampling Method:
'BL' or 'NN' or 'CC' | | | 4 | | SceneRotationAngle8 | double | Scene rotation angle of
Level-1B Band-8 image. | | | 5 | | ProjectionParameters8 | double | Parameters used in GCTP Map projection. | | ı | 6 | UTMZoneCode8 | integer | Zone code for UTM | |---|---|--------------|---------|---------------------------| | | | | | projection (when mapping | | 1 | | | | without UTM: 0 fixed). | Table 3.3.1-4 List of Object in Level1B Product Specific Metadata(SWIR)(16/19) | No | Э. | Group/Object Name | Group/Object Name | type(*1) | Description | |----|----|-------------------|---|----------|---| | 5 | 4 | 7 | SpheroidCode8 | integer | Spheroid code used in | | | 5 | <u> </u> | UnitConversionCoeff8 | | processing. | | |) | | UnitConversionCoeff8 | | This group contains the coefficients used for | | | | | | | radiance conversion, from | | | | | | 1 | the pixel value of the band-8 | | | | r | Y10 | double | image. Inclination. | | | | 1 | Incl8 | | | | | | 2 | Offset8 | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin8 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | UnSatMax8 | integer | Maximum value of | | | | | | | unsaturated pixel: | | | | | | | 254 fixed. | | | | 5 | ConUnit8 | string | Converted Unit | | 6 | | | SWIRBand9Data | | The information about | | l | 1 | | ImageDataInformation9 | | SWIR band 9 of Level-1B. The information of SWIR | | | , | | imageDataImoi mation | | band 9 image data. | | | | | | | (npx, nln, bpp) | | | | | | | where, | | | | | | | npx: Number of pixels per line(2490: nominal) | | | | | | | nln: Number of lines in | | | | | | | frame(2100: nominal) | | | | | | | bpp: Bytes per pixel | | | 2 | | ImageStatistics9 | | (1: fixed) The statistical information | | | - | | imagestatistics | | about the quality of Level 1B | | | | | | | SWIR data. | | | | 1 | MinimumValue9 | integer | Minimum value in this band | | | | | | | of Level1B SWIR image data: | | | | | | | 0 <= min. <= 255 | | | | 2 | MaximumValue9 | integer | Maximum value in this band | | | | | | | of Level1B SWIR image | | | | | | | data: | | | | 3 | MeanValue9 | double | 0 <= max. <= 255 Mean value in this band of | | | | | Marin Value | dodote | Level 1B SWIR image data: | | | | | | | $0.0 \le \text{mean} \le 255.0$ | | | | 4 | StandardDeviationValue9 | double | Standard deviation value in | | | | | | | this band of Level1B SWIR image data. | | | | 5 | ModeValue9 | integer | Mode value in this band of | | | | | | | Level1B SWIR image data: | | | | | | | 0 <= mode <= 255 | | | | 6 | MedianValue9 | integer | Median value in this band of | | | | | *************************************** | | Level1B SWIR image data: 0 <= med. <= 255 | | | 3 | <u>L</u> | BandDataQuality9 | | This group contains the | | | | | | | information about the quality | | | | | | | of Level B SWIR data. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(17/19) | No | No. | | | Group/Object Name | type(*1)
integer | Description | |----|-----|---|---|--------------------------------------|---------------------|---| | 6 | 3 | 2 | | NumberofBadPixels9 ListofBadPixels9 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels.
ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. This group contains the information about bad pixels. | | | | | | ListofBadPixels9Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel9(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP9(n)(*2) | integer | The line number (in cross-track segment) or the pixel number (in along-track segment) including BPS. | | | | | 3 | BPSFirstLP9(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP9(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel9(n)(*2) | string | The cause of bad data: 'Me': Missing Even Pixel 'Mo': Missing Odd Pixel 'D': Damaged Detector 'I': Interpolated Data | | | | 3 | | SWIRRegistrationQuality9 | | The registration information of SWIR based on VNIR. | | | | | 1 | ProcessingFlag9 | integer | O: no output, because processing is impossible. I: output is the result computed. 2: output is extracted from registration file. 4: output obtained by other method. | | | | - | 2 | NumberofMeasurements9 | integer | The number of measurements | | | | | 3 | MeasurementPointNumber9 | integer | The number of measurement points. | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(18/19) | No | Э. | | | Group/Object Name | type(*1) | Description | |---|----|---|---|----------------------------|----------|--| | 6 | 3 | 3 | 4 | AverageOffset9 | double | Average offset value. (LAOset, PAOset) where, LAOset: Line direction average offset. PAOset: Pixel direction | | | | | | | | average offset. | | | | | 5 | StandardDeviationOffset9 | double | Standard deviation offset value. (LSDOset, PSDOset) where, LSDOset: Line direction SD offset. PSDOset: Pixel direction | | | | | | err (520 | double | SD offset. | | | | | 6 | Threshold9 | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | | | | 4 | | ParallaxCorrectionQuality9 | | The information of SWIR parallax correction. | | | | | 1 | PctImageMatch9 | integer | The percent of image matching used in the SWIR parallax collection processing. | | | | | 2 | AvgCorrelCoef9 | double | The Average Correlation Coefficient. | | | | | 3 | Cthled9 | double | The Correlation Threshold value. | | | 4 | | | ProcessingParameters9 | | This group contains the parameters used by Level-1B generation processing. | | | | 1 | | CorIntel9 | string | Correction of the intertelescope error of SWIR and TIR: 'Corrected Intertelescope Error' or 'Uncorrected Intertelescope Error' | | | | 2 | | CorPara9 | string | Correction of the SWIR parallax error: 'Corrected Parallax Error' or 'Uncorrected Parallax Error' | | | | 3 | | ResMethod9 | string | Resampling Method:
'BL' or 'NN' or 'CC' | | | | 4 | | SceneRotationAngle9 | double | Scene rotation angle of Level-1B Band-9 image. | | *************************************** | - | 5 | | ProjectionParameters9 | double | Parameters used in GCTP Map projection. | | | 6 | UTMZoneCode9 , | integer | Zone code for UTM | |--|---|----------------|---------|---------------------------| | | | | - | projection (when mapping | | | | | | without UTM: 0 fixed). | Table 3.3.1-4 List of Object in Level1B Product Specific Metadata(SWIR)(19/19) | N | 0. | | Group/Object Name | type(*1) | Description | |---|----|---|----------------------|----------|--| | 6 | 4 | 7 | SpheroidCode9 | integer | Spheroid code used in processing. | | | 5 | | UnitConversionCoeff9 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-9 image. | | | | 1 | Incl9 | double | Inclination. | | | | 2 | Offset9 | double | Offset: 0.0 fixed. | | | | 3 | UnSatMin9 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | | 4 | UnSatMax9 | integer | Maximum value of unsaturated pixel: 254 fixed. | | | | 5 | ConUnit9 | string | Converted Unit | ### NOTES: - (*1) Object types used in Metadata are - a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. # 3.3.1.5. Product Specific Metadata(TIR) (1) Indexes of Objects The Object list of Product Specific metadata(TIR1) and Product Specific metadata(TIR2) are shown in Table 3.3.1-5. Product Specific metadata(TIR1) attributes (TIRBand10Data, TIRBand11Data and TIRBnad12Data Groups) are written to the HDF file attribute productmetadata.t1 and Product Specific metadata(TIR2) attributes (TIRBand13Data and TIRBnad14Data Groups) are written to the HDF file attribute productmetadata.t2. Product Specific Metadata(TIR1) and Product Specific Metadata(TIR2) include product specific attributes, i.e. not associated with DID311. (In Table 3.3.1-5, group names are written in **Bold** characters. A group contains a set of objects which all have a similar theme.) The objects in Itaric character are not authorized by Level 1 WG, and will be changed in next version. Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(1/14) | No. | | Group/Object Name | type(*1) | Description | |-----|---|--------------------------|----------|--| | 1 | | TIRBand10Data | | The information about TIR band 10 of Level-1B. | | 1 | | ImageDataInformation10 | integer | The information of TIR band 10 image data. (npx, nln, bpp) where, npx: Number of pixels per line(830: nominal) nln: Number of lines in frame(700: nominal) bpp: Bytes per pixel (2: fixed) | | 2 | | ImageStatistics10 | | The statistical information about the quality of Level1B TIR data. | | | 1 | MinimumValue10 | integer | Minimum value in this band of Level1B TIR image data: 0 <= min. <= TBD | | | 2 | MaximumValue10 | integer | Maximum value in this band of Level1B TIR image data: 0 <= max. <= TBD | | | 3 | MeanValue10 | double | Mean value in this band of Level 1B TIR image data: 0.0 <= mean <= TBD | | | 4 | StandardDeviationValue10 | double | Standard deviation value in this band of Level 1B TIR image data. | | | 5 | ModeValue10 | integer | Mode value in this band of Level1B TIR image data: 0 <= mode <= TBD | | | 6 | MedianValue10 | integer | Median value in this band of Level1B TIR image data: 0 <= med. <= TBD | | 3 | | DataQuality10 | | This group contains the information about the quality of Level 1B TIR data. | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(2/14) | N | No. | | | Group/Object Name | type(*1) | Description | |---|-----|--|---|-----------------------------------|----------|---| | 1 | 7 | | | NumberofBadPixels10 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels10 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels10Container(n)(*2) | | | | | | | 1 | DirectionofBadPixel10(n)(*2) | string | The
direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP10(n)(*2) | integer | The line number (in cross-track segment) or the pixel number (in along-track segment) including BPS. | | | | | 3 | BPSFirstLP10(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP10(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel10(n)(*2) | string | The cause of bad data: 'M': Missing Data 'D': Damaged Detector 'T': Interpolated Data | | | | 3 | | TIRRegistrationQuality10 | | The registration information of TIR based on VNIR. | | | | A CONTRACTOR OF THE PROPERTY O | - | ProcessingFlag10 | integer | O: no output, because processing is impossible. 1: output is the result computed. 2: output is extracted from registration file. 4: output obtained by other method. | | | | | 2 | | integer | The number of measurements The number of measurement | | | | | 3 | MeasurementPointNumber10 | integer | The number of measurement points. | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(3/14) | No.
1 3 3 4 | | Ţ | Group/Object Name | type(*1) | Description | |----------------------|---|--|---------------------------|----------|--| | 33
 | 3 | 4 | AverageOffset10 | double | Average offset value. (LAOset, PAOset) where, LAOset: Line direction average offset. PAOset: Pixel direction average offset. | | | | 5 | StandardDeviationOffset10 | double | Standard deviation offset value. (LSDOset, PSDOset) where, LSDOset: Line direction SD offset. PSDOset: Pixel direction SD offset. | | | | 6 | Threshold10 | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | | 4 | | | ProcessingParameters10 | | This group contains the parameters used by Level-1B generation processing. | | | *************************************** | | CorIntel10 | string | Correction of the intertelescope error of SWIR and TIR: 'Corrected Intertelescope Error' or 'Uncorrected Intertelescope Error' | | | 2 | | CorPara10 | string | Correction of the SWIR parallax error: 'N/A' fixed. | | | 3 | | ResMethod10 | string | Resampling Method:
'BL' or 'NN' or 'CC' | | | 4 | | SceneRotationAngle10 | double | Scene rotation angle of Level-1B Band-10 image. | | | 5 | | ProjectionParameters10 | double | Parameters used in GCTP Map projection. | | | 6 | | UTMZoneCode10 | integer | Zone code for UTM projection (when mapping without UTM : 0 fixed). | | | 7 | | SpheroidCode10 | integer | Spheroid code used in processing. | | 5 | | ************************************** | UnitConversionCoeff10 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-10 image. | | I | $\frac{1}{2}$ | | Incl10 | double | Inclination. | | 1 | | - 1 | Offset10 | double | Offset: 0.0 fixed. | | | | | ······································ | | |--|---|------------|--|-----------------------------| | | 3 | UnSatMin10 | integer | Minimum value of | | | | | | unsaturated pixel: 0 fixed. | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(4/14) | No | ********** | · • · · · · · · · · · · · · · · · · · · | 1-5 List of Object in Level 1B Proc
Group/Object Name | type(*1) | Description Description | |----|------------|---|--|----------|--| | 1 | 5.
5 | Γ4 | UnSatMax9 | <u> </u> | Maximum value of | | | د | * | Undawiaxy | integer | unsaturated pixel. | | | | 5 | ConUnit9 | ctrina | Converted Unit | | | <u> </u> | 13 | | string | | | 2 | | | TIRBand11Data | | The information about TIR | | | , | | | | band 11 of Level-1B. | | | 1 | | ImageDataInformation11 | integer | The information of TIR | | | | | | | band 11 image data. | | | | | | | (npx, nln, bpp) | | | | | | | where, | | | | | | | npx: Number of pixels per | | | | | | | line(830: nominal) nln: Number of lines in | | | | | | | frame(700; nominal) | | | | | | | 1 | | | | | į | | bpp: Bytes per pixel | | | <u> </u> | | | | (2: fixed) The statistical information | | | 2 | | ImageStatistics11 | | 1 | | | | | | | about the quality of Level1B TIR data. | | | | | MinimumValue11 | integra | Minimum value in this band | | | | 1 | Winimum value i i | integer | of Level 1B TIR image data: | | | | | | | 0 <= min. <= TBD | | | | 2 | MaximumValue11 | integer | Maximum value in this band | | | | 2 | Waximum value 11 | nitegei | of Level1B TIR image data: | | | | | İ | | 0 <= max. <= TBD | | | | 3 | MeanValue 11 | double | Mean value in this band of | | | |]] | Ivican v aide i i | double | Level 1B TIR image data: | | | | | | | 0.0 <= mean <= TBD | | | | 4 | Standard Deviation Value 11 | double | Standard deviation value in | | | | | Sundard Containent and it | dodolo | this band of Level 1B TIR | | | | | | | image data. | | | ĺ | 5 | ModeValue11 | integer | Mode value in this band of | | | | | | | Level1B TIR image data: | | | | | | | 0 <= mode <= TBD | | | | 6 | MedianValue11 | integer | Median value in this band of | | | | | | 1 ~ | Level1B TIR image data: | | | | | | | 0 <= med. <= TBD | | | 3 | | BandDataQuality11 | T | This group contains the | | | | | | | information about the quality | | | | | | | of Level1B TIR data. | | | | [1 | NumberofBadPixels11 | integer | The information about bad | | | | | | 1 | pixels. | | | | | | | (nmp, ndd, nelm) | | | | | | | where, | | | | | | | nmp: number of missing | | | | | | | pixels. | | - | | | | | ndd: number of damaged | | | | 1 | | | detectors. | | - | | | | | nelm: number of elements of | | | | <u></u> | <u> </u> | | the next list of bad pixels. | | | | 2 | ListofBadPixels11 | | This group contains the | | | | | *** | | information about bad | | | | | | | pixels. | | | | • | ListofBadPixels11Container(n | | | | | | 1 | 1)(*2) | <u> </u> | | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(5/14) | N | No. | | | Group/Object Name | type(*1) | Description | |--|-----|---|---|------------------------------|----------|--| | 2 | 3 | 2 | 1 | DirectionofBadPixel11(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | A THE RESIDENCE OF THE PROPERTY OF THE PARTY | | | 2 | BadPixelLP11(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP11(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | | | | 4 | BPSLastLP11(n)(*2) | integer | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | | | | 5 | CauseofBadPixel11(n)(*2) | string | The cause of bad data: 'M': Missing Data 'D': Damaged Detector 'I': Interpolated Data | | | | 3 | | TIRRegistrationQuality11 | | The registration information of TIR based on VNIR. | | | | | 1 | ProcessingFlag11 | integer | O: no output, because processing is impossible. 1: output is the result computed. 2: output is extracted from registration file. 4: output obtained by other method. | | | | | 2 | NumberofMeasurements 11 | integer |
The number of measurements | | | | | 3 | MeasurementPointNumber11 | integer | The number of measurement points. | | | | | 4 | AverageOffset11 | double | Average offset value. (LAOset, PAOset) where, LAOset: Line direction average offset. PAOset: Pixel direction average offset. | | | | | 5 | StandardDeviationOffset11 | double | Standard deviation offset value. (LSDOset, PSDOset) where, LSDOset: Line direction SD offset. PSDOset: Pixel direction SD offset. | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(6/14) | No | No. | | | Group/Object Name | type(*1) | Description | |----|---|----------------|------------|------------------------|----------|--| | 2 | 3 | 3 | 6 | Threshold 1 1 | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | | | 4 | L | L | ProcessingParameters11 | | This group contains the parameters used by Level-1B generation processing. | | | | 111 | | CorIntel11 | string | Correction of the intertelescope error of SWIR and TIR: 'Corrected Intertelescope Error' or 'Uncorrected Intertelescope Error' | | | | 2 | | CorPara11 | string | Correction of the SWIR parallax error: 'N/A' fixed. | | | | 3 | | ResMethod11 | string | Resampling Method:
'BL' or 'NN' or 'CC' | | | | 4 | | SceneRotationAngle11 | double | Scene rotation angle of Level-1B Band-11 image. | | | | 5 | | ProjectionParameters11 | double | Parameters used in GCTP Map projection. | | | | 6 | ********** | UTMZoneCode11 | integer | Zone code for UTM projection (when mapping without UTM: 0 fixed). | | | | 7 | | SpheroidCode11 | integer | Spheroid code used in processing. | | | 5 | | | UnitConversionCoeff11 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-11 image. | | | | T ₁ | | Incl11 | double | Inclination. | | | | 2 | | Offset 1 1 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin11 | integer | Minimum value of unsaturated pixel: 0 fixed. | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 4 | | UnSatMax11 | integer | Maximum value of unsaturated pixel. | | | | 5 | | ConUnit11 | string | Converted Unit | | 3 | | | | TIRBand12Data | | The information about TIR band 12 of Level-1B. | | 1 | ImageDataInformation12 | integer | The information of TIR | |---|------------------------|---------|---------------------------| | | | _ | band 12 image data. | | | 1 | | (npx, nln, bpp) | | | | | where, | | 1 | | | npx: Number of pixels per | | | | | line(830: nominal) | | | | | nln: Number of lines in | | | | | frame(700: nominal) | | | | | bpp: Bytes per pixel | | | | | (2: fixed) | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(7/14) | No. Group/Object Name | | · · · · · · · · · · · · · · · · · · · | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | | |-----------------------|-----|---------------------------------------|--|------------------------------|-------------|-------------------------------| | No. 3 2 | | | | type(*1) | Description | | | 3 | 3 2 | | | ImageStatistics12 | | The statistical information | | | | | | | | about the quality of Level 1B | | | | , | | | | TIR data. | | | | 1 | | MinimumValue12 | integer | Minimum value in this band | | | | | | | | of Level1B TIR image data: | | | | | | | | 0 <= min. <= TBD | | | | 2 | | MaximumValue12 | integer | Maximum value in this band | | | | | | | _ | of Level1B TIR image data: | | | | | | | | 0 <= max. <= TBD | | | | 3 | | MeanValue12 | double | Mean value in this band of | | | | | | | | Level1B TIR image data: | | | | | _ | | | 0.0 <= mean <= TBD | | | | 4 | | StandardDeviationValue12 | double | Standard deviation value in | | | | | | | | this band of Level 1B TIR | | | | | | | | image data. | | | | 5 | | ModeValue12 | integer | Mode value in this band of | | | | | | | | Level1B TIR image data: | | | | | | | | 0 <= mode <= TBD | | | | 6 | | MedianValue12 | integer | Median value in this band of | | | | | | | | Level1B TIR image data: | | | | | | | | 0 <= med. <= TBD | | | 3 | | | DataQuality12 | | This group contains the | | | | | | | | information about the quality | | | | | | | 1 | of Level1B TIR data. | | | | 1 | | NumberofBadPixels12 | integer | The information about bad | | | | <u>"</u> | | | | pixels. | | | | | | | | (nmp, ndd, nelm) | | | | | | | | where, | | | | | | | | nmp: number of missing | | | | | | | | pixels. | | | | | | | | ndd: number of damaged | | | | l | | | | detectors. | | | | | | | | nelm: number of elements of | | | | | | | | the next list of bad pixels. | | | | 2 | | ListofBadPixels12 | | This group contains the | | | | | | | | information about bad | | | | | | | | pixels. | | | | | | ListofBadPixels12Container(n | | | | | | | |)(*2) | | | | | | | 1 | DirectionofBadPixel12(n)(*2) | string | The direction of bad pixel | | | | | | , | | segment. | | | | | | | | 'C' = cross-track | | | | | | | | 'A' = along-track | | | | | 2 | BadPixelLP12(n)(*2) | integer | The line number (in cross- | | | | | | | | track segment) or the pixel | | | | | | | | number (in along-track | | | | | | | | segment) including BPS. | | | | | 3 | BPSFirstLP12(n)(*2) | integer | First pixel number in cross- | | | | | | , | | track segment) or first line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | ľ | 4 | BPSLastLP12(n)(*2) | integer | Last pixel number in cross- | | | | | | | | track segment) or last line | | | | | | | | number (in along-track | | | | | | | | segment) of BPS. | | | | | 1 | | <u> </u> | (| Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(8/14) | No. | | , | Group/Object Name | type(*1) | Description | | |--|---|---|---------------------------|----------|--|--| | 3 3 | 2 | 5 | CauseofBadPixel12(n)(*2) | string | The cause of bad data: 'M': Missing Data 'D': Damaged Detector This proposed Data | | | | 3 | L | TIRRegistrationQuality12 | | T: Interpolated Data The registration information of TIR based on VNIR. | | | | ndest er seren mennen er er er mennen men kinde der de geseint de demokratien men inferen finde de glade. | | ProcessingFlag12 | integer | O: no output, because processing is impossible. 1: output is the result computed. 2: output is extracted from registration file. 4: output obtained by other method. | | | | | 2 | NumberofMeasurements12 | integer | The number of measurements | | | | | 3 | MeasurementPointNumber12 | integer | The number of measurement points. | | | | *************************************** | 4 | AverageOffset12 | double | Average offset value. (LAOset, PAOset) where, LAOset: Line direction average offset. PAOset: Pixel direction average offset. | | | | | 5 | StandardDeviationOffset12 | double | Standard deviation offset value. (LSDOset, PSDOset) where, LSDOset: Line direction SD offset. PSDOset: Pixel direction SD offset. | | | | | 6 | Threshold 12 | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | | | 4 | ļ | | ProcessingParameters12 | | This group contains the parameters used by Level-1B generation processing. | | | essentational management of the second or the second of th | | |
CorIntel12 | string | Correction of the intertelescope error of SWI and TIR: 'Corrected Intertelescope Error' or 'Uncorrected Intertelescope Error' | | | | 2 | | CorPara12 | string | Correction of the SWIR parallax error: 'N/A' fixed. | | | | 3 | | ResMethod12 | string | Resampling Method:
'BL' or 'NN' or 'CC' | | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(9/14) | No. | | Group/Object Name | type(*1) | Description | |-----|----------|--|-----------------------|---| | 3 4 | T4 | SceneRotationAngle12 | double | Scene rotation angle of | | | | ************************************** | | Level-1B Band-12 image. | | | 5 | ProjectionParameters12 | double | Parameters used in GCTP | | | | | | Map projection. | | - | 6 | UTMZoneCode12 | integer | Zone code for UTM | | | | | | projection (when mapping | | | | | | without UTM: 0 fixed). | | | 7 | SpheroidCode12 | integer | Spheroid code used in | | | | * | | processing. | | 5 | | UnitConversionCoeff12 | | This group contains the | | | | 4 | | coefficients used for | | | | | | radiance conversion, from | | l | | | | the pixel value of the band- | | 1 | | | | 12 image. | | | 1 | Incl12 | double | Inclination. | | | 2 | Offset12 | double | Offset: 0.0 fixed. | | | 3 | UnSatMin12 | integer | Minimum value of | | | | | | unsaturated pixel: 0 fixed. | | | 4 | UnSatMax12 | integer | Maximum value of | | - | | | | unsaturated pixel. | | | 5 | ConUnit12 | string | Converted Unit | | 4 | <u> </u> | TIRBand13Data | | The information about TIR | | | | | | band 13 of Level-1B. | | T1 | | ImageDataInformation13 | integer | The information of TIR | | | | | 1 | band 13 image data. | | | | | | (npx, nln, bpp) | | | | | ļ | where, | | | | | | npx: Number of pixels per | | | | | | line(830: nominal) | | | | | | nln: Number of lines in | | | | | | frame(700: nominal) | | - | | | | bpp: Bytes per pixel | | | | | | (2: fixed) | | 2 | | ImageStatistics13 | | The statistical information | | - 1 | | 1 | į | | | - 1 | | | 1 | about the quality of Level 11 | | | | | | TIR data. | | | [] | MinimumValue13 | integer | TIR data. Minimum value in this band | | | 1 | MinimumValue13 | integer | TIR data. Minimum value in this band of Level 1B TIR image data | | | | | integer | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD | | | 1 2 | MinimumValue13 MaximumValue13 | integer | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band | | | | | | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level 1B TIR image data | | | 2 | MaximumValue13 | integer | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level 1B TIR image data 0 <= max. <= TBD | | | | | | TIR data. Minimum value in this band of Level 1B TIR image data $0 \le \min. \le TBD$ Maximum value in this band of Level 1B TIR image data $0 \le \max. \le TBD$ Mean value in this band of | | | 2 | MaximumValue13 | integer | TIR data. Minimum value in this band of Level1B TIR image data $0 \le \min. \le TBD$ Maximum value in this band of Level1B TIR image data $0 \le \max. \le TBD$ Mean value in this band of Level1B TIR image data: | | | 2 | MaximumValue13 MeanValue13 | integer | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level 1B TIR image data 0 <= max. <= TBD Mean value in this band of Level 1B TIR image data: 0.0 <= mean <= TBD | | | 2 | MaximumValue13 | integer | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level 1B TIR image data 0 <= max. <= TBD Mean value in this band of Level 1B TIR image data: 0.0 <= mean <= TBD Standard deviation value in | | | 3 | MaximumValue13 MeanValue13 | integer | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level 1B TIR image data 0 <= max. <= TBD Mean value in this band of Level 1B TIR image data: 0.0 <= mean <= TBD Standard deviation value in this band of Level 1B TIR | | | 3 | MaximumValue13 MeanValue13 StandardDeviationValue13 | double double | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level 1B TIR image data 0 <= max. <= TBD Mean value in this band of Level 1B TIR image data: 0.0 <= mean <= TBD Standard deviation value in this band of Level 1B TIR image data: 0.10 = mean <= TBD | | | 3 | MaximumValue13 MeanValue13 | integer | TIR data. Minimum value in this band of Level1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level1B TIR image data 0 <= max. <= TBD Mean value in this band of Level1B TIR image data: 0.0 <= mean <= TBD Standard deviation value in this band of Level1B TIR image data. Mode value in this band of | | | 3 | MaximumValue13 MeanValue13 StandardDeviationValue13 | double double | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level 1B TIR image data 0 <= max. <= TBD Mean value in this band of Level 1B TIR image data: 0.0 <= mean <= TBD Standard deviation value in this band of Level 1B TIR image data. Mode value in this band of Level 1B TIR image data. | | | 3 4 5 | MaximumValue13 MeanValue13 StandardDeviationValue13 ModeValue13 | double double integer | TIR data. Minimum value in this band of Level 1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level 1B TIR image data 0 <= max. <= TBD Mean value in this band of Level 1B TIR image data: 0.0 <= mean <= TBD Standard deviation value in this band of Level 1B TIR image data. Mode value in this band of Level 1B TIR image data: 0 <= mode <= TBD | | | 3 | MaximumValue13 MeanValue13 StandardDeviationValue13 | double double | TIR data. Minimum value in this band of Level1B TIR image data 0 <= min. <= TBD Maximum value in this band of Level1B TIR image data 0 <= max. <= TBD Mean value in this band of Level1B TIR image data: 0.0 <= mean <= TBD Standard deviation value in this band of Level1B TIR image data. Mode value in this band of Level1B TIR image data: 0 <= mode <= TBD Median value in this band of Median value in this band of Level1B TIR image data: 0 <= mode <= TBD | | | 3 4 5 | MaximumValue13 MeanValue13 StandardDeviationValue13 ModeValue13 | double double integer | Minimum value in this band of Level1B TIR image data $0 <= \min. <= TBD$ Maximum value in this band of Level1B TIR image data $0 <= \max. <= TBD$ Mean value in this band of Level1B TIR image data: $0.0 <= \max <= TBD$ Standard deviation value in this band of Level1B TIR image data. Mode value in this band of Level1B TIR image data: | Table 3.3.1-4 List of Object in Level 1B Product Specific Metadata(SWIR)(10/14) | N | No. | | | Group/Object Name | type(*1) | Description | |--|-----|--|---|------------------------------------|----------|---| | 4 | 3 | 3 | | BandDataQuality13 | | This group contains the information about the quality of Level 1B TIR data. | | termetermennen en meteorologische ekstekte gebekterste meteorologische der
der der der der der der der der de | | AND AND THE REAL PROPERTY CONTRACTOR AND | | NumberofBadPixels13 | integer | The information about bad pixels. (nmp, ndd, nelm) where, nmp: number of missing pixels. ndd: number of damaged detectors. nelm: number of elements of the next list of bad pixels. | | | | 2 | | ListofBadPixels13 | | This group contains the information about bad pixels. | | | | | | ListofBadPixels13Container(n)(*2) | | | | | | *************************************** | 1 | DirectionofBadPixel13(n)(*2) | string | The direction of bad pixel segment. 'C' = cross-track 'A' = along-track | | | | | 2 | BadPixelLP13(n)(*2) | integer | The line number (in cross-
track segment) or the pixel
number (in along-track
segment) including BPS. | | | | | 3 | BPSFirstLP13(n)(*2) | integer | First pixel number in cross-
track segment) or first line
number (in along-track
segment) of BPS. | | *************************************** | | | 4 | BPSLastLP13(n)(*2) | ìnteger | Last pixel number in cross-
track segment) or last line
number (in along-track
segment) of BPS. | | THE CONTRACT OF O | | | 5 | CauseofBadPixel13(n)(*2) | string | The cause of bad data: 'M': Missing Data 'D': Damaged Detector 'I': Interpolated Data | | T-CT-ST-ST-ST-ST-ST-ST-ST-ST-ST-ST-ST-ST-ST | | 3 | · | TIRRegistrationQuality13 | | The registration information of TIR based on VNIR. | | Andrews and the state of st | | | 1 | ProcessingFlag13 | integer | O: no output, because processing is impossible. 1: output is the result computed. 2: output is extracted from registration file. 4: output obtained by other method. | | | | | 2 | Number of Measurements 13 | integer | The number of measurements | | | | | 3 | MeasurementPointNumber13 | integer | The number of measurement points. | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(11/14) | N | No. Group/Object Name | | | Group/Object Name | type(*1) | Description | |---|-----------------------|---------------|----------|---------------------------|----------|--| | 4 | 3 | 3 | 4 | AverageOffset13 | double | Average offset value. | | | | | | | | (LAOset, PAOset) | | | | | | | | where, | | | | | | | | LAOset: Line direction | | | | | | | | average offset. | | 1 | | | | | | PAOset: Pixel direction | | | | | | | | average offset. | | | | | 5 | StandardDeviationOffset13 | double | Standard deviation offset | | | | | | | | value. | | | | | | | | (LSDOset, PSDOset) | | 1 | | | | | | where, | | | | | | | | LSDOset: Line direction | | | | | | | | SD offset. | | | | | | | | PSDOset: Pixel direction | | | | | | | | SD offset. | | | | | 6 | Threshold13 | double | Threshold value. | | Ì | | | | | | (CThld, LOThld, POThld, | | | | | | | 1 | VOThld) | | | | | | | | where, | | | | | | | | CThld: Correction threshold | | İ | | | | | | LOThld: Line direction | | | | | | | | offset threshold | | | | | | | | POThld: Pixel direction | | | | | | | | offset threshold | | | | | | | | VOThld: Vector offset | | | ۱. | L | <u> </u> | D : 30 4 13 | | threshold | | | 4 | | | ProcessingParameters13 | | This group contains the | | | | | | | | parameters used by Level-
1B generation processing. | | 1 | | ī | | CorIntel13 | string | Correction of the | | 1 | | ١. | | Connerra | Sumg | intertelescope error of SWIR | | | | | | | | and TIR: | | | | | | | | 'Corrected Intertelescope | | | | | | | | Error' or 'Uncorrected | | | | | | | | Intertelescope Error' | | | | $\frac{1}{2}$ | | CorPara13 | string | Correction of the SWIR | | | | ~ | | | | parallax error: 'N/A' fixed. | | | | 3 | | ResMethod13 | string | Resampling Method: | | | | – | | | | 'BL' or 'NN' or 'CC' | | | | 4 | | SceneRotationAngle13 | double | Scene rotation angle of | | | | | | | | Level-1B Band-13 image. | | | | 5 | | ProjectionParameters13 | double | Parameters used in GCTP | | | | | | |] | Map projection. | | | | 6 | | UTMZoneCode13 | integer | Zone code for UTM | | | | _ | | | | projection (when mapping | | | | | | | | without UTM: 0 fixed). | | | | 7 | | SpheroidCode13 | integer | Spheroid code used in | | | L | | | - | | processing. | | | 5 | | | UnitConversionCoeff13 | | This group contains the | | | | | | | | coefficients used for | | *************************************** | | | | | | radiance conversion, from | | | | | | | | the pixel value of the band- | | | | | · | | | 13 image. | | | | 1 | | Incl13 | double | Inclination. | | | | 2 | | Offset13 | double | Offset: 0.0 fixed. | | ž. | į | L | | | <u> </u> | | | Ì | 3 | UnSatMin13 | integer | Minimum value of | | |---|---|------------|---------|-----------------------------|--| | | | | | unsaturated pixel: 0 fixed. | | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(12/14) | | No. 1 able 3.3.1- | | -5 List of Object in Level 1B Prod
Group/Object Name | type(*1) | Description | |---|-------------------|--|--|--------------|--| | | No. 4 5 4 | | UnSatMax13 | integer | Maximum value of | | | , | - | Chadviaxia | Integer | unsaturated pixel. | | | | 5 | ConUnit13 | string | Converted Unit | | 5 | L | L | TIRBand14Data | | The information about TIR | | ٦ | | | 11KBand14Data | | band 14 of Level-1B. | | | ī | | ImageDataInformation14 | integer | The information of TIR | | | • | | Tinagotzaamiomaaomi * | Integer | band 14 image data. | | | | | | | (npx, nln, bpp) | | | | | *************************************** | | where, | | | | | | | npx: Number of pixels per | | | | | | | line(830: nominal) | | | | | | | nln: Number of lines in | | | | | | | frame(700: nominal) | | | | | | | bpp: Bytes per pixel | | | - | | Income Stantistics 14 | - | (2: fixed) The statistical information | | | 2 | | ImageStatistics14 | | about the quality of Level 1B | | | | | | | TIR data. | | | | П | MinimumValue14 | integer | Minimum value in this band | | | | * | | 11110501 | of Level1B TIR image data: | | | | | | | 0 <= min. <= TBD | | | | 2 | MaximumValue14 | integer | Maximum value in this band | | | | | | | of Level 1B TIR image data: | | | | | | | 0 <= max. <= TBD | | | | 3 | MeanValue14 | double | Mean value in this band of | | | | | | | Level 1B TIR image data: | | | | <u> </u> | | | 0.0 <= mean <= TBD | | | | 4 | StandardDeviationValue14 | double | Standard deviation value in | | | | | | | this band of Level 1B TIR image data. | | | | 5 | ModeValue14 | integer | Mode value in this band of | | | | | Wiode Valde 14 | Imeger | Level1B TIR image data: | | | | | THE PROPERTY OF O | | 0 <= mode <= TBD | | | | 6 | MedianValue14 | integer | Median value in this band of | | | | | | | Level1B TIR image data: | | | | <u> </u> | | | 0 <= med. <= TBD | | | 3 | | DataQuality14 | | This group contains the | | | | | | | information about the quality | | | | г, | N | | of Level 1B TIR data. | | | | 1 | NumberofBadPixels14 | integer | The information about bad | | | | | | | pixels. (nmp, nelm, ndd) | | | | | | | where. | | | | l | | | nmp: number of missing | | | | | | | pixels. | | | | | | | nelm: number of elements of | | | | | | | the next list of bad pixels. | | | | | | | ndd: number of damaged | | | | <u> </u> | | | detectors. | | | | 2 | ListofBadPixels14 | | This group contains the | | | | | #
*** | | information about bad pixels. | | | | | ListofBadPixels14Container(n | | piacis. | | | | - |)(*2) | | | | | Li | 1 | 175 47 | | | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(13/14) | N | o. | | | Group/Object Name | type(*1) | Description | |---|----|---|----------
--|----------|------------------------------------| | 5 | 3 | 2 | 1 | DirectionofBadPixel14(n)(*2) | string | The direction of bad pixel | | ĺ | | | | | | segment. | | | | | | | | 'C' = cross-track | | | | | | | | 'A' = along-track | | | | | . 2 | BadPixelLP14(n)(*2) | integer | The line number (in cross- | | l | | | | | | track segment) or the pixel | | *************************************** | | | | | | number (in along-track | | | | | | | | segment) including BPS. | | | | | 3 | BPSFirstLP14(n)(*2) | integer | First pixel number in cross- | | | | | | | | track segment) or first line | | | | | | | | number (in along-track | | l | | | | | | segment) of BPS. | | | | | 4 | BPSLastLP14(n)(*2) | integer | Last pixel number in cross- | | | | | | | | track segment) or last line | | | | | | | | number (in along-track | | 1 | | | | | | segment) of BPS. | | | | | 5 | CauseofBadPixel14(n)(*2) | string | The cause of bad data: | | | | | | | | 'M' : Missing Data | | | | | | | | 'D': Damaged Detector | | | | | | | | 'I': Interpolated Data | | | | 3 | | TIRRegistrationQuality14 | | The registration information | | | | | | | | of TIR based on VNIR. | | | | | 1 | ProcessingFlag14 | integer | 0: no output, because | | | | | | | | processing is impossible. | | | | | | | | 1: output is the result | | | | | | | | computed. | | | | | | | | 2: output is extracted from | | | | | l | | | registration file. | | | | | | | | 4: output obtained by other | | | | | | | | method. | | | | | 2 | NumberofMeasurements14 | integer | The number of | | | | - | <u>_</u> | | | measurements | | | | l | 3 | MeasurementPointNumber14 | integer | The number of measurement | | | | ļ | | | | points. | | | | I | 4 | AverageOffset14 | double | Average offset value. | | | | ļ | | | | (LAOset, PAOset) | | | | | | | | where, | | | | ı | 1 | | | LAOset: Line direction | | | | | I | | | average offset. | | | | - | | | | PAOset: Pixel direction | | | | ŀ | ᆗ | State and the state of stat | 1 1 1 | average offset. | | | | | 5 | StandardDeviationOffset14 | double | Standard deviation offset | | | | | | | | value. | | | | | I | | | (LSDOset, PSDOset) | | | | 1 | | | | where, | | | 1 | 1 | 1 | | | LSDOset: Line direction SD offset. | | | | l | ŀ | | | 1 | | | l | | - | | | PSDOset: Pixel direction | | | 1 | | | | | SD offset. | Table 3.3.1-5 List of Object in Level 1B Product Specific Metadata(TIR)(14/14) | No | No. | | | Group/Object Name | type(*1) | Description | |---|-----|---|---|-------------------------|----------|--| | 5 | 3 | 3 | 6 | Threshold 14 | double | Threshold value. (CThld, LOThld, POThld, VOThld) where, CThld: Correction threshold LOThld: Line direction offset threshold POThld: Pixel direction offset threshold VOThld: Vector offset threshold | | | 4 | | | ProcessingParameters14 | | This group contains the parameters used by Level-1B generation processing. | | | | 1 | | CorIntel14 | string | Correction of the intertelescope error of SWIR and TIR: 'Corrected Intertelescope Error' or 'Uncorrected Intertelescope Error' | | | | 2 | | CorPara14 | string | Correction of the SWIR parallax error: 'N/A' fixed. | | | | 3 | | ResMethod14 | string | Resampling Method:
'BL' or 'NN' or 'CC' | | | | 4 | | SceneRotationAngle14 | double | Scene rotation angle of Level-1B Band-14 image. | | | | 5 | | ProjectionParameters 14 | double | Parameters used in GCTP Map projection. | | | | 6 | | UTMZoneCode14 | integer | Zone code for UTM projection (when mapping without UTM : 0 fixed). | | | | 7 | | SpheroidCode14 | integer | Spheroid code used in processing. | | | 5 | | | UnitConversionCoeff14 | | This group contains the coefficients used for radiance conversion, from the pixel value of the band-14 image. | | | | 1 | | Incl14 | double | Inclination. | | | | 2 | | Offset14 | double | Offset: 0.0 fixed. | | | | 3 | | UnSatMin14 | integer | Minimum value of unsaturated pixel: 0 fixed. | | *************************************** | | 4 | | UnSatMax14 | integer | Maximum value of unsaturated pixel. | | L | | 5 | | ConUnit14 | string | Converted Unit | #### NOTES - (*1) Object types used in Metadata are - a. datetime: CCSDS A(UTC)Format - b. integer - c. double - d. string - (*2) Object whose name followed by (n) has "class" attribute, it may repeat n-times. # 3.3.2. VNIR Group #### 3.3.2.1. Overview VNIR Group contains a series of Swath Objects through the use of the Vgroup API. Vgroup name which establishes access to a Vgroup is as follows. vgroup name: VNIR_Group #### (1) Concept of Level 1B Data Product The Level 1B Data Product is generated for the requested map projection and the resampling method, which for this release is: Map projection methods: Geographic (Uniform Lat/Long), Universal Transverse Mercator (UTM), Lambert Conformal Conic (LCC), Mercator (Mercator), and Polar Stereographic (PS). Resampling methods: Nearest Neighbor (NN), Bi-Linear (BL), Cubic Convolution (CC). For further details on projection parameters (Projection Codes, Zone Codes, and so on), please refer to the HDF-EOS User's Guide for ECS Project, June, 1996, (170-TP-005-001) and the SDP Toolkit Users Guide for the ECS Project, May, 1996, (333-CD-003-001). #### 3.3.2.2. VNIR Band 1 Swath #### (1) Structure A single swath contains any number of Tables and Multidimensional Arrays. There is however one type of information that is special: geolocation information. In a swath, geolocation information is stored as a series of arrays. We require that every swath contain some geolocation component. The data itself is stored in multidimensional arrays in the swath. The only limitation is that the first dimension is the Track dimension. For the Level 1B Data Product, each Band is stored as separate Swath structure, one per geolocation object. The structure of each Swath is almost as same as the Level 1A Swath (see Figure 2.3.4-1), though the Level 1B swath consists of a 2D data array (VNIR Band 1 image data) and a series of 2D geolocation arrays only. #### (2) Characteristics Table 3.3.2-1 shows the List of data items in VNIR Swath 1 (Swath data for VNIR band 1). a) Data model: Swath b) Object Name: VNIR_Band1 c) Format: Table 3.3.2-1 shows the contents of Swath Object. Table 3.3.2-2 shows the format of one. Table 3.3.2-1 List of data items in Level 1B VNIR Band 1 Swath | No. | Field Name | Type | Unit | Comments | |-----|------------|-------------------|------|-------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 1 image data | Table 3.3.2-2 Format of data items in VNIR Band 1 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | [11][11] | DOUBLE | geolocation field (Array) | | ImageData | [4980][4200] | UINT8 | mapping to geolocation array | ### (3) Block Size | | | |-------|-------------------| | Table | Geolocation Array | | Block size | | | | |------------|-----|-----|--| | | | | | | | 498 | | | | | | 420 | | # 3.3.2.3. VNIR Band 2 Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.2-3 shows the List of data items in VNIR Swath 2 (Swath data for VNIR band 2). a) Data model: Swath b) Object Name: VNIR_Band2 c) Format: Table 3.3.2-3 shows the contents of Swath Object. Table 3.3.2-4 shows the format of one. Table 3.3.2-3 List of data items in Level 1B VNIR Band 2 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------
------|-------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Аггау | N/A | Level 1B spectral band 2 image data | Table 3.3.2-4 Format of data items in VNIR Band 2 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | [11][11] | DOUBLE | geolocation field (Array) | | ImageData | [4980][4200] | UINT8 | mapping to geolocation array | # (3) Block Size | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 498 420 | # 3.3.2.4. VNIR Band 3N Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.2-5 shows the List of data items in VNIR Swath 3N (Swath data for VNIR band 3N). a) Data model: Swath b) Object Name: VNIR_Band3N c) Format: Table 3.3.2-5 shows the contents of Swath Object. Table 3.3.2-6 shows the format of one. Table 3.3.2-5 List of data items in Level 1B VNIR Band 3N Swath | No. | Field Name | Type | Unit | Comments | |-----|------------|-------------------|------|--------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 3N image data | Table 3.3.2-6 Format of data items in VNIR Band 3N Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | [11][11] | DOUBLE | geolocation field (Array) | | ImageData | [4980][4200] | UINT8 | mapping to geolocation array | ### (3) Block Size | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 498 420 | # 3.3.2.5. VNIRBand 3B Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.2-7 shows the List of data items in VNIR Swath 3B (Swath data for VNIR band 3B). a) Data model: Swath b) Object Name: VNIR_Band3B c) Format: Table 3.3.2-7 shows the contents of Swath Object. Table 3.3.2-8 shows the format of one. Table 3.3.2-7 List of data items in Level 1B VNIR Band 3B Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|--------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 3B image data | Table 3.3.2-8 Format of data items in VNIR Band 3B Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | [11][11] | DOUBLE | geolocation field (Array) | | ImageData | [4980][4200] | UINT8 | mapping to geolocation агтау | # (3) Block Size | Table | Geolocation Array | | |------------|-------------------|--| | Block size | | | | | 498 420 | | # 3.3.3. SWIR Group #### 3.3.3.1. Overview SWIR Group contains a series of Swath Objects through the use of the Vgroup API. Vgroup name which establishes access to a Vgroup is as follows. vgroup name: SWIR_Group ### 3.3.3.2. SWIRBand 4 Swath #### (1) Structure Refer to VNIR Swath 1 in page 3-51. ## (2) Characteristics Table 3.3.3-1 shows the List of data items in SWIR Swath 4 (Swath data for SWIR band 4). a) Data model: Swath b) Object Name: SWIR_Band4 c) Format: Table 3.3.3-1 shows the contents of Swath Object. Table 3.3.3-2 shows the format of one. Table 3.3.3-1 List of data items in Level 1B SWIR Band 4 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|-------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | Iongitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Агтау | N/A | Level 1B spectral band 4 image data | Table 3.3.3-2 Format of data items in SWIR Band 4 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [125][106] | DOUBLE | geolocation field (Array) | | Longitude | [125][106] | DOUBLE | geolocation field (Array) | | ImageData | [2490][2100] | UINT8 | mapping to geolocation array | ## (3) Block Size | Table | Geolocation Array | |------------|-------------------| | Block size | 20 | | | 20 | # 3.3.3. SWIRBand 5 Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.3-3 shows the List of data items in SWIR Swath 5 (Swath data for SWIR band 5). a) Data model: Swath b) Object Name: SWIR_Band5 c) Format: Table 3.3.3-3 shows the contents of Swath Object. Table 3.3.3-4 shows the format of one. Table 3.3.3-3 List of data items in Level 1B SWIR Band 5 Swath | No. | Field Name | Туре | Unit | Comments | | |-----|------------|-------------------|------|-------------------------------------|--| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 5 image data | | Table 3.3.3-4 Format of data items in SWIR Band 5 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [125][106] | DOUBLE | geolocation field (Array) | | Longitude | [125][106] | DOUBLE | geolocation field (Array) | | ImageData | [2490][2100] | UINT8 | mapping to geolocation array | # (3) Block Size | Table | Geolocation Array | | | |------------|-------------------|--|--| | Block size | | | | | | 20 | | | ## 3.3.3.4. SWIR Band 6 Swath ## (1) Structure Refer to VNIR Swath 1 in page 3-51. ## (2) Characteristics Table 3.3.3-5 shows the List of data items in SWIR Swath 6 (Swath data for SWIR band 6). a) Data model: Swath b) Object Name: SWIR_Band6 c) Format: Table 3.3.3-5 shows the contents of Swath Object. Table 3.3.3-6 shows the format of one. Table 3.3.3-5 List of data items in Level 1B SWIR Band 6 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|-------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 6 image data | Table 3.3.3-6 Format of data items in SWIR Band 6 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [125][106] | DOUBLE | geolocation field (Array) | | Longitude | [125][106] | DOUBLE | geolocation field (Array) | | ImageData | [2490][2100] | UINT8 | mapping to geolocation array | ## (3) Block Size | Table | Geolocation Array | | | |------------|-------------------|--|--| | Block size | | | | | | 20 | | | ## 3.3.3.5. SWIRBand 7 Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.3-7 shows the List of data items in SWIR Swath 7 (Swath data for SWIR band 7). a) Data model: Swath b) Object Name: SWIR_Band7 c) Format: Table 3.3.3-7 shows the contents of Swath Object. Table 3.3.3-8 shows the format of one. Table 3.3.4-7 List of data items in Level 1B SWIR Band 7 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|-------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 7 image data | Table 3.3.3-8 Format of data items in SWIR Band 7 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [125][106] | DOUBLE | geolocation field (Array) | | Longitude | [125][106] | DOUBLE | geolocation field (Array) | | ImageData | [2490][2100] | UINT8 | mapping to geolocation array | ## (3) Block Size | Table | Geolocation Array | | | |------------|-------------------|--|--| | Block size | | | | | | 20 | | | ## 3.3.3.6. SWIR Band 8 Swath ## (1) Structure Refer to VNIR Swath 1 in page 3-51. ## (2) Characteristics Table 3.3.3-9 shows the List of data items in SWIR Swath 8 (Swath data for SWIR band 8). a) Data model: Swath b) Object Name: SWIR_Band8 c) Format: Table 3.3.3-9 shows the contents of Swath Object. Table 3.3.3-10 shows the format of one. Table 3.3.4-9 List of data items in Level 1B SWIR Band 8 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|-------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 8 image data | Table 3.3.3-10 Format of data items in SWIR Band 8 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [125][106] | DOUBLE | geolocation field (Array) | | Longitude | [125][106] | DOUBLE | geolocation field (Array) | | ImageData | [2490][2100] | UINT8 | mapping to geolocation array | ## (3) Block Size | Geolocation Array | | | |-------------------|--|--| | | | | | 20 | | | | | | | ## 3.3.3.7. SWIR Band 9 Swath (1) Structure Refer to VNIR Swath 1 in
page 3-51. (2) Characteristics Table 3.3.3-11 shows the List of data items in SWIR Swath 9 (Swath data for SWIR band 9). a) Data model: Swath b) Object Name: SWIR_Band9 c) Format: Table 3.3.3-11 shows the contents of Swath Object. Table 3.3.3-12 shows the format of one. Table 3.3.3-11 List of data items in Level 1B SWIR Band 9 Swath | No. | Field Name | Type | Unit | Comments | |-----|------------|-------------------|------|-------------------------------------| | 1. | Latitude | Geolocation Array | | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Аггау | N/A | Level 1B spectral band 9 image data | Table 3.3.3-12 Format of data items in SWIR Band 9 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [125][106] | DOUBLE | geolocation field (Array) | | Longitude | [125][106] | DOUBLE | geolocation field (Array) | | ImageData | [2490][2100] | UINT8 | mapping to geolocation array | ## (3) Block Size | Table | Geolocation Array | | | |------------|-------------------|--|--| | Block size | | | | | | 20 | | | ## 3.3.4. TIR Group ## 3.3.4.1. Overview TIR Group contains a series of Swath Objects through the use of the Vgroup API. Vgroup name which establishes access to a Vgroup is as follows. vgroup name: TIR_Group ## 3.3.4.2. TIR Band 10 Swath #### (1) Structure Refer to VNIR Swath 1 in page 3-51. #### (2) Characteristics Table 3.3.4-1 shows the List of data items in TIR Swath 10 (Swath data for TIR band 10). a) Data model: Swath b) Object Name: TIR_Band10 c) Format: Table 3.3.4-1 shows the contents of Swath Object. Table 3.3.4-2 shows the format of one. Table 3.3.4-1 List of data items in Level 1B TIR Band 10 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|--------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 10 image data | Table 3.3.4-2 Format of data items in TIR Band 10 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | [11][11] | DOUBLE | geolocation field (Array) | | ImageData | [830][700] | UINT16 | mapping to geolocation array | #### (3) Block Size | Table | Geolocation Array | | | |------------|-------------------|--|--| | Block size | | | | | | 83 70 | | | ## 3.3.4.3. TIR Band 11 Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.4-3 shows the List of data items in TIR Swath 11 (Swath data for TIR band 11). a) Data model: Swath b) Object Name: TIR_Band11 c) Format: Table 3.3.4-3 shows the contents of Swath Object. Table 3.3.4-4 shows the format of one. Table 3.3.4-3 List of data items in Level 1B TIR Band 11 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|--------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 11 image data | Table 3.3.4-4 Format of data items in TIR Band 11 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | [11][11] | DOUBLE | geolocation field (Array) | | ImageData | [830][700] | UINT16 | mapping to geolocation array | ## (3) Block Size | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 83 70 | ## 3.3.4.4. TIR Band 12 Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.4-5 shows the List of data items in TIR Swath 12 (Swath data for TIR band 12). a) Data model: Swath b) Object Name: TIR_Band12 c) Format: Table 3.3.4-5 shows the contents of Swath Object. Table 3.3.4-6 shows the format of one. Table 3.3.4-5 List of data items in Level 1B TIR Band 12 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|--------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 12 image data | Table 3.3.4-6 Format of data items in TIR Band 12 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | [11][11] | DOUBLE | geolocation field (Array) | | ImageData | [830][700] | UINT16 | mapping to geolocation array | ## (3) Block Size | Table | Geolocation Array | |------------|-------------------| | Block size | | | | 83 70 | ## 3.3.4.5. TIR Band 13 Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.4-7 shows the List of data items in TIR Swath 13 (Swath data for TIR band 13). a) Data model: Swath b) Object Name: TIR_Band13 c) Format: Table 3.3.4-7 shows the contents of Swath Object. Table 3.3.4-8 shows the format of one. Table 3.3.4-7 List of data items in Level 1B TIR Band 13 Swath | No. | Field Name | Туре | Unit | Comments | |-----|------------|-------------------|------|--------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 ~ +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 13 image data | Table 3.3.4-8 Format of data items in TIR Band 13 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | (11)[11] | DOUBLE | geolocation field (Array) | | ImageData | [830][700] | UINT16 | mapping to geolocation array | #### (3) Block Size | Table | Geolocation Array | |------------|-------------------| | Block size | 83 | | | 70 | ## 3.3.4.6. TIR Band 14 Swath (1) Structure Refer to VNIR Swath 1 in page 3-51. (2) Characteristics Table 3.3.4-9 shows the List of data items in TIR Swath 14 (Swath data for TIR band 14). a) Data model: Swath b) Object Name: TIR_Band14 c) Format: Table 3.3.4-9 shows the contents of Swath Object. Table 3.3.4-10 shows the format of one. Table 3.3.4-9 List of data items in Level 1B TIR Band 14 Swath | No. | Field Name | Type | Unit | Comments | |-----|------------|-------------------|------|--------------------------------------| | 1. | Latitude | Geolocation Array | deg. | geocentric latitude -90.0 ~ +90.0 | | 2. | Longitude | Geolocation Array | deg. | longitude -180.0 - +180.0 | | 3. | ImageData | 2D Data Array | N/A | Level 1B spectral band 14 image data | Table 3.3.4-10 Format of data items in TIR Band 14 Swath | Field Name | Dimension Size | Variable Type | Remarks | |------------|----------------|---------------|------------------------------| | Latitude | [11][11] | DOUBLE | geolocation field (Array) | | Longitude | [11][11] | DOUBLE | geolocation field (Array) | | ImageData | [830][700] | UINT16 | mapping to geolocation array | ## (3) Block Size | Table | Geolocation Array | | | |------------|-------------------|--|--| | Block size | | | | | | 83 70 | | | # Appendix A. Programming Model #### A.1. Overview This Section contains programming model for accessing Level 1A and 1B Data Products through the use of the Swath and Grid API, respectively. The reader is directed to The HDF-EOS User's Guide for the ECS Project, Sections 7 and 8, for further detailed references. ## A.2. Swath The programming model for accessing a swath data set through the SW interface is as follows: - 1. Open the file and initialize the SW interface by obtaining a file ID from a file name. - 2. Open a swath data set by obtaining a swath ID from a swath name. - 3. Perform desired operations on data set. - 4. Close the swath data set by disposing of swath ID. - 5 Terminate swath access to the file by disposing of the file ID. To access a single swath data set in Level 1A Data Product (HDF file), the calling program must contain the following sequence of C calls: ``` file_id = SWopen(filename, DFACC_READ); sw_id = SWattach(file_id, swath_name); <Optional operations> inquiry or subset or read by using function as follows: SWnentires(sw_id, entry_code, string_buffer_size); SWinqgeofields(sw_id, field_list, rank, number_type); SWinqdatafields(sw_id, field_list, rank, number_type); SWfieldinfo(sw_id, field_name, rank, dims, number_type, dim_list SWreadfield(sw_id, field_name, start, stride, edge, buffer); SWdefboxregion(sw_id, corner_lon, corner_lat, mode); SWextractregion(region_id, field_name, external_made, buffer); status = SWdetach(sw_id); status = SWclose(file-id); ``` # Abbreviations and Acronyms | A | . • | |----------|--| | | AOS: ASTER Operations Segment | | | API: application program interface APID: application process identifier | | | ASTER: Advanced Spacebone Thermal Emission and Reflection Radiometer (formerly ITIR) | | | ATBD: Algorithm Theoretical Basis Document | | 0 | | | <u> </u> | CCSDS: Consultative Committee on Space Data System | | | CDR: Critical Design Review | | | CDRL: Construct Data Requirement List | | | CDS: CCSDS day segmented time code CSCI: computer software configration item | | | CUC: CCSDS unsegmented time code | | • | | | <u>D</u> | DAAC:
Distributed Active Archive Center | | | DID: data item description | | | DOUBLE: double type | | | DPS: Data Processing Subsystem | | E | | | | ECI: Earth centered internal | | | ECS: EOSDIS Core System EDOS: EOSDIS Data and Operation System | | | EOSDIS: Earth Observing System Data and Information System | | | EPH: ephemeris data access | | F | | | <u> </u> | FLOAT: float type | | ~ | | | G | GCTP: general cartographic transformation package | | | GDS: Ground Data System | | | GMT: Greenwich mean time | | Н | | | 11 | HDF: Hierarchical Data Format | | | HDF-EOS: an EOS proposed standard for a specialized HDF data format | | 1 | | | | - ICD: interface control document | | | ID: identification | | | IDR: Incremental Design Review IMS: information management system | | | INT8: 8-bit integer type | | | INT16: 16-bit integer type | | | IRD: interface requirements document | | N | | | | N/A: not applicable | | | NCSA: the National Center for Supercomputing Applications | | P | _: | | | | PGE: Product Generation Executive PDR: Preliminary Design Review PDS: production data set **PGE**: Product Generation Executive **PGS**: Product Generation System PGSTK: Product Generation System Toolkit PS: Polar Stereographic | Q | _• | |-----|--| | | QA: quality assurance | | R | | | | RIS8: 8-bit Raster type | | | RIS24: 24-bit Raster type | | S | | | | SCF: Science Computing Facility | | | SDP: science data production | | • | SDPS: Science Data Processing Segment | | | SDPTK: SDP Toolkit CSCI | | | SOM: Space Oblique Mercator | | Т | | | | TBD: To Be Determined | | U | | | | UINT8: 8-bit unsighned integer type. | | | UINT16: 16-bit unsighned integer type. | | | UINT32: 32-bit unsighned integer type | | | UINT64: 64-bit unsighned integer type | | | UTC: Coordinated Universal Time (or universal time code) | | | UTM: Universal Transverse Mercator | | *** | | WGS84: World Geometric System '84 This page intentionally left blank. # **Abbreviations and Acronyms** ACL Access Control List ADN ASTER Data Network AOS ASTER Operations Segment AOT ASTER Operations Team API Application Programming Interface ASCII American Standard Code for Information Interchange ASF Alaska SAR Facility ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer ATC Absolute Time Command CCB Configuration Control Board CCSDS Consultative Committee on Space Data Systems CD compact disk CDR Critical Design Review CDRL Contract Data Requirement List CDS Cell Directory Service CEOS Committee on Earth Observations Satellites CERES Clouds and Earth's Radiant Energy System COTS commercial off-the-shelf CSMS Communications and System Management Segment DAA Data Availability Acknowledgment DAAC Distributed Active Archive Center DAN Data Availability Notice DAR data acquisition request DCE Distributed Computing Environment DCN Document Change Notice DDA Data Delivery Acknowledgment DDN Data Delivery Notice DFCD Data Format Control Document DID Data Item Description EBnet EOSDIS Backbone Network ECL ECS Command Language ECS EOSDIS Core System EDC EROS Data Center EDOS EOS Data Operations System EDU Exchange Data Unit, EDOS Data Unit EOC Earth Operations Center EOS Earth Observing System EOSDIS Earth Observing System Data and Information System EROS Earth Resources Observation System ERSDAC Earth Remote Sensing Data Analysis Center ESDIS Earth Science Data and Information System ETR Engineering Team Request FDF Flight Dynamics Facility FOS Flight Operations Segment FTP file transfer protocol GB Gigabyte GDS Ground Data System GMT Greenwich Mean Time GSFC Goddard Space Flight Center GUI graphical user interface HDF Hierarchical Data Format I&T integration & test ICC Instrument Control Center ICD Interface Control Document ICOS Instrument Control Operations Subsystem IDR Incremental Design Review IOT Instrument Operations Team IP International Partner, Internet Protocol Irl Interim Release-1 IRD Interface Requirement Document ISO International Standards Organization IST Instrument Support Terminal JPL Jet Propulsion Laboratory KB kilobytes KFTP Kerberos FTP LAN local area network LaRC Langley Research Center LTIP Long Term Instrument Plan LTSP Long Term Science Plan MIB management information base MISR Multi-Angle Imaging Spectro-Radiometer MO&DSD Mission Operations and Data Systems Directorate (GSFC Code 500) MODIS Moderate Resolution Imaging Spectroradiometer MOM Mission Operations Manager MOPITT Measurement of Pollution in the Troposphere MOU Memorandum of Understanding MSFC Marshall Space Flight Center MTTRS mean time to restore NASA National Aeronautics and Space Administration NNTP Network News Transfer Protocol NSI NASA Science Internet NSIDC National Snow and Ice Data Center ODS One Day Schedule ORNL Oak Ridge National Laboratory OSF Open Systems Foundation OSI Open Systems Interconnection PDB Project Data Base PIP Project Implementation Plan PVL Parameter Value Language RFC Request for Comment ROM read-only memory RTCS Relative Time Command Sequence SAR Synthetic Aperture Radar SCC Spacecraft Control Computer SCF Science Computing Facility SDP Science Data Production SDPS Science Data Processing Segment SEDAC Socio-Economic Data Analysis Center SFDU Standard Formatted Data Unit SMC System Monitoring and Control SMTP Simple Mail Transfer Protocol SNMP Simple Network Management Protocol STAR Science Team Acquisition Request STS Short Term Schedule TBD to be determined TBR to be resolved TBS to be supplied TCP Transport Control Protocol TDRSS Tracking and Data Relay Satellite System TRMM Tropical Rainfall Measuring Mission U.S. United States UDP User Datagram Protocol UTC Universal Time Coordinated VDD Version Description Document This page intentionally left blank.