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Abstract. This document describes a new MAIAC algorithm for the aerosol retrievals and 
atmospheric correction of MODIS data over land. This algorithm explores advantages of the time 
series processing at synergistic level for cloud masking and aerosol-surface retrievals. The 
algorithm is generic and works globally over all surface types although aerosols are not currently 
retrieved over snow. MAIAC products include cloud mask, water vapor, aerosol optical thickness 
(AOT) at 0.47 µm and Angstrom parameter, surface spectral bidirectional reflectance factor 
(BRF), instantaneous BRF (iBRF), which is a specific reflectance for a given observation 
geometry, and albedo for MODIS land bands 1-7, and ocean bands 8-14L, which are not 
saturated over land. The BRF and albedo are derived from the time series of measurements, 
whereas the iBRF is derived from the last measurement only. All products are generated 
uniformly at 1 km resolution in gridded format. The suit of products is compliant with energy 
conservation principle in a sense that the radiative transfer computations with retrieved 
parameters reproduce measurements with high accuracy. 

The cloud mask, aerosol retrievals, and atmospheric correction are completely new algorithms 
free from conventional assumptions that generally limit the accuracy of products. MAIAC 
algorithm uses up to 16 days of gridded MODIS measurements to make simultaneous retrievals 
of AOT and surface BRF/albedo. A requirement of consistency of the time series of retrieved 
BRF provides an additional constraint enhancing quality of aerosol and surface retrievals. 

This ATBD describes the radiative transfer basis, and theoretical basis for the water vapor, cloud 
mask, aerosol and atmospheric correction algorithms. We provide examples of validation of 
water vapor and AOT with AERONET measurements, and initial comparisons of cloud mask, 
AOT and surface reflectance with MODIS operational products MOD35, MOD04 and 
MOD09/MOD43, respectively, for different regions of the world. 
 
 
1. Introduction 

The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and 
operational aerosol retrievals and atmospheric correction over land. With the wide swath (2300 
km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et 
al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 
2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm 
[Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km 
swaths covering the globe in 8 days. The MODIS Dark Target method is the basis of MODIS 
Atmospheric Correction (AC) algorithm [Vermote et al., 2002]. 

With MODIS aerosol and land programs being very successful, some algorithm issues remain 
unresolved. The current processing is pixel-based and relies on a single-orbit data. Such an 
approach produces a single measurement for every pixel characterized by two main unknowns, 
aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information 
constitutes a fundamental problem of the remote sensing which cannot be resolved without a 
priori information. For example, MODIS Dark Target algorithm makes spectral assumptions 
about surface reflectance, whereas the Deep Blue method uses ancillary global database of 
surface reflectance. Both algorithms as well as MODIS AC algorithm assume a Lambertian 
surface model. 
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The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric 
correction in unintended way. For example, the Dark Target algorithm uses an empirical 
relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 µm channel (B7) for 
the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce 
the same SR in the red and blue bands as predicted, i.e. an empirical function of ρ2.1. In other 
words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red 
bands appears “borrowed” from band B7. This may have certain implications for the vegetation 
and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively 
substituted in terms of variability by band B7, which is sensitive to the plant liquid water. 

This ATBD describes a new recently developed generic aerosol-surface retrieval algorithm for 
MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm 
simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time 
series of MODIS measurements. 

MAIAC starts with accumulating 3 to 16 days of calibrated and geolocated level 1B (L1B) 
MODIS data. The multi-day data provide different view angles, which are required for the 
surface BRF retrieval. The MODIS data are first gridded to 1 km resolution in order to represent 
the same surface footprint at different view angles. Then, the algorithm takes advantage of the 
following properties of the atmosphere-surface system: 1) the surface reflectance changes little 
during accumulation period, and 2) AOT changes little at short distances (~25 km), because 
aerosols have a mesoscale range of global variability of ~50-60 km [Anderson et al., 2003]. 
Under these generic assumptions, the system of equations becomes over-defined and formally 
can be resolved. Indeed, we define the elementary processing area as a block with the size of 
N~25 pixels (25 km). With K days in the processing queue, the number of measurements exceeds 
the number of unknowns  

 KN2 > K+3N2 if K>3, (1.1) 

where K is the number of AOT values for different days, and 3 is the number of free parameters 
of the Li-Sparse Ross-Thick (LSRT) [Lucht et al., 2000] BRF model for a pixel. 

To simplify the inversion problem, the algorithm uses BRF, initially retrieved in B7, along with 
an assumption that the shape of BRF is similar between the 2.1 µm and the Red and Blue 
spectral bands: 
 );,();,( 0

7
0 ϕµµρϕµµρ λλ B

ijijij b= . (1.2) 
The scaling factor b is pixel-, wavelength-, and time-dependent. This physically well-based 
approach reduces the total number of unknown parameters to K+N2. Below, factor b is called 
spectral regression coefficient (SRC). 

The assumption (1.2) of similarity of the BRF shape is robust for most landcover types because 
the surface absorption coefficient, or inversely, surface brightness, is similar in the visible and 
shortwave infra-red (SWIR) spectral regions, and because the scale of macroscopic surface 
roughness, which defines shadowing, is much larger than the wavelength [Flowerdew and 
Haigh, 1995]. The accuracy of assumption (1.2) decreases when the visible and SWIR surface 
reflectances are significantly different. This issue will be discussed in detail in sec. … One 
obvious exception is snow, which is very bright in the visible wavelengths and dark in the SWIR. 
The principle of spectral similarity of the BRF shape was extensively tested and implemented in 
ATSR-2 [Veefkind et al., 1998] and MISR [Diner et al., 2005] operational aerosol retrievals. 
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The MAIAC algorithm is based on minimization of an objective function, so it can directly 
control the assumptions used. For example, the objective function is high if surface changed 
rapidly or if aerosol variability was high on one of the days. Such days are filtered and excluded 
from the processing.  

From historical prospective, the new algorithm inherits from multiple concepts developed by the 
MISR science team, from using the rigorous radiative transfer model with non-Lambertian 
surface in aerosol/surface retrievals [Diner et al., 1999; 2001] to the concept of image-based 
rather than pixels-based aerosol retrievals [Martonchik et al., 1998]. The latter idea, in a different 
implementation, was proposed in the Contrast Reduction method by Tanre et al. [1988], who 
showed that consecutive images of the same surface area, acquired on different days, can be used 
to evaluate the AOT difference between these days. 

MAIAC is a complex algorithm which includes water vapor retrievals, cloud masking, aerosol 
retrievals and atmospheric correction. The separate processing blocks are interdependent: they 
share the data through the common algorithm memory and may update each other’s output. For 
example, the cloud mask is updated during both aerosol retrievals and atmospheric correction. 
Section 2 of this ATBD provides an overview of MAIAC processing. Water vapor algorithm is 
described in section 3. Section 4 presents the radiative transfer basis for the aerosol retrievals and 
atmospheric correction algorithm, which are described in sections 5-6, respectively. Section 7 
describes MAIAC cloud mask algorithm. Validation of MAIAC AOT with AERONET 
measurements and surface BRF/albedo with AERONET-based Surface Reflectance Validation 
Network (ASRVN) products is described in Section 7. Finally, section 8 presents examples of 
MAIAC performance, discussion of operational implementation with parallel processing, and 
memory requirements. The ATBD is concluded with a summary. 

2. MAIAC Overview 
The block-diagram of MAIAC algorithm is shown in Figure 1.  

1) The received L1B data are gridded, split in 600 km Tiles, and placed in a Queue with the 
previous data. The size of the Tile is selected to fit the operational memory of our workstation. 
As a reminder, MODIS uses 1000 km Tiles in operational processing. In order to limit variation 
of the footprint with changing view zenith angle (VZA), the resolution is coarsened by a factor 
of 2. For example, the grid cell size is 1 km for MODIS 500m channels B1-B7. We use the 
MODIS land gridding algorithm [Wolfe et al., 1998] with minor modifications that allow us to 
better preserve the anisotropy of signal in the gridded data when measured reflectance is high, 
for example over snow, thick clouds or water with glint. 

2) The column water vapor is retrieved for the last Tile using MODIS near-IR channels B17-B19 
located in the water vapor absorption band 0.94 µm. This algorithm is a modified version of 
[Gao and Kaufman, 2003]. It is fast and has the average accuracy of ±5-10% over the land 
surface (see sec. 5). The water vapor retrievals are implemented internally to exclude 
dependence on other MODIS processing streams and unnecessary data transfers.  

3) The time series of measurements helps to develop a high quality cloud mask (CM). It is based 
on the notion that the surface spatial pattern is stable and reproducible in the short time frame in 
cloud-free conditions, whereas clouds randomly disturb this pattern. The algorithm uses 
covariance analysis to identify cloud-free blocks. On this basis, it builds a reference clear-skies 
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image of the surface, which is further used in the pixel-level cloud masking. The MAIAC CM 
algorithm has an internal land-water-snow dynamic classification, which guides the algorithm 
flow. 

 
Figure 1. Block-diagram of MAIAC algorithm. The initial capital letters indicate spatial and temporal 

domains of operations, for example at pixel- (P) or/and block- (B) level, and using the data of the last 
Tile only (T) or using the full time series of the Queue (Q). 

4) The main algorithm simultaneously retrieves the block-level AOT for K-days and N2 values of 
the spectral regression coefficient bij for the Blue (B3) band. This algorithm turns on when the 
B7 BRF is known. Otherwise, MAIAC implements a simplified version of the MODIS Dark 
Target algorithm. 

5) The AOT computed in the previous step has a low resolution of 25 km. On the other hand, 
knowledge of SRC provides the Blue band BRF from Eq. 2 at a grid resolution. With the surface 
boundary condition known, the Blue band AOT in this step is retrieved at high 1 km resolution 
from the last Tile. 

6) The ratio of volumetric concentrations of coarse-to-fine aerosol fractions (schematically called 
Angstrom exponent) is calculated for the last Tile at the grid resolution. This parameter selects 
the relevant aerosol model and provides spectral dependence of AOT for the atmospheric 
correction. The AOT and Angstrom parameter retrievals are done simultaneously, which is 
indicated by two arrows between processing blocks 5 and 6. 

7) Finally, surface BRF and albedo are retrieved at grid resolution from the K-day Queue for the 
reflective MODIS bands. 
 
2.1 Implementation of Time Series Processing 
The MAIAC processing uses both individual grid cells, also called pixels below, and fixed-size 
(25×25 km2) areas, or blocks, required by the cloud mask algorithm and SRC retrievals. In order 
to organize such processing, we developed a framework of C++ classes and structures 
(algorithm-specific Containers). The class functions are designed to handle processing in the 
various time-space scales, for example at the pixel- vs block-level, and for a single (last) day of 
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Granule 

1. Grid L1B Data 
and Split in Tiles 

3. QB, TP: Cloud 
Mask (Covariance-
Based Algorithm) 

2. TP: Retrieve 
Water Vapor 

(NIR Algorithm) 
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Is B7 BRF
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Yes Use MODIS Dark Target Algorithm 

7. QP: Retrieve BRF and 
albedo in reflective bands 
(atmospheric correction) 

6. TP: Retrieve 
Angstrom exponent 

5. TP: Retrieve B3 AOT 
using known surface 

BRF, ρB=ρ7bB 

4. QB: Retrieve Spectral 
Regression Coefficients 

in Blue band B3 (bB). 

No 
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Figure 2. Queue Structure. 
   The Queue, designed for the sliding window 
algorithm, stores up to 16 days of gridded MODIS 
observations at 1 km resolution. The data are 
stored as Layers (double-indexed arrays) shown in 
the upper-left corner. A dedicated Q-memory is 
allocated to store the ancillary information for CM 
algorithm, such as a reference clear-skies image 
(refcm), block-level statistical parameters {r1max; 
σ1; ∆BT}, and results of dynamic Land-Water-
Snow classification (mask_LWS). This 
information is updated with latest measurements 
(day L) once given block is found cloud-free, thus 
adapting to changing surface conditions. The Q-
memory also stores results of previous reliable 
BRF retrievals for MODIS bands 1-13. 

measurements vs all available days in the Queue, or for a subset of days which satisfy certain 
requirements (filters). The data storage in the Queue is efficiently organized using pointers, 
which avoids physically moving the previous data in memory when the new data arrive. 

The structure of the Queue is shown schematically in Figure 2. For every day of observations, 
MODIS measurements are stored as Layers for reflective bands 1-13 for AC algorithm. The 
Queue stores the retrieval results required for atmospheric correction, such as water vapor and 
aerosol information. MAIAC uses bands 17-19 for water vapor retrievals, and bands 26, 31-32 for 
the cloud mask algorithm. These data, however, are not stored in the Queue, and the respective 
memory is released once the last Tile is processed. Besides storing gridded MODIS data (Tiles), 
the Queue has a dedicated memory (Q-memory) which accumulates ancillary information about 
every block and pixel of the surface for the cloud mask algorithm (Refcm data structure). It also 
keeps information related to the history of previous retrievals, for example spectral surface BRF 
parameters and albedo. Given the daily rate of MODIS observations, the land surface is a 
relatively static background. Therefore, knowledge of the previous surface state significantly 
enhances both the accuracy of the cloud detection, and the quality of atmospheric correction, for 

example, by imposing a requirement of consistency of the time series of BRF and albedo. 

As frequency of MODIS observations increases polewards, the number of days (Ndays) stored in 
the Queue is a function of latitude. Ndays=16 at the equator decreasing to Ndays=6 (up to 30 
daytime observations) at the poles. Because the memory requirement is high, the size of the Tile 
can be scaled to fit an operational memory of a particular workstation (e.g., 300-1000 km). The 
only requirement for the Tile size is that it should be a multiple of the block size (25 km). 
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3. Water Vapor Algorithm 

Selected water vapor algorithm is a two-channel ratio algorithm based on the look-up tables. The 
column water vapor (W) retrievals are made over the land surfaces and the in-land or coastal 
waters with glint. The algorithm uses three MODIS water vapor channels with the following 
band center and width (nm): 17 (905, 30), 18 (936, 10), 19 (940, 50). The absorption is highest in 
band 18 and decreases in bands 19 and 17. 
 
3.1 Theoretical Basis 
The water vapor retrievals are based on the approximate Lambertian formula for the TOA 
radiance: 

 ),,(
)(1

),(),,(),,( 0
,00

0
00 ϕµµρ

µ
µµϕµµϕµµ λ

λλ

λ
λλ cq

TRR
tot

D

−
+≅ , (3.1) 

where DRλ  is a path reflectance, ),( 0 µµλ
totT =

λ
µµ )()( 0

↑↓ TT  is a total two-way atmospheric 

transmittance, λ,0c  is spherical albedo of atmosphere, and ),,( 0 ϕµµρλ , )( 0µλq  are surface BRF 

and albedo. The terms DRλ  and ),( 0 µµλ
totT  are spectrally integrated with the specific RSR of a 

given channel as described in section 4. The use of Lambertian approximation in this case is 
justified by the fact that the diffuse atmospheric transmission is much smaller in the 0.94 µm 
region than the direct transmission because the aerosol optical thickness is usually small and 
water vapor absorbs the diffuse light stronger than it absorbs the direct (unscattered) light. These 
factors reduce the weight of the diffuse radiance in the total signal, as well as the error due to its 
approximate modeling. For the same reason, the multiple scattering of light between the surface 
and the atmosphere can also be omitted, which gives: 

 ),,(),(),,(),,( 0000 ϕµµρµµϕµµϕµµ λλλλ
totD TRR +≅ . (3.2) 

If the surface reflectance is spectrally flat or changes little in a narrow spectral absorption 
interval of 0.9-0.94 µm, then a two-channel ratio algorithm can be used to derive W: 

 D

D

tot

tot

RR
RR

T
T

1919

1818

19

18

−
−

= , and D

D

tot

tot

RR
RR

T
T

1717

1919

17

19

−
−

= . (3.3) 

For a given view geometry, the solution is found by searching the LUT. 

The MODIS water vapor channels have different effective absorption and different sensitivity 
under the same atmospheric conditions. The strong absorption channel 936 nm is most sensitive 
under dry conditions, while the weak absorption channel at 905 nm is most sensitive under 
humid conditions [Gao and Kaufman, 2003]. Given the atmospheric conditions, the derived W 
from the two ratios (Eq. 3.3) can be different.  A mean water vapor is obtained as in [Gao and 
Kaufman, 2003]: 

 W = f1W1 + f2W2, (3.4) 

where Wi are water vapor values derived from different channel ratios, and fi are weighting 
functions. The weighting functions are related to the sensitivities of the two band pairs,  
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W
T
T

tot

tot

∆∆=
19

18
1η , W

T
T

tot

tot

∆∆=
17

19
2η , and are defined as normalized values: 

 fi = ηi/(η1+η2). (3.5) 

The weighting functions are computed numerically from the ratios 
),,(/),,( 019018 WTWT tottot µµµµ , ),,(/),,( 017019 WTWT tottot µµµµ  stored in the LUT.  

The subsequent atmospheric correction in bands affected by water vapor absorption is performed 
using the weighted value of water vapor. 
 
The WV algorithm uses following input data:  

- view geometry (SZA, VZA, relAZ);  
- measured reflectance B17, B18, B19. 

 
The algorithm: 

1) Initially, the aerosol parameters are unknown, and the atmospheric path reflectance, 
subtracted from measurements (in Eq. 3.3), corresponds to the background aerosol level 
assumed in the LUT calculations as aτ =0.01 at λ=0.94 µm. The water vapor retrievals 
are performed over pixels that satisfy the condition: 05.019 ≥R , which only excludes 
dark water in the off-glint region. 

2) If the subsequent aerosol retrievals show high AOT at λ=0.94 µm ( aτ >1), then the water 
vapor retrievals should be repeated with the derived value of AOT. This part of algorithm 
is not currently implemented.  

 
3.2 Look-Up Tables 
The current LUTW is calculated using a vertical profile of the US 1976 Standard Model of 
Atmosphere. Given W, the total transmittance ratio is fairly insensitive to variations in the 
profiles of water vapor, temperature and pressure. The path reflectance in bands B17-B19, on the 
other hand, depends on the vertical profiles of water vapor and aerosol. Since both profiles are 
unknown, we assume that the water vapor has a profile of the US1976 Model, and that aerosols 
are uniformly distributed in the 0-2 km boundary layer, with small constant background level in 
the stratosphere. This model has a sufficiently high accuracy for atmospheric correction of 
MODIS spectral bands, carefully selected in the atmospheric windows. 

The LUTW stores path reflectance ),,,,( 0
aD WR τϕµµλ  for three bands (B17-B19), and two 

transmittance ratios tottot TT 1918 / , tottot TT 1719 / , which depend on 4 parameters ),,,( 0
aW τµµ . The 

LUTW was calculated with steps µµ ∆=∆ 0 =0.02 for the range µ=1 - 0.4 (0o - 66.4o), µ0=1 - 0.34 
(0o - 70.1o), W=0 - 7.5 with step 0.3, and a

94.0τ ={0.01, 0.2, 0.5, 1.0}. The step in azimuthal angle 
for the path reflectance is selected 10o. The angular resolution of LUTW is high enough to use 
nearest neighbor method, avoiding bi- or three-linear interpolation in angles. 
 
3.3 AERONET Validation  
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To test developed algorithm, we processed 1 year (2003) of MODIS TERRA data subsetted for 
156 AERONET stations globally. The AERONET v.2 water vapor algorithm [Smirnov et al., 
2004] is based on an accurate high spectral resolution model of atmospheric gaseous absorption 
developed by A. Lyapustin. This algorithm was validated against GPS retrievals. The 
comparison study showed an excellent agreement with zero intercept and a slope of 0.984 in the 
range of W 0 – 5 cm [Smirnov et al., 2004]. 

For the current study, we used AERONET data within ±30 min of the MODIS TERRA overpass 
for validation. The retrieved data (WR) were averaged over 9×9 km2 region. Because water vapor 
is retrieved before CM algorithm, the clouds were filtered first using a very simple variance 
criterion: the point was considered potentially cloudy if the difference between the maximum 
and the average WR over the 9×9 km2 region exceeded 0.5 cm. This criterion, which filtered 12% 
of all retrievals, relies on a low local spatial variability of the atmospheric water vapor over 
relatively flat terrain. An additional implicit filter was availability of AERONET measurement 
for comparison, which is compliant with AERONET cloud mask. 

The scatterplots of the retrieved water vapor against AERONET results are shown in Figure 3 for 
several sites around the globe. The last plot shows the summary comparison for 156 different 
AERONET sites. Over most AERONET sites, the correlation is very good. In the cloud-free 
conditions, the retrievals are in general unbiased, and accurate to 5-10%. The retrievals have 
lower accuracy (20-30%) over areas with red iron-rich soils (Canberra, Australia), whose 
reflectance changes considerably in the 0.9-1 µm spectral region due to absorption of the iron 
compounds. Similarly, lower accuracy has been reported in these cases by the operational near-
IR water vapor algorithm MOD03 [Gao and Kaufman, 2003]. 

The plots of Figure 3 show that a fraction of retrievals is considerably lower than the AERONET 
data. The point-by-point analysis shows that the low retrievals are caused by either residual 
partial cloudiness, which leaked through our simple filter, or high aerosol optical thickness. 
When present in the atmosphere, clouds raise the effective reflecting boundary, and the 
algorithm, which is sensitive to the water vapor above the clouds, produces lower WR. 

Unless the surface is very bright, the aerosol scattering usually increases the measured signal and 
the band ratio, also causing lower retrieved values. Figure 4 shows the time series of the 
retrieved WR against AERONET value, and AERONET aerosol optical thickness at λ=1.06 µm. 
The correlation between the WR and AERONET is excellent except when the AOT is high. In 
the two examples for GSFC (USA) and Beijing (China), the aerosol outbreaks explain over 90% 
of cases when WR was significantly lower than the AERONET value. These data show the need 
for aerosol correction on hazy days. The operational MODIS algorithm MOD03 did not 
implement this correction. 
 
3.4 Alternative Algorithms 

We have also studied two additional algorithms - an operational MODIS near-IR water vapor 
algorithm (MOD03), and an empirical analytical method, which is used in the current MODIS 
atmospheric correction algorithm (MOD09).  The MOD03 algorithm uses 5 bands, the three 
water vapor channels and two window channels B2 (0.865 µm) and B5 (1.24 µm). The window 
channels are used to correct for spectral change of surface reflectance across spectral interval of 
0.85 – 1.26 µm assuming it changes linearly with wavelength. Gao and Kaufman, [2003] 
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Figure 3. Comparison of retrieved column water vapor (CWV) with AERONET.   
 

 

 
Figure 4. Time series of retrieved and AERONET column water vapor, and AERONET optical thickness 

at 1.06 µm. The arrows mark the days with high AOT when the retrieved W is significantly lower 
than the AERONET data. 
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assessed the accuracy of the linear model as 2.4-3.9% for most soils, rocks, vegetation, and 
snow, and 8.4% for the iron-rich soils. 

Our comparison study with AERONET data showed that this method has a factor of 2-3 higher 
noise than the method we selected. This noise may be caused by the spectral variability of the 
surface reflectance. Indeed, if the linear spectral model is not a good predictor for the surface 
reflectance in 0.85 – 1.26 µm region, then using the much wider spectral interval is expected to 
add noise into retrievals. 

The second retrieval method used in MOD09 uses an empirical relation: 

 mRaRaW /)lnln( 2
21 += , (3.6) 

where )/ln(ln 1918 RRR = , m is airmass, and a1, a2 are band-dependent coefficients. This relation 
was used earlier for the column water vapor retrievals from space [Bennartz and Fisher, 2001]. 
Another empirical relation commonly used for water vapor retrievals from ground-based 
sunphotometry [Michalsky et al., 1995] has a form: 

 )][exp(/ b
WVWindowWV WmaTT −= , (3.7) 

where the left-hand side is the direct transmittance ratio in the water vapor absorption band and 
in the nearby atmospheric window, mWV is the airmass of water vapor, and a, b are coefficients. 
We studied both equations (3.6) and (3.7). The coefficients were established by the least squares 
fit of the LUT transmittance ratio ),,(/),,( 019018 WTWT tottot µµµµ , ),,(/),,( 017019 WTWT tottot µµµµ . 
The relative accuracy of the parametric models is shown in Figure 5, where the ratio of LUT 
transmittance is called ETratio, and Model 1 and Model 2 represent equations (3.7) and (3.6), 
respectively. The W increases along the x-axes from 0.05 to 7.5 with step 0.3. At each W value, 
the zenith sun and view angles change from 0o to 60o. The transmittance ratio and the model 

 
 

    
 
Figure 5. A relative accuracy of parametric models 1 (Eq. 5.7) and 2 (Eq. 5.6) fitting the two-way 

transmittance ratio for band combinations B18-B19, and B19-B17. The x-axis represents increasing 
column water vapor from 0.05 (at the left) to 7.5 (at the right), with all combinations of SZA and 
VZA from the range of 0-60o. 
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error have the comb-like structure. Each period of this structure corresponds to a fixed W-value 
and all combinations of SZA and VZA, with maximal error at SZA=VZA=60o. 

Figure 5 shows that combining the two models, it is possible to sustain the accuracy of 
parameterization within 3-5%. However, the errors are rather high at large solar and view zenith 
angles, for which reason we did not pursue the parametric approach any further. Lack of 
possibility of aerosol correction is another limitation of parametric approach. On the other hand, 
our MODIS-based analysis using (Eq. 3.6) for water vapor retrievals showed that it works 
remarkably well, providing similar results with our selected approach and just a slightly lower 
correlation with AERONET data. 
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4. MAIAC CLOUD MASK ALGORITHM 
 
Updates: Described below is the most recent version of the CM algorithm which was updated 
from the original version published by Lyapustin et al. [2008]. The following updates were made 
in year 2008: 
- Added Cirrus test using MODIS band B26; 
- Added cloud detection over water; 
- Added B7 reference clear-sky image (the original version used only B1 reference image); 
- Improved snow detection and cloud mask over snow; 
- Significantly reduced cloud leak through a high covariance processing path; 
- Added clear-sky restore algorithm in high covariance processing path. 
 
4.1 Introduction 
Cloud mask (CM) is a primary science algorithm that precedes detailed analysis of cloud, aerosol 
and land surface/ocean parameters from global observing space borne sensors. Accuracy of 
cloud detection has a significant impact on aerosol retrievals and atmospheric correction. At the 
global scale, undetected clouds introduce a positive bias in aerosol concentration and increase 
land albedo, whereas regional and seasonal biases correlated with cloudiness affect spatial 
distribution and temporal changes of these parameters. 

The heritage cloud mask algorithms for the low-orbiting sensors, including the AVHRR CLAVR 
[McClain, 1993] and MODIS algorithm [Ackerman et al., 1998; 2006], use the latest sensor 
measurements of spectral reflectance and brightness temperature (BT) and perform processing at 
the pixel level. These algorithms utilize a generic land type classification but lack a priori 
knowledge about specific surface reflectance and ground brightness temperature, and have to 
deal with large uncertainties caused by wide natural variability of both land surface and clouds. 
Even identification of clear pixels in cloud-free conditions is challenging when measurements do 
not exhibit explicit spectral signatures of the surface, such as dense vegetation or deep water. 
Due to tremendous variability of clouds, their detection has always been problematic over 
brighter surfaces, especially snow. Because of similarities in spectral reflectances between snow 
and snow/ice clouds, and temperature inversions frequent in the low troposphere in wintertime, 
no particular set of spectral reflectance and brightness temperature tests may guarantee success 
over snow and ice. 

MAIAC takes advantage of high observation rate of MODIS providing a daily global view of the 
Earth at the equator and multiple observations per day in mid-latitude and polar regions. At daily 
observations, the land surface can be considered as a static or slowly changing background 
contrary to ephemeral clouds, which offers a reliable way of developing the “comparison target” 
for the CM algorithm. An early example of such an approach is the ISCCP CM algorithm 
[Rossow and Garder, 1993] developed for geostationary platforms. It builds the clear-skies 
composite map from the previous measurements and infers CM for every pixel by comparing a 
current measurement with the clear-skies reference value. Uncertainty of the reference value, 
caused by natural variability and sensor noise, is directly calculated from the measurements. 

MAIAC CM algorithm [Lyapustin et al, 2008] is a next step in the evolution of this idea. It uses 
the time series and spatial covariance analysis to build a reference clear skies image (refcm) and 
to accumulate a certain level of knowledge about the surface and its variability, thus constructing 
rather comprehensive comparison target for cloud masking. The new algorithm has an internal 
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surface classifier, producing a dynamic land-water-snow (LWS) mask. It is an integral part of 
MAIAC guiding both cloud masking and further aerosol-surface reflectance retrievals when the 
surface changes rapidly as a result of fires, floods or snow fall/ablation. The cloud mask 
generated by the CM algorithm is updated during aerosol retrievals and atmospheric correction, 
which makes it a synergistic component of MAIAC. 

MAIAC CM produces an integral cloud mask with values of CM_CLEAR for clear conditions and 
CM_PCLOUD (possibly cloud) or CM_CLOUD for cloudy conditions, and it does not keep values of 
separate tests. The new algorithm is applicable over land and inland water. It was not designed 
for the global ocean where it may be less accuracy than the MODIS operational CM algorithm 
(MOD35). The described algorithm has been updated since the initial version [Lyapustin et al, 
2008] was reported. 
 
4.2 Reference Clear Skies Image and Overall Logic of Cloud Detection 

The clear-skies images of a particular surface area have a common textural pattern, defined by 
the surface topography, boundaries of rivers and lakes, distribution of soils and vegetation etc. 
This pattern changes slowly compared with the daily rate of global Earth observations. Clouds 
randomly change this pattern, which can be detected by covariance analysis. The covariance is a 
metric showing how well the two images X and Y correlate over an area of N×N pixels, 

∑
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A high covariance of two images usually implies cloud-free conditions in both images, whereas 
low covariance usually indicates presence of clouds at least in one of the images. A rapid surface 
change or significant variation of aerosol density in the area may also reduce covariance. 
Because covariance removes the average component of the signals, this metric is equally 
successful over the dark and bright surfaces and in both clear and hazy conditions if the surface 
spatial variability is still detectable from space. 

The core of the MAIAC CM algorithm is initialization and regular update of the reference clear-
skies image for every block of the land surface (25×25 km2 area used for cov-analysis). The 
refcm is initially built from a pair of images for which covariance is high, and caution is 
exercised to exclude correlated cloudy fields (see sec.4.4). The algorithm calculates a block-level 
covariance between the new Tile and the previous Tiles, moving backwards in the Queue until 
either the “head” of Queue is reached, in which case initialization fails and the algorithm would 
wait for the new data to continue, or clear conditions are found. The latter corresponds to high 
covariance (cov≥0.68) and several other conditions (sec. 4.4). After initialization, the algorithm 
uses the refcm to compute covariance with the latest measurements. Once clear conditions are 
found, refcm is updated. With this dynamic update, the refcm adapts to the gradual landcover 
changes related to the seasonal cycle of vegetation. The rapid surface change events (e.g. 
snowfall/ablation) are handled through repetitive re-initialization which is performed each time 
when covariance of the latest Tile with refcm is found to be low (see section 4.4). 

In order to achieve high accuracy and global performance, MAIAC combines spectral pixel-level 
tests with spatio-temporal analysis involving refcm. The logic of CM algorithm is shown in the 
flowchart of Figure 6. Here, rectangles represent separate functions, diamond shapes stand for 
the separate subroutines (algorithms), and round-corner rectangles indicate decision (branching) 
points. The letters in parentheses show spatial and temporal domains of operations, for example 
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at pixel- (P) and/or block- (B) level, and using the data of the last Tile (T) only or using the full 
time series of the Queue (Q). 

1. The processing starts with snow test, as its input is required by the Cirrus cloud test. The snow 
test does not uniquely detect cloud-free conditions because snow/ice clouds may have similar 
spectral features. 

2. The Cirrus cloud spectral test uses MODIS band 26 to detect high clouds located above 
absorbing water vapor. This test is often insensitive to the low clouds, and its performance 
deteriorates when the atmosphere is dry. We developed an “anti-cirrus” test to detect clear areas 
of snow/ice in winter with low water vapor using band 26. If the block is declared cloud-free, 
then the refcm is updated and the algorithm proceeds to complete the land type classification 
(confirm_LWSmask). 

3. The clear-skies spectral tests include a high NDVI test, a hot-bright desert test, and a dark 
water test. These tests rely on unique spectral signatures of surface and are used to initialize 
and/or update pixel-level surface classification mask (LWSmask). The detected clear land and 
water pixels are used to calculate brightness temperature of the ground (BTG) and of the water 

Queue 
(L days) 

Calculate  
cov(refcm, new Tile) 

(B; T) 

New (Last)  
Tile

Is refcm 
initialized? 

Yes 
No 

 Is cov HIGH? 
Yes 

No 

CM_highCov
(BP; T) 

Spectral Tests (P; T) 

Is refcm 
initialized? 

No 

initRefcm
(BP; Q) 

Yes

No CM_lowCov 
(BP; T) 

Is refcm 
re-initialized?  

initRefcm 
(BP; Q) 

Yes 

Wait for 
new data. 

“Cirrus” Test (BP; T) 

Confirm LWSmask (P; T) 

Snow Test (P; T) 

Is block  
cloud-free?

Update refcm 
(P; T) 

Yes

No 

Figure 6. The general flowchart of 
CM algorithm. After “snow”, “Cirrus” 
cloud and spectral tests, the algorithm 
first tries to initialize the reference 
clear-skies image (refcm), and if fails 
then it waits for the new data to arrive. 
If refcm is available, the algorithm 
calculates covariance between the 
latest image and refcm, and carries on 
further analysis depending on whether 
covariance is high or low. In case of 
low covariance, the algorithm takes an 
intermediate step trying to re-initialize 
refcm, which takes care of rapid 
surface changes as well as of possible 
errors in refcm caused by previously 
undetected clouds. The pixel-level 
cloud mask is produced by modules 
CM_highCov, CM_lowCov. Module 
initRefcm produces cloud mask only if 
initialization is successful. The Refcm 
structure is updated after successful 
spectral tests and in modules initRefcm 
and CM_highCov. 
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(BTW) for every block, which are required in further analysis. If the block is declared cloud-free, 
then the refcm is updated and the algorithm proceeds to complete the land type classification. 

Although providing reliable performance, these tests are applicable neither globally nor for all 
seasons of the year. If the generated cloud mask does not cover the full area of the block, the 
algorithm uses refcm for further processing. 

4. The central idea of the MAIAC CM algorithm is to use refcm and covariance analysis to 
identify clear and cloudy blocks, which are usually characterized by high and low covariance, 
respectively. The low covariance of the latest Tile with refcm may be caused by presence of 
clouds, dense inhomogeneous aerosols, or a rapid surface change on a scale comparable to the 
block size. Even when covariance is high, a few pixels of the block may still be cloudy. 
Following covariance calculation, the algorithm looks for clouds at the pixel level. For regular 
surfaces, not covered by snow, cloud detection is based on a simple postulate that clouds are 
usually brighter and colder than the surface. The reference surface reflectance for every pixel is 
provided by the refcm clear-skies image, whereas an estimate of the ground brightness 
temperature BTG comes either from the clear land pixels detected by spectral tests for a given 
block, or from the cloud-free neighbor blocks, identified by high covariance. For example, the 
bright-cold (BC) algorithm for pixel (i,j) is formulated as follows: 

IF (BTij < BTG – 4) AND (r1ij >refcm.r1ij+0.05) ⇒ CM_PCLOUD. 
The processing path depends on whether refcm (Refcm structure) has been initialized. If not, then 
the algorithm tries to initialize refcm (module initRefcm). If initialization is unsuccessful because 
of clouds, the algorithm waits for a new data to arrive. If refcm has been initialized, then the 
covariance is calculated between the new measurements and the refcm image. The further 
processing depends on the value of covariance (modules CM_highCov and CM_lowCov). If 
covariance is low, the algorithm takes an intermediate step and attempts to re-initialize refcm 
with latest measurements. This conservative strategy serves to mitigate errors if partially or 
completely cloudy images bypassed filters of initRefcm and were used to update refcm. If this 
happened, the latest cloud-free image will not correlate well with refcm. Re-initialization also 
helps to update refcm when the surface reflectance has changed rapidly. 

Following covariance calculations, the pixel-level cloud mask is produced by modules 
CM_highCov and CM_lowCov. Although the logic implemented in these modules is different, 
the clouds in the absence of snow are detected similarly using the bright-cold algorithm. Module 
initRefcm generates cloud mask only if initialization/re-initialization is successful. The refcm 
image is updated in the modules initRefcm and CM_highCov. It is also updated after spectral 
tests if all pixels of the block are cloud-free. The detail of spectral tests, surface classification 
scheme and algorithms implemented in modules initRefcm, CM_highCov and CM_lowCov are 
described next. 
 
4.3 General Information 

The MAIAC CM algorithm uses five 500 m resolution MODIS bands B1, B2, B4, B5, B7, a 1 km 
band B26, and 1 km thermal bands B31, B32 (Table 1). As mentioned earlier, data are initially 
re-projected and gridded to a 1 km grid. 

1. The covariance analysis is currently performed for MODIS bands B1 (0.645 µm) and B7 (2.11 
µm). We have extensively studied the use of B6 (1.629 µm) and B5 (1.242 µm). B6 was initially 
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our band of choice because it has low molecular absorption and aerosol extinction, as well as 
high land surface variability and spatial contrasts. We have conducted an independent covariance 
analysis for 1 year of MODIS TERRA data using 50×50 km2 areas around 156 AERONET 
[Holben et al., 1998] locations globally. From considered MODIS bands B1, B2 (0.856 µm), B5, 
B6 and B7 (2.113 µm), band B6 provided about 10% more high covariance cases. On the other 
hand, this band has not been working properly on MODIS AQUA, and it has developed 
occasional problems since 2006 on MODIS TERRA. We have also found that bands B5 and B6 
often cannot detect variable semi-transparent clouds. The darker red band B1 was found to 
provide better overall performance, especially in BC-test. 

 

Table 1. MODIS Data Used in MAIAC CM Algorithm 

MODIS band λC (µm) Nadir resolution (km) Primary Use 

B1 0.645 0.5 Covariance analysis, refcm. BC test. 
LSC – Vegetation, Water. Land restore 
test. 

B2 0.856 0.5 LSC – Vegetation, Water. 

B4 0.554 0.5 LSC – Snow. 

B5 1.242 0.5 Shadow detection. Land restore test. 
High cloud test (with B26). 

B7 2.113 0.5 Covariance analysis, refcm.  
LSC – Vegetation, Water, Snow. 

B26 1.38 1. High cloud test. Detection of cloud-free 
blocks at low WV in atmosphere.  

B31 11.030 1. Covariance analysis, refcm. BC test. 
BT analysis. LSC. Dust detection. 

B32 12.030 1. Dust detection 

LSC – Land Surface Classification (land, water and snow). 

 
2. The size of a block is selected as 25×25 pixels (km2) for two reasons. First, this size is large 
enough to capture a variety of spatial variability scales (geologic, topographic, ecologic etc.) 
required for covariance analysis. Second, it is sufficiently large to capture surface variability at 
the edge of scan where the MODIS pixel size grows to ≈2×4 km2 for 1 km2 nadir pixels. On the 
other hand, the success rate of the covariance algorithm to select clear blocks in conditions of 
broken cloudiness is higher for smaller blocks. The MISR CM algorithm [Diner et al., 1999], 
which extensively uses covariance analysis, works with the block size of 17.6 km. We plan to 
evaluate the global performance of cloud masks using block sizes from 15-25 km and select the 
optimum for operational application. 

3. The first version of MAIAC CM algorithm [Lyapustin et al., 2008] maintained two reference 
clear-skies images, refcm1 for VZA≈0-45o and refcm2 for VZA=45o-60o in order to account for 
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the effects related to scan angle variation, e.g. pixel size growth, surface BRF effect or reduction 
of contrast at higher view zenith angles (VZA). Our later work showed that such an approach is 
redundant because a similar performance can be achieved with single refcm. The current version 
maintains one refcm which is updated with measurements from the range VZA≈0-50o. On the 
other hand, if refcm (in bands B1 and B7) has been initialized, it is used for covariance analysis 
with the new measurements for the full range of observation angles. 

4. The clear-skies image is stored in the Q-memory in the Refcm structure, which also stores the 
maximal (rmax) the mean (rav) and the contrast (rmax- rmin) values of reflectance in bands B1 and 
B7 for each block. It also stores the variance (σ) of B1 reflectance and the brightness 
temperature contrast (∆BT=BTmax-BTmin). Analysis of MODIS data shows that thermal contrast 
(∆BT) is a rather stable metric of a given land area in clear conditions. For the pure land blocks, 
containing no water or snow pixels, the thermal contrast is usually low (1-6 K) for flat terrain at 
MODIS 1 km resolution. It may increase significantly (10-20 K) when the block is a mixture of 
land, water or snow pixels. In partially cloudy conditions the contrast increases because BTmin is 
usually lower over clouds. 

5. The algorithm keeps a two-level cloud mask, the standard mask at the grid (1 km) resolution 
(CM), and a mask at the block resolution (CM_COV). The CM_COV mask is used to efficiently 
control the algorithm flow for refcm re-initialization, and during aerosol retrievals and 
atmospheric correction. 

6. The allowed values of the cloud mask are clear (CM_CLEAR, CM_CLEAR_WATER, 
CM_CLEAR_SNOW, CM_CLEAR_ICE), indicating surface type as well, possibly cloudy 
(CM_PCLOUD), and confidently cloudy (CM_CLOUD). One more value CM_SHADOW is used for 
pixels defined as cloud shadowed. The covariance component of our algorithm, which offers a 
direct way to identify clear conditions, renders another commonly used value of cloud mask – 
“possibly clear” – redundant. 

7. An example of refcm initialization is shown in Figure 7 for the 150 km area encompassing 
Lake Erie. Shown are two consecutive 8-day periods from the beginning of processing, May 4-
12, and May 20-28 of 2005. MODIS measurements are displayed in columns RGB, R1, R7, R26 
and BT(B31). Cloud mask (CM), refcm images in bands B1 and B7 (refcm1,7) and column water 
vapor (WV) are results of MAIAC processing. Initialization of the reference image starts on day 
3. Most of refcm over land is initialized by day 8. The green-up of the land during this period of 
time is accompanied by reduction of reflectance in bands B1, B7. Refcm tracks these changes as 
can be seen at the end of the second 8-day period. 
 
4.4 Clear-skies Spectral Tests and Dynamic Surface Classification 
The MAIAC algorithm maintains a dynamic land-water-snow mask (mask_LWS) which guides 
the cloud mask algorithm and controls the processing path and selection of the surface BRF 
model during aerosol-surface reflectance retrievals. It also helps processing algorithms to adjust 
to surface changes, such as snow fall/ablation, flooding etc. It has four stable values 
(MASK_LAND, MASK_WATER, MASK_SNOW, MASK_ICE) and two transitional values used when 
surface change is detected (MASK_TO_LAND, MASK_TO_WATER). For example, value 
MASK_TO_LAND represents transition from snow or water to land. The ice test (value MASK_ICE) 
is applied only over water. In this work, the term “land” implies any land surface other than 
water or snow. 



 21

  RGB        CM        R1      refcm1     R7     refcm7     R26      WV        BT 

Figure 7. Illustration of 
refcm initialization for 
150km area around Lake Erie 
(USA). Shown are two 
consecutive 8-day periods 
from the beginning of 
processing, May 4-12, and 
May 20-28 of 2005. Column 
1 shows measured MODIS 
TERRA RGB data followed 
by MAIAC cloud mask. The 
red, blue and light blue colors 
of CM show clouds, clear 
land, and clear water, 
respectively. Columns 3-6 
show measured MODIS 
reflectance in bands B1 and 
B7 and respective reference 
images. Also shown are 
MODIS measurements in 
B26 (Cirrus channel) and 
B31 (BT), and retrieved 
column water vapor (WV). 
The water vapor retrievals 
over water are only valid 
except in the glint region, and 
are not used in further 
processing. Columns 3-9 are 
drawn using rainbow color 
palette shown at the bottom 
for scale 0-1. The respective 
scales for the columns are: 
R1, refcm1 (0-0.2), R7, 
refcm7 (0-0.3), R26 (0-0.05), 
WV (0-2 cm), BT (260-300). 
Measurements, exceeding the 
upper scale limit, are shown 
in red. 
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Figure 8. Diagram of spectral clear-skies tests and land type classification. Following spectral tests, the 
generated mask is compared with the previous q.LWSmask (mask_q) stored at the Queue. When tests are 
successful, the final mask is produced using the binary logic for the vegetated and water (including the 
ice-covered) pixels. An Extended processing is performed for known water pixels which didn’t pass the 
current Water test. For the other pixels (mask=MASK_TO_CONFIRM), including those which passed the 
Snow test (mask=MASK_SNOW_TO_CONFIRM), the decision is delayed and will depend on the results of 
covariance analysis. 

The classification scheme is shown in Figure 8. Initially, the algorithm performs land (high 
NDVI, bright hot desert), water, and ice tests. Although the Snow test is shown as integrated into 
Spectral tests of Figure 8, it is performed separately before Cirrus cloud test. The generated 
values of mask are compared with the previous value of mask_q=q.LWSmask stored in the 
Queue. The classification of vegetation and water is performed at the pixel-level using binary 
logic which either confirms the previous state of the surface, or detects change. Because the 
snow tests may not distinguish between the snow/ice clouds and the snow, the snow detection 
uses a different logic which relies on identification of clear conditions by covariance algorithm. 
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The snow and ice tests are similar to those developed for the ADEOS Global Land Imager (GLI) 
[Stamnes et al., 2007], and are empirically adjusted based on MODIS data.  

1. High NDVI test: NDVI=(r2 – r1)/(r2 + r1)>0.6. 

If the pixel passes this test, the value of cloud mask is set to CM_CLEAR unless it has CM_CLOUD 
value from Cirrus test. If the previous value of land-water-snow mask (q.LWSmask) was 
MASK_LAND or MASK_TO_LAND, then the value of mask is validated: q.LWSmask =MASK_LAND. 
Otherwise, change is detected: q.LWSmask =MASK_TO_LAND. This test finds heavily vegetated 
pixels of the land. Sparsely vegetated regions, bare soil, rocks, sand etc., are classified as land 
after covariance analysis when the pixel is found cloud-free and it was not classified as either 
water or snow. 

2. Hot bright desert test: r1>0.3 AND r2>r1 AND r7>r2 AND BT>305 
This test uses the fact that spectral reflectance of sand is increasing in the visible through 
shortwave infrared part of spectrum, whereas reflectance of clouds in the 2 µm region is always 
lower than that in the visible because of water\ice absorption. The high brightness temperature 
threshold increases confidence in selecting clear conditions. This test mainly aims at very 
homogeneous desert regions where covariance analysis is not successful. 

3. Water test:     r2<0.07 & r5<0.02 & r7<0.015 & NDVI≤0.2 & BT>272.8 (dark water). 

The water test is conducted only for the off-glint geometries, which are defined according to a 
condition rglint<0.02, where rglint is a Cox-Munk glint reflectance for the wind-ruffled water 
surface calculated at wind speed of 7 m/s. Theoretical reflectance is pre-calculated using the 
Nakajima and Tanaka (1983) model with mutual shadowing of waves and is stored in a LUT. 
The algorithm can use a real time wind speed, if it becomes known operationally from 
independent sources. 

For the known water (q.LWSmask=MASK_WATER), a separate test is conducted in the glint 
region: 

NDII< 0.2 & r5<rglint+0.02 & BT>272.8, 

where Normalized Difference Ice Index NDII=(r5-r2)/(r5+r2). 

In a similar manner as above, the value of cloud mask is set to CM_CLEAR unless Cirrus test has 
detected a cloud, and the value MASK_WATER is either validated with a new measurement or 
change is detected (MASK_TO_WATER). 

Different factors may lead to failure of the Water test over an actual water, including elevated 
aerosol loading, undetected clouds, transition to land (drying of shallow water, drainage) etc. For 
this reason, an Extended processing is performed for the pixels which were previously classified 
as water (q.LWSmask=MASK_WATER) but did not pass the Water test this time 
(mask=MASK_TO_CONFIRM or MASK_SNOW_TO_CONFIRM). It starts with evaluation of the water 
brightness temperature BTW for the block from the detected clear water pixels. Then, the land-
restore test (r1<0.12 AND r5/r1>1.5) checks the possible transition to land for the off-glint viewing 
geometries. These pixels are declared CM_CLEAR and the value of mask changes to 
q.LWSmask=MASK_TO_LAND. For the rest of pixels, the water brightness temperature of the 
block is used either to confirm the clear water pixels, according to criteria: 
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BT≥ BTW-0.5, AND r5< rglint +0.05, ⇒ CM_CLEAR, 

or detect clouds if 

BT< BTW-0.5K, ⇒ CM_CLOUD. 
If BTW is unavailable, the brightness temperature is compared to a fixed threshold: 

BT> 272.8K, AND r5< rglint +0.03, ⇒ CM_CLEAR. 

Figure 7 shows an example of land-water classification. The initially un-initialized water mask is 
mostly correct by the day 8 of processing, and does not change after day 16 (May 20).  

4. Snow test: 

NDSI=(r4–r6)/(r4+r6)≥0.35 AND r1>0.15 AND r7<0.12 AND BT<288 (land)/275 (water). 
Because this test cannot discriminate between snow and ice clouds, the value of mask is set to 
MASK_SNOW_TO_CONFIRM, and value of cloud mask remains undefined. To avoid false snow 
detection in summer, this test is conducted if the maximal brightness temperature of the block 
and its nearest neighbors does not exceed +20o C (293K). The temperature threshold is high over 
land because snow-free patches of land surface can be very warm in spring, while the snow 
amount still being significant to warrant snow detection. The B7 threshold (r7<0.12) serves to 
filter some of the mixed-phase clouds which are abundant and often have a higher reflectance at 
wavelength of 2.1 µm. The snow, as seen in MODIS imagery, is usually darker than the 
specified threshold (r7≈0.02-0.09), although fresh snow and some types of snow/ice, for example 
on the high elevation slopes of Greenland, can be as bright as r7≈0.15-0.20. The band 7 threshold 
also filters some pixels partially covered by snow. To classify these pixels as snow, we have a 
different mechanism, described below. To account for snow brightening in the glint region, the 
B7 threshold is increased to 0.15 when relative azimuth is less than 35o. 

Overall, snow detection is a difficult problem. First, snow/ice clouds often pass the snow test so 
it alone cannot guarantee reliable snow detection. Second, snow in the mid-latitudes during 
winter is often short-lived, which gives rise to high variability of surface brightness in time. 
Third, partially snow-covered pixels are particularly difficult and are often misclassified as 
cloud. To filter out clouds that pass the snow test, we adopted a conservative approach whereby a 
pixel can be masked as snow for the first time only during initialization of refcm or re-
initialization which responds to surface change following snowfall. The requirement of high 
covariance and a carefully designed set of filters, described in sec. 4.6, is usually effective in 
separating clouds from snow. This conservative strategy, which requires two clear days in the 
Queue, may delay detection of fresh snow up until the high covariance with the later Tile is 
found, during which time it will be masked as clouds. On the other hand, it dramatically reduces 
misclassification of high clouds in mid-latitudes during the summer and in tropical regions 
generally, although it cannot completely eliminate this error. 

Once the snow is recorded at the Q-memory (q.LWSmask=MASK_SNOW) for a given block, the 
algorithm relies on identification of clear conditions by the refcm-analysis or by an “anti-cirrus” 
test (see sec. 4.5) in snow detection/confirmation. When covariance of the new Tile with 
reference image containing snow is high, the new snow pixels, which passed Snow test, become 
classified as snow. This is a relatively safe way to introduce new snow pixels under clear skies. 
On the contrary, the low covariance processing, which usually indicates presence of clouds, does 
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not add new snow. Moreover, a known snow pixel is detected as clear only if its reflectance is 
close to the refcm values. Despite being a conservative algorithm, our limited testing indicates 
that it finds significantly more clear snow pixels than the MODIS cloud mask algorithm 
(MOD35) which is known to overestimate cloudiness over snow (D. Hall, NASA GSFC, 
personal communication of the first author). 

5. Ice test: 

NDII=(r5–r2)/(r5+r2)≥0.4 AND r7<0.015 AND BT<273 (water only). 
Because of the very low threshold on B7 reflectance, this test rarely misclassifies clouds as ice. If 
test is passed, the pixels is declared CM_CLEAR and the value of mask changes to 
q.LWSmask=MASK_ICE. Overall, this test captures only a small subset of fresh water or sea ice, 
which has a very wide range of spectral variability, from the spectrum typical of open water to 
the one of the old snow. 

6. The rest of pixels, which didn’t pass any of the above tests, and were not detected as clouds by 
the Cirrus test, are assigned the land mask value of MASK_TO_CONFIRM. Along with possibly 
snow pixels (MASK_SNOW_TO_CONFIRM), these pixels will be processed after refcm-based 
analysis. 
 
4.5 Cirrus Cloud Test and Anti-cirrus Clear-Sky Test 

Cirrus cloud test [Gao, 1993; Ackerman et al., 2006] uses MODIS band B26 (1.38 µm) located 
in the region of strong water vapor absorption. Even a small amount of atmospheric water vapor 
(less than 1 cm in the total path) is sufficient to absorb reflected solar radiation in this region. 
Thus, most of the Earth surface appears black in this channel. If high clouds are present, this 
channel becomes very bright as there is little water vapor above the clouds and most of reflected 
radiance escapes to space. This can be seen in Figure 2. Band B26 is very dark at medium and 
high WV, and becomes bright over high clouds which can be judged by the low brightness 
temperature. 

We implemented a standard cirrus test with a global threshold 0.035 recommended by MODIS 
cloud team [Ackerman et al., 2006]: 

IF r26>0.035 ⇒ CM_CLOUD. 
In agreement with MOD35, this test is not used if the surface height exceeds 2 km above the sea 
level. 

When the atmosphere is very dry, channel 1.38 µm “sees” the surface. Ben-Dor [1994] used 
AVIRIS measurements and RT simulations to show that in this case the high signal in “cirrus” 
channel over bright surfaces would cause problems for cloud detection, strongly overestimating 
cloudiness. On the positive side, we notice that this signal has the same spatial variability and a 
high correlation with the neighbor “window” channel 1.2 µm (B5) (see Fig. 9), which can be 
used to detect clear skies. The correlation between these channels is also high over high clouds. 
These two cases are distinguished based on covariance between B1 and refcm, which is high in 
cloud-free conditions, and an additional constraint, r5av/r26av>8. Empirical analysis shows that 
for most of high clouds, this ratio is below 3-6, whereas typical clear-skies values over scenes 
with partial or full snow cover is in the range of 15-30. 
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This Anti-cirrus test is implemented before the Cirrus threshold test. Currently, it is used in 
winter when snow has been detected in a given block both earlier (in q.LWSmask) and in the 
latest Tile, and the maximal retrieved column water vapor in the block is below 0.4 cm. Our 
analysis shows that Anti-cirrus test is very successful over snow in cold clear winter days with 
temperatures below –(10÷20o C). It is fast and simple in comparison to the standard algorithm 
implemented in CM_HighCov, which is the main algorithm detecting clear-skies and snow. 

Figure 9 shows that cold dry conditions are realized on days 3-4 and 7-8 of the first 8-day period 
when channel 26 brightens and acquires the same spatial image pattern as the visible and NIR 
channels. On the other days, this band is dominated by either water vapor absorption or clouds.  

 
          RGB              CM           R7        R26          BT                  RGB              CM           R7        R26        BT 

Figure 9. Illustration of “Anti-cirrus” test for 150km area north USA for two consecutive 8-day periods, 
DOY 27-35 and 36-44, 2005. At low temperature and low atmospheric moisture, band 26 “sees” the 
bright snow-covered surface and correlates spatially with VIS-NIR bands. These conditions realize during 
the cold period on days 3-4 and 7-8. The correlation disappears under warmer weather and higher 
moisture in the subsequent 8 days. The left two columns show differently normalized MODIS TERRA 
RGB images. The red, white and blue colors of MAIAC cloud mask indicate clouds, clear snow and clear 
land. Columns 4-6 are shown using rainbow color scheme with the following scales: (0-0.2) for B7, (0-
0.05) for B26, (240-270) for BT. 
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Figure 9 also illustrates the general principles of cloud detection over snow based on B7 and 
B26. Because snow is dark in the shortwave IR region (B7), mixed or liquid water clouds usually 
appear brighter than the surface, whereas high clouds are usually well captured by Cirrus 
channel (B26). 
 
4.6 Module initRefcm() 

This module runs when refcm is not initialized at the beginning of processing, or when low 
covariance was found with existing refcm. It requires at least two images to be stored in the 
Queue. The algorithm (Fig. 10) compares the new Tile and the previous Tiles stored in the 
Queue. It keeps moving in the backward direction in the Queue until either the “head” of Queue 
is reached, or the clear conditions are found. The processing is performed for each block 
separately. 

1. It starts with computing B1 covariance between the new Tile and the previous Tile. If covB1 is 
low (<0.68), then it continues with the other days from the Queue. Otherwise, if the surface is  

 
Figure 10. Module initRefcm() of MAIAC CM algorithm. 
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bright and has a high enough brightness temperature contrast, the BT covariance is calculated. If 
both B1 and BT are highly correlative (cov>0.85), then the initialization succeeds, all pixels of 
the block are declared CM_CLEAR and Refcm is updated. This pathway is successful over areas 
with mixed land type, coastal regions, swampy areas, or, more generally, areas with ground 
waters close to the surface, which creates a high and spatially stable BT contrast. When the BT 
contrast is low (several degrees), the results of BT covariance analysis become unpredictable. 

2. If Snow test detects little or no snow, the B7 covariance is computed. As before, the 
processing continues with other days if covB7 is low. If both B1 and B7 are highly correlative 
(cov>0.85), or covB1>0.85 and the BT contrast is low and agrees with the known value for a 
given block, then the initialization succeeds. When snow covers the ground, band B7 becomes 
dark and shows little spatial variability, so that the results of B7 covariance analysis become 
unpredictable. 

3. If the number of detected snow pixels is high enough, the algorithm makes sure that the 
detected snow pixels on both days correlate spatially by computing covariance of the snow mask. 
This mask has a default value of 0 which switches to 1 if Snow test detected snow. If computed 
covariance is HIGH (≥0.68), the refcm initialization succeeds, as well as initialization of snow in 
q.LWSmask (MASK_SNOW).  

4. Because covariance is HIGH in bands B1 (and B7 in the absence of snow), it is safe to assume 
at this stage that the conditions are mostly cloud-free although a few pixels may be cloudy. Next, 
the algorithm performs a pixel-level analysis. If Snow test detected snow pixels, a two-step Snow 
processing is performed first for every block. 

Step 1: Mask reliable snow pixels as clear (CM_CLEAR) and compute minimal ( snowBTmin ) and 
brightness temperature and a minimal B1 reflectance ( snowr min1 ) of snow. The reliable pixels are 
defined as those which passed snow test in both Tiles, or in the new Tile and have been detected 
earlier in the q.LSWmask. 

Step 2: Mask the rest of pixels, which passed Snow test, as follows: 

For pixels of the new Tile:  IF(BT< snowBTmin -4)  ⇒ CM_PCLOUD (cold pixels); 
    ELSE    ⇒ CM_CLEAR. 
For pixels, detected as snow earlier (q.LSWmask=MASK_SNOW): 

IF(r1>min( snowr min1 ,0.12) & r7<0.12 & (BT≥ snowBTmin -4 & BT<288)) ⇒ CM_CLEAR. 
ELSE ⇒ CM_PCLOUD. 

After snow processing, the unprocessed pixels are assumed snow-free. The algorithm evaluates 
ground brightness temperature (BTG) unless it is known from clear-skies Spectral tests, and 
maximal clear-skies reflectance (r1max) using histogram analysis for 90% pixels assuming that 
there are less than 10% clouds, which will be coldest and brightest in the block. For example, 
BTG corresponds to the lowest value of 90% warmest pixels of the block. Then, the bright-cold 
algorithm detects clouds as follows: 

 IF(r1>r1max+0.02 & BT<BTG-2 & BTG<293)  ⇒ CM_PCLOUD; 
 ELSE IF(r1>0.5 & BT<273)    ⇒ CM_PCLOUD; 
 ELSE        ⇒ CM_CLEAR. 
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5. In certain cases, the bright-cold algorithm makes a systematic error, masking clear pixels as 
cloudy. One frequent example is glaciers or melting snow in higher elevations, surrounded by a 
much warmer and darker land. Another example is salt playas south of Salt Lake City, Utah, 
which are very bright and which may be 10-15o colder than surrounding barren land, perhaps due 
to close ground waters and low absorption of sun light. Despite these areas perfectly fit the BC 
logic, they also display a remarkably stable spatial reflectance pattern which help identify these 
areas as clear. MAIAC performs a post-processing restoring clear value for the possibly cloudy 
pixels (CM_PCLOUD). It is based on the assumption that the B1 images between two Tiles have a 
linear relationship under clear-skies, r1(new Tile)=a+b×r1(Tile). We establish coefficients a and 
b using CM_CLEAR pixels, and then re-map CM_PCLOUD pixels if their B1 reflectance does not 
exceed predicted value with uncertainty of 0.04: 

IF(r1(new Tile) < a+b×r1(Tile) + 0.04) ⇒ CM_CLEAR. 

6. A high covariance between two days alone does not guarantee clear conditions. Clouds “leak” 
into refcm in a number of different ways, especially over snow. From an extensive analysis of 
MODIS data over the world, from the Amazon region to Greenland, we designed a set of filters 
that achieve a rather satisfactory selection of clear conditions. Prior to calculating covariance 
between the last Tile (L) and the previous Tiles (k=L-1, … 1) stored in the Queue, the following 
conditions are used to reject any of the Tiles k for a given block: 

- High BT contrast, which usually indicates clouds: ∆BTk > min(q.∆BT+15, 25) (K). 
- Small time difference between observations: tL – tk < 200 min. This test was introduced to 

exclude correlation of the same cloudy fields on stagnant days with very low wind speeds. 
- The number of pixels which passed Snow test is significantly different between observations L 

and k. 

- The expected reflectance test based on the number of detected snow pixels. This test rejects 
blocks if the average B1 reflectance exceeds expected value, r1av>r1Exp+0.12. The value 
r1Exp=snowFrac×0.9+(1-snowFrac)×min(0.15, Blockr min1 ) is computed assuming snow 
reflectance of 0.9 and land reflectance of 0.15. The snow fraction is calculated as a ratio of 
the number of detected snow pixels to the total number of non-FILL_VALUE pixels in the 
block. This test mostly rejects bright liquid water and mixed-phase clouds. 

When no snow is detected by the snow test in both Tiles L and k and the calculated covariance is 
high, the following two tests also serve as rejection conditions: 
- The difference of the block-average reflectances should not be too high: 25.011 >− kL rr . 

This test filters infrequent cases when bright continuous clouds correlate spatially with much 
darker clear scenes. 

- Finally, a “sigma” test is used to filter Tiles with significantly higher or lower spatial variability 
than that of a clear-skies surface: 

σσ .RefcmL − >∆σ OR σσ .Refcmk − >∆σ, where ∆σ=max(Refcm.σ, 0.015). 

This test is particularly useful over very homogeneous snow-covered regions lacking terrain 
features, such as inner regions of the Greenland ice sheet, where clouds usually have 
significantly higher amplitude of spatial variation. 
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According to testing performed globally, the developed set of filters ensures a reliable 
initialization or re-initialization of reference clear-skies images with a low percentage of errors. 
However, this set of filters will continue to be revised as new exceptions are found. 

The CM_CLEAR pixels which passed Snow test are classified as snow in the q.LWSmask. This is 
the only way for the snow to be introduced in classification mask for the first time. Although this 
conservative approach may delay detection of fresh snow, it has a low error of cloud 
misclassification and a globally reliable performance. 
 

4.7 Module CM_highCov 

This module (Fig. 11) is 
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between refcm and new Tile 
for a given block is HIGH 
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test based on the number of detected snow pixels, and the average scene brightness test with the 
exclusion condition of: 

25.011 >− rrefcmB  or 2.077 >− rrefcmB . 
Next, if the number of detected snow pixels is low, it computes covariance in B7. If refcm and 
new Tile are highly correlative, the block is declared CM_CLEAR and refcm is updated. 
Otherwise, the algorithm performs a pixel-based analysis (steps 4-5 of initRefcm). It performs a 
two-step snow processing, computes BTG, runs Bright-Cold algorithm followed by restoring of 
CM_CLEAR pixels, and finally, updates Refcm structure. The BC-algorithm is formulated as 
follows: 

IF (BT<BTG-4  & (r1>refcmB1+0.05+∆   OR  r7>refcmB7+0.05)) ⇒ CM_PCLOUD; 
ELSE ⇒ CM_CLEAR. 

Parameter ∆= 11 Brefcmr −  (∆=0 if the difference is negative) removes the average difference 
of reflectance helping detect clear conditions when the atmosphere is hazy. 
 
4.8 Module CM_lowCov 

This module is called when covariance is low (covB1≤0.68) and re-initialization did not succeed. 
Usually, this means that the block has clouds. Initially, the algorithm evaluates BTG for a given 
block if it is undefined. BTG is computed as an average value of BTG of neighbor blocks for 
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Figure 11. Module CM_highCov. 
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which it was defined either by clear-sky Spectral Tests or by the module CM_highCov(). Next, 
the algorithm performs a pixel-based analysis comparing measured B1, B7 reflectance with 
respective refcm reflectance and measured BT with the ground temperature BTG if it is available. 
The pixel-level algorithm first treats possible snow pixels, and then runs the rest of pixels using 
Bright-Cold algorithm: 

IF(mask_q=Snow & mask=Snow_to_confirm & 1.01 1 <− Brefcmr  & 05.07 7 <− Brefcmr ) ⇒ CM_CLEAR; 
(Known snow pixel which passed Snow test and whose reflectance is close to refcm); 

ELSE IF(mask_q=Snow) 
{  IF(r1<refcmB1-0.05 & r7< refcmB7+0.1) ⇒ CM_CLEAR;     (melting snow) 
  ELSE ⇒ CM_CLOUD} 
(Known snow pixel which failed Snow test either because snow is melting or it is cloudy. 
Thresholds indicate that reflectance of melting snow drops in B1 and usually grows in B7); 

ELSE IF(mask=Snow_to_confirm) 
{  IF( 05.01 1 <− Brefcmr  & 05.07 7 <− Brefcmr ) ⇒ CM_CLEAR; 
  ELSE ⇒ CM_CLOUD} 
(Pixel passed Snow test, but snow has not been recorded in the Queue’ land-water-snow mask. 
This may be a first snow which has not been confirmed by a high covariance, or an undetected 
cloud. Both cases will be masked as a cloud. Due to a threshold nature of Snow test and 
uncertainties of measurements related to surface change, footprint variability etc., we are also 
testing if this could be a clear pixel whose reflectance is close to the refcm values); 

ELSE ⇒ BC algorithm. 
The Bright-Cold algorithm tries to utilize all available information, including ground brightness 
temperature and refcm reflectance in bands B1 and B7. The variability allowed by thresholds is 
reduced if less ancillary information is available. The algorithm is formulated as follows: 
IF(BTG is available) 
{ IF (BT>BTG-4  & r1<refcmB1+0.05  &  r7<refcmB7+0.05)  ⇒ CM_CLEAR; 

ELSE IF (BT>BTG  & r1<refcmB1+0.1  &  r7<refcmB7+0.1)  ⇒ CM_CLEAR; 
 ELSE ⇒ CM_CLOUD} 
ELSE (BTG is unavailable) 
{ IF (r1<refcmB1+0.05  &  05.07 7 <− Brefcmr )   ⇒ CM_CLEAR; 

ELSE IF (BT>298  & r1<refcmB1+0.1  &  1.07 7 <− Brefcmr ) ⇒ CM_CLEAR; 
 ELSE ⇒ CM_CLOUD} 

When the ground brightness temperature cannot be evaluated, BC algorithm constrains variation 
of B7 reflectance from both above and below. Due to water/ice absorption in the 2 µm region, 
clouds often reduce B7 reflectance over bright surfaces, and the low reflectance constraint on 
band B7 helps to filter clouds. This constraint is not necessary when BTG is known and colder 
clouds are filtered based on lower brightness temperature.  

This principle is illustrated in Figure 12 for the area of north-west Rocky Mountain with the 
ridge on the left and bright central plateau. The average altitude of plateau is 2 km at the average 
reflectance of 0.3 in B1 and ~0.4 in B7. High clouds on day 4 significantly reduce B7 
reflectance. Overall, MAIAC accurately masks clouds except for the last day of 5-day sequence,  
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          RGB                    CM                          R1                       R7                       R26                      BT 

 
Figure 12. Illustration of MAIAC CM over bright area of north-west Rocky Mountains, end of August, 
2007. Columns 3-6 have the following scales: (0-0.4) for B1, (0-0.5) for B7, (0-0.05) for B26, (260-310) 
for BT. 

 
where the low-covariance algorithm somewhat overestimates cloudiness in blocks containing 
clouds. 
 

4.9. Performance of CM Algorithm 

Performance of the cloud mask algorithm has been extensively tested using ~9 years of MODIS 
TERRA data (2000 – august 2008) subsetted for areas of 50×50 km2 for about 160 AERONET 
locations worldwide. The subsets are produced operationally by MODIS Adaptive Processing 
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System (MODAPS) and are automatically sent to our AERONET-based Surface Reflectance 
Validation Network (ASRVN) server [Wang et al., 2008]. This testing showed globally robust 
performance. Some examples of cloud mask for these subsets, and its enhancement by an aerosol 
retrieval algorithm will be given later. 

To gain insight on the large scale algorithm performance, we used MODIS TERRA data for the 
north-east USA, north-west Rocky Mountains, Middle East, Arabian peninsular, Africa, India 
etc., each covering the area of 6002 to 18002 km2. The testing was done for at least half a year of 
continuous data in each case. A separate analysis was done for the whole area of Greenland 
[Lyapustin et al., 2008].  

Examples of CM performance over Zambia, Africa, Arabian Peninsula, and north-east USA are 
shown in Figures 13-15, along with reprojected MODIS Collection 5 cloud mask MOD35. The 
following color legend was used: red – cloud, yellow – possibly cloud, green – possibly clear 
(MOD35 only), blue – clear land, white – clear snow, light blue – clear water (MAIAC only). 
One can see that over relatively dark surfaces cloud masks from MAIAC and MOD35 are 
generally similar. Due to covariance analysis and reference clear-sky image, MAIAC has a higher 
confidence in clear conditions (Fig. 13), which is important for land applications. It provides a 
better performance in difficult cases, such as dust storms (Fig. 14) or cases of high aerosol 
loading. Figure 15 shows that MAIAC performs significantly better over snow. This Figure 
shows a winter-spring season of 2005. The RGB image is scaled dynamically to show the full 
range of variability of measured reflectance. MOD35 correctly masks clouds, but it also often 
significantly overestimates cloudiness over snow in clear conditions. Currently, the work is 
underway on global comparison of MAIAC CM with MOD35 in cooperation with MODIS cloud 
group (P. Menzel, R. Frey, S. Dutcher, S. Ackerman et al). 

Our analysis of the developed cloud mask on global subsets of AERONET data and large-scale 
target areas reveals no major problems. One of identified problems is frequent false cloud 
detection on the land-water boundaries. This problem may be inherent to our algorithm because 
gridding of data with variable footprint and center location at the land-water boundary produces 
large uncertainties and variability of gridded signal between observations. There are several 
ways to ameliorate this problem which we plan to address in the very near future. 

Concluding this section, we would like to mention that the aerosol retrieval and atmospheric 
correction algorithms are the main arbiter to judge the performance of CM algorithm. Undetected 
clouds would bias the comparison statistics of retrieved aerosol optical thickness against 
AERONET measurements, and will explicitly show up in the images of corrected surface 
reflectance. On the other hand, over-detection of clouds would reduce statistics of AOT- 
AERONET matching and the rate of surface retrievals. From an extensive MODIS testing, we 
don’t see these problems in the aerosol retrievals and atmospheric correction, which testifies to 
an adequate accuracy of developed CM algorithm, at least in the frame of the overall MAIAC 
processing. 
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Figure 13. Example of MAIAC (moddle) and MOD35 (bottom) cloud mask at the beginning of dry 
season for Zambia, Africa, for days 130 (left) and 141 (right) of 2005. The image shows 4 Tiles 
(1200×1200 km2). Color legend: red – cloud, yellow – possibly cloud, green – possibly clear (MOD35 
only), blue – clear land, white – clear snow, light blue – clear water (MAIAC only). 

Lake Kariba 
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Figure 14. Example of MAIAC (middle) and MOD35 (bottom) cloud mask for Arabian Peninsula from 

MODIS TERRA data for days 145 (left) and 207 (right) of 2005 (1800×1800 km2).  
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d) 2005-033 
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e) 2005-049 

 
f) 2005-072 

 
g) 2005-076 

 
h) 2005-085 
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i) 2005-100 

 
j) 2005-104 

 
k) 2005-108 

 
l) 2005-209 

 
Figure 15. Example of MAIAC (middle) and MOD35 (right) cloud mask for north-east USA (12002 km2). 
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5. MAIAC Radiative Transfer Basis 
MAIAC resulted from an effort to develop an operational algorithm with explicit minimization 
where parameters of the surface BRF model can be calculated analytically from measurements. 
A similar approach developed by Martonchik et al. [1998] for MISR features a relatively small 
size of the look-up table (LUT) and a high efficacy, which is critically important for operational 
algorithm. We will be using a high accuracy semi-analytical formula for the top-of-atmosphere 
(TOA) radiance derived with the Green’s function method [Lyapustin and Knyazikhin, 2001; 
Lyapustin and Wang, 2005]. 

The following notations are used below: 

τ - atmospheric optical thickness (OT); gτ , wτ  - absorption OT of 5 well-mixed gases (CO2, 
CH4, NO2, CO, N2O) and of water vapor; 

s0, s - incidence and view directions defined by pairs of zenith and azimuthal angles (θ, ϕ). 
For brevity, ϕ will also stand for the difference 0ϕϕ − ; 

µ0, µ - cosines of the solar zenith angle (SZA) and view zenith angle (VZA) ( θµ cos= ). The 
z-axis is pointed downwards, so µ0>0 for the solar beam and µ<0 for the reflected beam. 

πSλ - extraterrestrial solar spectral irradiance; 
ρ, q - surface bidirectional reflectance factor (BRF) and surface albedo; 
c0 - spherical albedo of the atmosphere. 

 
The TOA radiance ),( 0 ssL  is expressed as a sum of the atmospheric path radiance (D), and 
surface-reflected radiance (Ls), directly and diffusely transmitted through the atmosphere: 
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The surface-reflected radiance is written as: 
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where sD  is path radiance incident on the surface, c0 is spherical albedo of the atmosphere, and 
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α is a multiple reflection factor, 1
00 ))(1( −−= cq µα , where q is surface albedo. The diffusely 

transmitted surface-reflected radiance at the TOA is calculated from Ls with the help of 1D 
diffuse Green’s function of the atmosphere: 
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The function πGd is often called bi-directional upward diffuse transmittance of the atmosphere. 
The method of its calculation was discussed in detail in [Lyapustin and Knyazikhin, 2001]. The 
surface albedo is defined as a ratio of reflected and incident radiative fluxes at the surface: 

 )(/)()( 000 µµµ DownUp FFq = , (5.5a) 
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These formulas give an explicit expression for the TOA radiance as a function of surface BRF. 
The accuracy of the above formulas is high, usually within a few tenths of a percent [Lyapustin 
and Knyazikhin, 2001]. Below we will use the TOA reflectance, which is defined as 
 )/( 0 λλλ µ SLR = . (5.6) 
 
5.1 Expression for the TOA reflectance using LSRT BRF model 

Based on the described semi-analytical solution, TOA reflectance can be expressed as an explicit 
function of parameters of the BRF model. We are using a semi-empirical Li Sparse – Ross Thick 
(LSRT) BRF model [Lucht et al., 2000]. This is a linear model, represented as a sum of 
Lambertian, geometric-optical, and volume scattering components: 
 ),,(),,(),,( 000 ϕµµϕµµϕµµρ V

V
G

GL fkfkk ++= . (5.7) 
It uses predefined geometric functions (kernels) Gf , Vf  to describe different angular shapes. The 
kernels are independent of the land conditions. The BRF of a pixel is characterized by a 
combination of three kernel weights, TVGL kkkK },,{=

r
. The LSRT model is used in the 

operational MODIS BRF/albedo algorithm [Schaaf et al., 2002]. 

The substitution of Eq. (5.7) into Eqs. (5.1-5.5) and normalization to the reflectance units gives 
the following expressions for the surface-reflected signal (the last two terms of Eq. (5.1)):  
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The surface albedo is written as: 
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1

0 µ−E {µ0
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Different functions of these equations represent different integrals of the incident path radiance 
(Ds) and atmospheric Green’s function (G) with the BRF kernels. They were described in 
[Lyapustin and Wang, 2005] along with the method of numerical calculation. Below, we give 
only the integral expressions for these functions: 
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The subscript k in the above expressions refers to either geometric-optical (G) or volumetric (V) 
kernels, and the supplementary functions of the BRF kernels are given by: 
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The diffuse and total spectral surface irradiance are calculated from (5.5b) as: 

 )/()()( 000 λπµµ SFE Difd = , )/()()( 000 λπµµ SFE Down= . (5.21) 

Let us re-write equations (5.8-5.9) separating the kernel weights. First, separate the small terms 
proportional to the product )( 020 µρc  into the non-linear term: 
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Second, collect the remaining multiplicative factors for the kernel weights: 
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With these notations, the TOA reflectance becomes: 

),,(),,( 00 ϕµµϕµµ DRR = + ),( 0 µµLLFk + ),,( 0 ϕµµGG Fk + ),,( 0 ϕµµVV Fk + ),( 0 µµnlR . (5.25) 

This equation, representing TOA reflectance as an explicit function of the BRF model 
parameters, provides the means for an efficient atmospheric correction.  
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Let us derive a modified form of this equation which is used in the aerosol retrievals. The last 
non-linear term of formula (5.25), which describes multiple reflections of the direct-beam 
sunlight between the surface and the atmosphere, is small ( 0qcRnl ∝ ), and can be neglected for 
simplicity of further consideration. The functions Fk are still weakly non-linear via parameter α, 
which describes multiple reflections of the diffuse incident sunlight. By setting α=1, we omit this 
non-linearity and equation (5.25) becomes a linear function of the BRF parameters. With an 
additional assumption of spectral invariance of the BRF shape (Eq. (1.2)), formula (5.25) can be 
re-written for the pixel (i, j) and observation day k as: 

 ),()( kDk
ij RR τλλ ≅ + ),()( k

ijij Yb τλλ , (5.26) 

where )(λijb  is spectral regression coefficient for a given spectral band, and function 

 ),( k
ijY τλ = ),(7, kLBL

ij Fk τλ + ),(7, kGBG
ij Fk τλ + ),(7, kVBV

ij Fk τλ  (5.27) 

can be calculated from the look-up table (LUT) for a given geometry, AOT and wavelength, 
once the BRF parameters in band B7 for the pixel (i, j) are known. The pressure- and water vapor 
corrections of the LUT functions are performed with the algorithm described in sec. 5.3. 
 

5.2 MAIAC Look-Up Tables 

The LUT stores functions 1
kf , 2

kf , 3
kf , which depend on geometry of observations, and 

functions 1
kD , 3

kD , avG , 1
kG , 11

kG , 1
kH , dE0 , 0E , DR , which depend on geometry, selected aerosol 

model and AOT. Index k refers to either volumetric (V) or geometric-optical (G) BRF kernel 
function. Following MISR algorithm [Diner et al., 2001; Diner et al., 1999], we store only a 
multiple-scattering path reflectance ( DmsR ) in the LUT, and single-scattering part is calculated 
exactly for a given geometry, pressure and water vapor. The LUT is computed for a dense grid of 
VZA, SZA, and azimuthal angles ( µµ ∆=∆ 0 =0.02 for the range 0.4 – 1 (0o - 66.42o), and ∆ϕ= 
3o). Similarly to MISR processing, the algorithm uses the nearest neighbor angle for speed 
consideration because it avoids 3D interpolation in angles. In addition, the LUT stores spherical 
albedo of atmosphere 0c  which depends on aerosol model and AOT. The LUT is calculated for 
11 AOT values, {0, 0.03, 0.1, 0.2, 0.3, 0.4, 0.6, 0.9, 1.4, 2, 3}. A linear interpolation is used to 
derive LUT functions for the required AOT. The grid density was selected empirically from 
considerations of accuracy and minimum required memory. For example, AOT retrievals from 
MODIS data using described AOT grid show insignificant difference from retrievals using four 
times or twice as dense AOT grid. The current size of the LUT for Rayleigh atmosphere, and for 
one fine and one coarse aerosol fraction for 7 MODIS land bands is 78 MB. 

The radiative transfer calculations were done with LUT-generation software based on the code 
SHARM [Lyapustin, 2005] and the Interpolation and Profile Correction (IPC) method 
[Lyapustin, 2003]. The IPC method is designed for fast line-by-line calculations in the spectral 
interval of interest with flexible spectral resolution of 0.01 – 1 cm-1 and an accuracy of several 
tenths of a percent. The line-by-line calculations are then integrated directly with solar irradiance 
[Kurucz, 1997] and sensor’ relative spectral response (RSR) function of MODIS (X. Xiong, 
personal communication). The radiative transfer model (RTM) included absorption of 6 major 
atmospheric gases (H2O, CO2, CH4, NO2, CO, N2O) calculated for the HITRAN-2000 [Rothman 
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et al., 2003] database using a Voigt vertical profile, and the Atmospheric Environmental 
Research (AER) continuum absorption model [Mlawer et al., 2006]. Because ozone absorption is 
corrected separately, it was not included in LUT calculations. The LUT is generated for a fixed 
column water vapor, wτ =0.5 cm. The correction of LUT functions for the water vapor variations 
is done analytically, as described in section 3.3. 

The LUT is calculated as follows: functions ),,( 0 ϕµµDmsR , )( 00 µE , )( 00 µdE , 0c , eff
Cλ  (effective 

band center wavelength), and R
λτ , g

λτ  (in-band effective Rayleigh and gaseous absorption optical 
thicknesses) are calculated first with RSR of sensor. For example, the atmospheric path 
reflectance is calculated using the following expression: 
 ∫∫

∆∆

=
λ

λλ
λ

λλλ λλϕµµϕµµ dhSdhRSR DD ),,(),,( 00 . (5.28) 

The effective band center wavelength is defined as a wavelength for which monochromatic and 
narrow-band direct vertical transmittances of the aerosol-free atmosphere are equal: 
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On the next step, the functions of kernels ( ),,( 0
1 ϕµµkD , )(µavG , ),,( 0

1 ϕµµkG , )(11 µkG , 
),,( 0

1 ϕµµkH , k=v, go) are calculated using the monochromatic RT at the band center 
wavelengths eff

Bandλ , and with the optical thickness of the in-band gaseous absorption: 

 })}(exp{ln{ ∫∫
∆∆

∆ −−=
λ

λλ
λ

λλλ λλλττ dhSdhS Gasg . (5.30) 

Because functions of kernels are calculated for a large number of quadrature and view geometry 
angles, this approach is selected for its speed. The monochromatic solution provides a good 
accuracy because the gaseous absorption in MODIS bands B1-B16 is low. The in-band 
absorption optical thickness is calculated for the column water vapor W=0.5 cm, carbon dioxide 
concentration of 380 ppm, and concentration of four other major gases (CH4, NO2, CO, N2O) 
corresponding to the US1976 Standard atmospheric model [Kneizys et al., 1996]. Because ozone 
absorption in MAIAC algorithm is corrected separately, the LUT functions are calculated with 
zero ozone concentration. The values of eff

Cλ , R
λτ , g

λτ  and column absorption optical thickness of 
water vapor w

λτ  calculated for MODIS TERRA land bands (B1-B7) are shown in Table 1. 

Following MODIS [Remer et al., 2005] and MISR [Diner et al., 2001] aerosol algorithms, the 
LUT is calculated for the fine and coarse aerosol fractions separately. Because of this, aerosols 
can be retrieved with various models constructed by mixing the fine and coarse aerosol modes in 
different proportions, while keeping the LUT size relatively small. Calculations for the aerosol 
mixtures are performed with linear mixing method (LMM) [Wang and Gordon, 1994] for all 
functions except path radiance. For high accuracy of calculations, we are using LMM for the 
single scattering path radiance, which is exact in this case, and a modified LMM [Abdou et al., 
1997] for the multiple scattering part. The modified method is remarkable for its high accuracy 
in conditions of high AOT or larger aerosol absorption, when the standard LMM breaks. The 
pressure- and water vapor corrections of the LUT functions are done with the algorithm 
described below [Lyapustin et al., 2008a, submitted]. 
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effλ , µm 0.6449 0.8556 0.4655 0.5535 1.2419 1.6290 2.1131 
Rτ  0.05086 0.01622 0.19258 0.09474 0.00362 0.00122 0.00043 
gτ , W=0 1.32e-3 1.82e-5 2.06e-3 4.60e-4 2.90e-3 1.01e-2 1.80e-2 
wτ , 1 cm 3.62e-3 5.49e-3 5.20e-5 3.63e-4 3.62e-3 0.87e-3 1.63e-2 
wτ , 3 cm 1.03e-2 1.32e-2 1.60e-4 1.08e-3 1.00e-2 2.74e-3 4.23e-2 
wτ , 5 cm 1.63e-2 2.00e-2 2.60e-4 1.80e-3 1.58e-2 4.83e-3 6.45e-2 

Table 1. The effective center wavelength of MODIS TERRA land bands, and the in-band optical 
thickness of Rayleigh scattering, of gaseous absorption, and of water vapor absorption for three different 
levels of column water vapor. 

 
5.3 Surface Pressure (Height) and Water Vapor Correction of LUT Functions 

A correction of the LUT functions for variations of surface pressure/height and atmospheric 
water vapor is a common task in the operational aerosol retrieval and atmospheric correction 
algorithms. Similarly to MISR algorithms, we calculate the single scattering path radiance at 
effective band center wavelengths analytically for a given surface pressure and water vapor. A 
new analytical method has been developed for the water vapor correction of the multiple 
scattering path radiance. It is described below. The surface-reflected radiance is corrected 
approximately using the two-way direct transmission function. The pressure correction is 
implemented via a wavelength shift from the band center, which achieves the required Rayleigh 
optical depth reduced by pressure. Our extensive numerical study shows that the accuracy of this 
approach is generally better than 1-4%. 
The MODIS spectral channels were carefully selected to avoid or minimize absorption by water 
vapor and other atmospheric gases. As a result, bands B3 and B8 are not affected by the water 
vapor absorption. In bands B4, B9-B11, B14, and B16, the water vapor absorption is very weak. 
It causes less than 0.4% change in the LUT functions when the CWV changes from 0.05 cm to 5 
cm. Thus, the water vapor correction is not performed on bands B3-B4, B8-B11, B14, and B16. 

The surface height (pressure) defines the amount of molecular scattering in the atmospheric 
column, which is a function of Rayleigh optical thickness. Rτ  rapidly decreases with wavelength 
approximately as λ-4.09 (see Table 1). For bands B5-B7, the Rayleigh optical thickness is very 
low, and change of Rτ  with surface pressure is negligible. For these bands, the surface pressure 
correction is not performed. 
 
5.3.1 Correction of Multiple Scattering Path Radiance for Water Vapor Variations 

We are using a perturbation technique, originally developed for the narrow-band and broad-band 
radiative transfer [Lyapustin, 2003]. Let mI  stand for the multiple scattering path radiance at a 
reference column water vapor W0. Given the coefficients of absorption )(zk , scattering )(zσ , 
and extinction )()()( zkzz += σα , and scattering function )(γχ , mI  is described by the 
following radiative transfer equation: 
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A change in the water vapor content W=W0+δW and related change in extinction 
)()()( zzz δαααδ +=  perturbs the multiple scattering radiance mm II δ+ : 
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Subtracting equation (5.31) from (5.32) and dividing the result by )(zδα , we obtain equation for 
the variation of multiple scattering radiance: 
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where ∫= dzz)(δδ ατ  is an optical thickness of atmosphere with water vapor W. To evaluate the 

scattering integral, we assume that the angular dependence of variation 1II m δδ +  is relatively 
small compared to that of phase function, and the variation term can be taken outside of the 
integral sign. Then, Eq. (5.33) turns into an ordinary differential equation 
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This equation has constant coefficients δω  and δα
δα  within homogeneous atmospheric layers [i, 

i+1], and a following solution on the interfaces of layers: 
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To perform integration, we are using a linear approximation of known functions 1Iδ  and mI  
within the homogeneous layer, )(1 τδI = )(1 δττδ iii gI −+ , )(τmI = )( δττ ii

m
i eI −+ . Along with 

the boundary conditions at the top (TOA) and bottom (BOA) of the atmosphere, this yields the 
following solution: 
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 00 =mIδ , µ>0 (TOA, downward directions), (5.36a) 
 0=m

NIδ , µ<0 (BOA, upward directions), (5.36b) 
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Since only the TOA value of path radiance is stored in the LUT, regardless of the number of 
atmospheric layers used in the radiative transfer calculations, we can only use a solution for a 
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homogeneous (single layer) atmosphere. Let us denote µ
ωτ δδ )1( −

= eE , and δω−
−

=
1

)1(
0

EJ , then the 

final expression for the correction term can be written as follows: 
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To assess the accuracy of this very simple expression, we have performed extensive numerical 
simulations of path radiance in the MODIS TERRA bands for different aerosol types and 
atmospheric moisture. The spectral TOA reflectance was simulated using Eq. (5.28). The results 
of accuracy analysis for a typical continental aerosol model and a dust model from AERONET 
[Holben et al., 1998] classification [Dubovik et al., 2002] are shown in Figure 16. The 
continental aerosol is represented by the urban low absorption model for the Goddard Space 
Flight Center (GSFC), USA, and the dust is described by the model for the Solar Village, Saudi 
Arabia. The column water vapor in calculations was varied from 0.3 cm to 6 cm. The typical 
range of water vapor values for the USA mid-latitudes is 0.3-0.5 cm for the winter to 1.5-4.0 cm 
in the summer. 

                     
Figure 16. A relative error of path radiance (%) in the MODIS land bands with (solid lines) and without 
(dotted lines) water vapor correction. The uncorrected curves show the change in path radiance with water 
vapor relative to the baseline value of W=0.5 cm ( )(/)5.0()( WLcmLWL − *100%). The aerosol model 
represents a) urban low absorption conditions (GSFC AERONET model) with moderate to low optical 
thickness ( a

B1τ =0.18, a
B7τ =0.03), and b) dust (Solar Village AERONET model, Saudi Arabia), medium 

optical thickness ( a
B1τ =0.53, a

B7τ =0.53). 

The dotted lines show the change of uncorrected path radiance with water vapor relative to the 
baseline calculations at W=0.5 cm in %. In the MODIS TERRA red (B1) and near-IR (B2) 
bands, the error in path radiance due to WV stays within 1-3%. In the 2.1 µm region (B7), the 
error is much higher, 2-12%. The solid lines show the accuracy of path radiance with multiple 
scattering correction. The results are shown for a typical geometry of SZA=VZA=45o, and a 
relative azimuth 0o. Figure 3 shows that except B7, the accuracy of corrected path radiance is 
generally better than 0.5-1%. Summarizing, the MS correction reduces the error of the path 
radiance by a factor of 2-10, depending on viewing geometry. 

a) b)
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5.3.2 Surface Pressure/Height Correction 

The MAIAC LUT was calculated for the standard atmospheric pressure P0=1013 mB and W0=0.5 
cm. The change in the surface elevation calls for pressure correction of the LUT functions. For 
purely Rayleigh and non-absorbing atmosphere, the pressure correction at wavelength λc can be 
achieved by sliding the wavelength from the band center in order to agree with the pressure-
reduced Rayleigh optical depth: 

 )()()(
0

c
RR

P
zP λτλτ = . (5.38) 

In this case, the pressure correction is done via spectral interpolation between the given band and 
its longer wave neighbor. Because Rayleigh optical depth rapidly changes with wavelength, 

09.4)( −≈ λλτ aR , such a correction requires only a small wavelength shift, e.g. ≈2.5% for 
P(z)=900 mB, or ≈5.3% for 800 mB. For this reason, this method of correction can be applied for 
the atmospheres with aerosol, because the associated changes of the aerosol phase function or 
absorption are small. This method, originally suggested by R. Fraser, is used by MODIS C5 
aerosol algorithm [Levy et al., 2007]. 

It needs to be emphasized that the necessary requirement for using this method is that the two 
neighbor bands should have a low and similar gaseous absorption. Table 1 shows that at a 
reference W0=0.5 cm column water vapor the absorption is similar in MODIS bands B1-B4 
(τg∼10-3). On the other hand, if a climatology column water vapor W0≈1.5-2 cm were used to 
generate a LUT [Levy et al., 2007], the green, red and NIR channels will have a significantly 
different absorption (∆τg∼10-2). The differential spectral absorption will create an error during 
pressure correction which may be comparable in magnitude to the corrected effect of pressure 
(height) variations. 
 
5.3.3 Linear Mixing Method 

Let us describe LMM in application to the single-scattering (SS) path reflectance. First, the SS 
components, corresponding to the fine and coarse aerosol fractions, are calculated analytically 
for a given pressure and water vapor. For this purpose, we store the respective aerosol phase 
functions and spectral functions )(λfh , )(λch , explained below, in the LUT. 

Next, the function ssDR  is calculated for the mixture of the fine and coarse aerosol fractions 
using LMM: 
 ∑= ss

i
D

i
ssD RfR , (5.39) 

where aa
iif ττ /=  is a fractional contribution to the total AOT ∑= a

i
a ττ . The AOT can be 

expressed using volumetric concentrations of fractions ( VfC , VcC ): 

 ))()(()()()()()( ληλλλλτλτλτ cfVfcVcfVf
a
c

a
f

a hhChChC +=+=+= , (5.40) 
where VfVc CC /=η  is spectrally-independent ratio of volumetric concentrations of coarse and 

fine fractions, and Vi
a
ii Ch /)()( λτλ =  is a fractional optical thickness per unitary concentration. 

For example, η≈0.5 for the GSFC aerosol model at moderate AOT. Given the size distribution 
and refractive index (given )(λfh , )(λch ), the spectral slope of AOT (Angstrom parameter) is 
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defined by the ratio η. Given parameter η and total AOT, the volumetric concentration of the 
fine fraction is defined as ))()(/()( ληλλτ cf

a
Vf hhC += . Finally, the weighting factors of the 

LM method do not depend on the total AOT,  

))()(/()()(/)()( ληλλλτλλ cff
a

fVff hhhhCf +== , )(1)( λλ fc ff −= . (5.41) 
 

5.3.4 Calculating TOA Reflectance from LUT given Surface Pressure and Water Vapor 

The algorithm consists of several steps: 

1) Calculate DssR  analytically for a given geometry, AOT, surface pressure, and column water 
vapor for selected fine and coarse aerosol fractions, and add them using LMM (5.39) for a given 
ratio of volumetric concentrations η. 

2.1) Calculate pressure-shifted effective center wavelength of the MODIS channel λ1: 
09.4/1

01 )( PPλλ = , λ1≤λ≤λ2; 

2.2) Calculate LUT functions ( DmsR , 1
kD , 3

kD , avG , 1
kG , 11

kG , 1
kH , dE0 , 0E , 0c ) for the required 

AOT for two wavelengths λ1 and λ2 for the fine and coarse aerosol fractions. 

2.3) Perform pressure correction for all LUT functions by linear spectral interpolation of LUT-
functions between λ1 and λ2 to λ. 

3) Calculate multiple-scattering path reflectance using a modified LMM: 

 ∑ −+= −− )( ms
R
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i

i
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ω
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where ms
R

DR  is the multiple scattering path reflectance due to Rayleigh scattering stored in the 
LUT, and ∑= iimix f ωω  is the single scattering albedo of mixture. 

4) Perform water vapor correction for DmsR . Let 0Wτ  and Wτ  be the water vapor absorption 
optical thickness for W0=0.5 cm, for which the LUT was calculated, and for W. Then, calculate 

4.1) WgRa

P
P τττττ δ +++= )(

0

, δδ τ
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= , δ
δ

τ
τωτω

Raa PP )/( 0+
= ,  (5.43) 

and a variation of single scattering path radiance 

 ),;(),;( 101 WPIWPII ssssss λλδ −= ; (5.44) 

4.2) correction term ),,;( 01 WWPI λδ  using formula (5.37). The corrected path reflectance is: 

 0010111 /),,;(),;(),;(),;( µλδλλλ WWPIWPRWPRWPR DmsDssD ++= . (5.45) 

4.3) Finally, the TOA reflectance is a sum of path reflectance (5.45), and a pressure-corrected 
surface-reflected signal Rs (sum of terms (5.2) and (5.4)), additionally corrected for the 
difference in the gaseous absorption via the two-way direct transmittance: 

 ),,(),,()( 0111 WPRWPRR s
D λλλ += }))/1(~){(exp( 0

0 mPPm gWW τττ −−−−  (5.46) 
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where 11
0

−− += µµm  is an atmospheric air mass and 2/1
0

2/1~ −− += µµm  is an effective water 
vapor air mass. 
 
5.4 Summary 
The described algorithm renders an accurate representation of the TOA reflectance and its 
natural variability based on a rather compact look-up table. It takes advantage of the accumulated 
knowledge and developments of the MISR and MODIS science teams of the past 10-20 years. 
The radiative transfer model accounts for anisotropy of surface reflectance, variations of surface 
pressure/height, and for atmospheric absorption due to ozone, uniformly mixed gases and 
variable column water vapor. Aerosols are represented by several models as a combination of 
fine and coarse modes. Only a multiple scattering component of the atmospheric path reflectance 
is stored in the LUT, whereas the single scattering part is calculated using an exact formula “on 
the fly”. The other radiative transfer functions are computed from LUT for a given aerosol model 
using the linear mixing and the modified linear mixing methods. The dense grid of solar and 
view angles makes possible to use nearest neighbor avoiding 3D interpolation in angles, which 
achieves a high speed required in the operational processing. 

Our considerable accumulated experience of processing MODIS data shows that the LUT 
algorithm has a required accuracy for aerosol retrievals and atmospheric correction of MODIS 
data in the spectral range of 0.47 – 2.2 µm. Perhaps, a small improvement could be achieved by 
adding polarization to the shortwave channel 0.47 µm, which is a relatively straightforward task. 
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6. Aerosol Algorithm 
The aerosol algorithm consists of two steps: deriving spectral regression coefficients (SRC), and 
retrieving AOT and Angstrom exponent. The SRC retrievals use parametric formula (5.26) and 
involve two assumptions which are verified by the algorithm: 1) the surface reflectance changes 
little during accumulation period; 2) AOT changes little at within the block area. 

6.1 SRC Retrievals 

Let us assume that the ancillary information for the aerosol retrievals, including water vapor, 
cloud mask, and surface BRF in band B7, is available. Let us also assume that gridded TOA 
MODIS reflectance data is available for 3≤K≤16 cloud-free days, which form the processing 
Queue. Our goal is to derive the set of K AOT values for different days (orbits), and N2 SRC 
values for the Blue band (B3) for a given 25 km block of the surface. The SRC algorithm is 
implemented in three steps: 

1) Select the clearest day from the Queue; 
2) Calculate the AOT difference for every day with respect to the clearest day, 0τττ −=∆ kk ; 
3) Find AOT on the clearest day, 0τ . At this step, the algorithm simultaneously generates the full 

set of spectral regression coefficients. 

The first task is solved as follows. Initially, the SRCs are calculated for every day and every 
pixel separately using formula (5.26) for AOT=0. For a given pixel, the coefficient k

ijb  is lowest 
on the clearest day because its value is increased by the path reflectance on hazier days. 
Therefore, the clearest day is selected as a day with the lowest on average set of coefficients k

ijb  
in the block. 

In the next step (2), the AOT difference between the day k and the clearest day is calculated 
independently for every day of the Queue by minimizing the difference 

 }min{})({1 2

,
21

k

ji

kk
ij

Clear
ij

k bb
N

F ττ ∆=∆−= ∑ . (6.1) 

The SRCs for the clearest day ( Clear
ijb ) have been calculated for 0τ =0 in step 1. When solving Eq. 

(5.57), SRCs for the day k are re-calculated for the increasing values of AOT from the LUT kτ  
( kkk ττττ =−=∆ 0 ) until the minimum is reached. This operation is equivalent to simultaneous 
removal of bias and “stretching” the contrast for a given block that minimizes the overall 
difference. 

In step 3), AOT on the clearest day is found by minimization of rmse between the theoretical 
reflectance and the full set of measurements for K days and N2 pixels: 

 }min{)}({ 0
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2 τττ =∆+−= ∑∑

K ji

kkTh
ij

kMeas
ij RRF . (6.2) 

To calculate theoretical reflectance with Eq. (5.26), one needs to know the coefficients ijb . These 
are calculated using the first assumption described in Introduction, namely that the surface 
reflectance changes little during K days. Therefore, for a given pixel (i,j) and given value 0τ , the 
SRC can be found by minimizing the rmse over all days of the Queue: 



 51

 }min{)}({ 2,,
ij

K
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which is solved by the least-squares method ( 0/ =∂∂ ijij bF ) with the analytical solution: 
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ijij YYRRb 2, )}({/)()]([ τττ . (6.5) 

Thus, given the aerosol model, Eq. (6.5) becomes parameterized in terms of the only parameter 
0τ . Equations (6.1) and (6.2) are positively defined quadratic forms which have unique 

solutions. To solve these equations numerically, MAIAC incrementally increases AOT (e.g. 0τ  in 
Eq. (6.2)) using the LUT entries, until the minimum is found. Because the discretization of LUT 
in AOT is relatively coarse, the algorithm finds the “bend” point, where function F2 starts 
increasing, approximates the last three points, encompassing the minimum, with quadratic 
function, and finds the minimum analytically. The set of SRCs is calculated with the final value 

0τ  from Eq. (6.5). 

The algorithm controls positiveness of surface BRF by limiting the maximal retrieved AOT 
( kk τττ ∆+= 0 ). Specifically, we require that the path reflectance in the blue (B3) and “deep 
blue” (B8) bands does not exceed the minimal measured reflectance in the block ( min,λR ),  

min,3max,33 )( B
a
B

D
B RR <τ , min,8max,88 )( B

a
B

D
B RR <τ . 

This algorithm was developed and optimized through a long series of trial and error. It requires 
at least three clear or partially clear days in the Queue for the inversion, with at least 50% of the 
pixels of the block being clear for three or more days. The algorithm has a self-consistency 
check, verifying whether the main assumptions hold. For the last day, this is done during step 2 
processing. If the surface had undergone a rapid change during the accumulation period (e.g. a 
snowfall, or a large-scale fire, flooding or rapid landcover conversion, with the size of 
disturbance comparable to the block size), or if the AOT changes significantly inside a given 
block on day k, then the value of rmse kF1  remains high. Currently, the algorithm excludes 
such days from the processing Queue based on a simple empirically established threshold 

kF1 ≥0.03. In regular conditions, the value kF1  is usually lower than 0.01-0.015.  

The sensitivity of solution to surface reflectance and SRC reduces when the AOT grows. At high 
AOT on one or more days, the algorithm may retrieve very low value 0τ  resulting in positive 
errors in retrieved SRC. To avoid that, the previous days stored in the Queue are filtered for a 
given block if the average retrieved blue band AOT for a slant path is high, AOTav/cosVZA>0.6. 
We also filter days in which AOT variation in the block is high (AOTav- AOTmin > 0.15). The 
last two filters are applied only over the dark surfaces (RB7<0.2). 

Retrieving SRCs is a well-optimized and a relatively fast process. For every block, the retrieved 
spectral regression coefficients are stored in the Q-memory, along with the band B7 LSRT 
coefficients. They are used as ancillary information for the aerosol retrievals at 1 km grid 
resolution, which are described next. 
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6.2 Aerosol Retrievals 

This algorithm requires a set of aerosol models with increasing particle size and asymmetry 
parameter of scattering. The aerosols are modeled as a superposition of the fine and coarse 
fractions, each described by a log-normal size distribution. Some of the currently used models 
are listed in Table 2. For example, for the continental USA we are currently using the moderate 
absorption Fine model 2 and generic Coarse model 5. By varying the ratio of volumetric 
concentrations of coarse and fine fractions, η = Coarse

vC / Fine
vC , a wide range of asymmetry (size) 

parameter is simulated. The LUT is originally computed for the fine and coarse fractions 
separately. When MAIAC reads the LUT, it generates a series of mixed aerosol LUTs for several 
different values η ={0.5; 1.5; 2.5; 4; 8}, which are stored in the operational memory. In this 
sequence, value η =0.5 gives a model that is close to the urban continental moderate absorption 
(GSFC) model from AERONET classification [Dubovik et al., 2002], whereas the values η=2-5 
are more representative of the mineral dust. As described above in section 5.3, a modified linear 
mixing algorithm is used to compute required radiative transfer (RT) functions from the LUT. 

 
Table 2. Aerosol Fractions Currently Used in MAIAC Algorithm: RV, σV are the median 

volumetric radius and standard deviation, and (nr, ni) is refractive index. 

N Fraction Type RV (µm) σV (µm) nr ni (0.4-1.2 µm)  ni (2.2 µm) 

1 Fine, very low abs. 0.12 0.35 1.41 0.004 0.001 

2 Fine, low absorption 0.14 0.38 1.41 0.006 0.001 

3 Fine, industrial/biomass 
burning, moderate abs. 

0.12 0.35 1.47 0.012 0.003 

4 Fine, biomass burning 
high absorption 

0.14 0.35 1.47 0.02 0.005 

5 Coarse, generic 2.9 0.75 1.41 0.004 0.001 

6 Coarse, absorbing 2.9 0.75 1.41 0.012 0.003 

7 Coarse, high absorb. 2.8 0.7 1.47 0.02 0.005 

8 Coarse, mineral dust 2.2 0.6 1.56 0.0025 0.001 

9 Cloud, liquid water 5.0 0.1 1.33 According to Hale and Querry [1973]

 

With spectral regression coefficients retrieved, the surface BRF in every grid cell in the Blue 
band becomes known (Eq. 1.2). Further, the AOT and Angstrom parameter are retrieved at 1 km 
resolution from the last Tile of MODIS measurements. 

For each pixel, the retrieval algorithm goes through a loop of increasing values of fractional ratio 
η, and using known surface BRF );,();,( 0

73
0

3 ϕµµρϕµµρ B
ij

B
ij

B
ij b=  it computes AOT (τij) in the 

Blue band by fitting theoretical TOA reflectance to the measurement 

 3,3, );( BMeas
ijij

BTheor RR =τη . (6.5) 
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In the next step, a spectral residual is evaluated using the Red (B1), and SWIR (B7) bands: 

 }min{))}(({ 2,, ηητχ
λ

λλ =−= ∑ kTheor
ij

Meas
ijij RR . (6.6) 

The procedure is repeated with the next value η until the minimum is found. Theoretical 
reflectance in (6.6) is computed with the LSRT BRF parameters from the previous cycle of 
atmospheric correction, which are stored in the Q-memory. 

Because MODIS measurements provide only a spectral slice of information, MAIAC does not 
attempt MISR-like retrievals for multiple aerosol models with different absorption and sphericity 
of particles. Instead, it follows the MODIS Dark Target approach [Levy et al., 2007] where the 
aerosol fractions and their specific absorption properties are fixed regionally. 

The spectral sensitivity of measurements to variations of the aerosol model in clear atmospheric 
conditions, especially at longer wavelengths, is limited. Currently, growth of the MODIS 
footprint with the scan angle is the main source of uncertainty in MAIAC’s knowledge of the 
surface spectral BRF. These errors, although small, can be costly if very asymmetric aerosol 
model with large AOT values is selected when the atmosphere is actually very clean. For these 
reasons, the full minimization procedure (6.5-6.6) is performed only when the retrieved optical 
thickness for the standard continental model (η =0.5) exceeds 0.5. Otherwise, a single value of η 
=0.5 is used and AOT is reported for these background conditions. 

Because atmospheric correction (AC) is an integral part of MAIAC aerosol retrievals, we 
describe the AC algorithm next, followed by examples of retrievals and AERONET validation. 

 

7. Atmospheric Correction Algorithm 

Once the cloud mask is created and aerosol retrievals performed, the MAIAC algorithm filters the 
time series of MODIS measurements for every pixel and places the remaining clear-skies data in 
a “container”. The filter excludes pixels with clouds and cloud shadows, as well as snow-covered 
and water pixels as detected by the CM algorithm during land-water-snow classification. Pixels 
with high AOT (>0.9), where sensitivity of measurements to the surface reflectance decreases, 
are also filtered. The container stores measurements along with the LUT-based RT functions for 
the cloud-free days of the Queue. If the number of available measurements exceeds 3 for a given 
pixel, then the coefficients of LSRT BRF model are computed. 
 
7.1 Inversion for LSRT Coefficients 
In the current operational MODIS land processing, the BRF is determined in two steps: first, the 
atmospheric correction algorithm derives surface reflectance for a given observation geometry 
using a Lambertian approximation [Vermote et al., 2002]. Next, three LSRT coefficients are 
retrieved from the time series of surface reflectance accumulated for a 16-day period [Schaaf et 
al., 2002]. The Lambertian assumption simplifies the atmospheric correction but creates biases in 
the surface reflectance which depend on the observation geometry and atmospheric opacity. It is 
known that Lambertian assumption creates a flatter BRF pattern while the true BRF is more 
anisotropic [e.g., Lyapustin, 1999]. 
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The MAIAC algorithm derives LSRT coefficients directly by fitting the radiative transfer solution 
to the measured TOA reflectance accumulated over a 4-16 day period. The inversion is based on 
formula (5.25): 

),,(),,( 00 ϕµµϕµµ DRR = + ),( 0 µµLL Fk + ),,( 0 ϕµµGG Fk + ),,( 0 ϕµµVV Fk + ),( 0 µµnlR . (7.1) 

The quasi-linear form of equation (7.1) leads to a very efficient iterative minimization algorithm:   
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where index j denotes measurements for different days, and n is the iteration number. Equation 
(7.2) provides an explicit least-squares solution for the kernel weights. In matrix form, the 
solution is written as: 
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In the first iteration, the small non-linear term is set to zero, 0)0( =nl
jR , and the multiple 

reflection factor α (see sec. 5) is set to one, 1)0( =α . These parameters are updated once after the 
BRF coefficients are calculated in the first iteration. Except for snow-covered surfaces, the 
problem converges with high accuracy in two iterations because the non-linear terms are small. 
Current version of MAIAC algorithm does not make retrievals over snow. 

Prior to inversion, the algorithm checks if the dataset has a sufficient angular sampling. The 
MODIS operational BRDF/albedo algorithm [Schaaf et al., 2002] makes an inversion if at least 7 
cloud-free observations are available during 16-day period. We studied this problem 
experimentally using MODIS data for a number of AERONET sites, varying the minimal 
required number of measurements (from 3 to 10) and testing different metrics of angular 
sampling. One metric used the magnitude of determinant of the inverse matrix A which shows 
how different the sampling angles are. Although such analysis is, perhaps, most straightforward 
theoretically, we found it often too restrictive. In the end, a simple criterion was chosen based on 
the range of cosine of the view zenith angle (µmax-µmin ≥ 0.2), which is usually sufficient to 
ensure robust and consistent retrieval. The described inversion algorithm is very fast. 

 
7.2 Solution Selection and Update 

Although the LSRT model leads to an efficient BRF retrieval algorithm, there are several caveats 
associated with this model. The LSRT kernels are not orthogonal, are not positive-only 
functions, and are normalized in a somewhat arbitrary fashion that is not linked to radiative 
transfer theory. These factors reduce the stability and uniqueness of the solutions, such that small 
perturbations in measurements may lead to significantly different solutions. The high goodness-
of-fit at the measurement angles does not guarantee the correct shape of the retrieved BRF, and 
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may result in negative BRF values at other angles. The albedo, being an integral function of 
BRF, is especially sensitive to an incorrect BRF shape. For these reasons, we use several tests to 
remove unrealistic solutions. 

The initial validation of the solution checks that the maximal difference over all days of the 
Queue between measured and computed TOA reflectance does not exceed a 0.05 threshold, 

LSRTMeas RR − >0.05. If it does, the day (measurement) with the highest deviation is excluded 
from the Queue and the inversion is repeated. If the number of measurements goes below four 
after the exclusion, no retrieval will be made for this pixel in given band. 

If a solution provides a good agreement with measurements within 0.05 for all days, the 
algorithm verifies that values of the direct-beam albedo (q) at SZA=15o, 45o, 60o are positive. 
Finally, the new solution must be consistent with the previous solution: 

)45()45( Pr oevo qq − <∆(λ), where ∆ is the band-dependent threshold currently equal to 0.04 

(blue), 0.05 (green and red), 0.1 (for spectral region of 0.8 – 1.6 µm) and 0.05 for the shortwave 
infrared band (2.1 µm). Consistency of the time series of BRF and albedo is characterized by a 
status index. Initially, the confidence in the solution is low (status=0). Each time the new 
retrieval agrees with the previous retrieval, status increases by 1. When status≥3, the retrieval is 
considered reliable. 

The thresholds (0.05 and ∆(λ)) in the LSRT inversion routine are selected, on one hand, tight 
enough to reject most of undetected clouds, which remain the dominant source of errors, and 
sufficiently loose, on the other hand, for the solution to adapt to the surface change. The most 
pervasive type of change is seasonal variations, related to the spring green-up and fall senescence 
at northern latitudes, or greenness variations caused by wet and dry seasons in tropics. The total 
seasonal variation of reflectance over vegetated surface is about several absolute percent in the 
visible bands (~0.03-0.1), and is significantly higher in the near infrared (~0.1-0.3). Threshold 
∆(λ) for the daily variation was selected accordingly, and our analysis of a large volume of 
processed MODIS data confirms that MAIAC algorithm does not reject measurements when 
surface is changing, even in the agricultural regions characterized by a rapid reflectance change 
during harvesting. 

When the new solution is validated, the coefficients of the BRF model and direct-beam albedo 
q(45o), stored in the Q-memory, are updated. The update is done with relaxation, designed to 
mitigate random noise of retrievals: 

 NewKλ

r
= w NewKλ

r
 + (1-w) evK Pr

λ

r
. (7.4) 

The weight w depends on our confidence in previous solution, which increases with its status. 
The weight w=1 for the first retrieval (status=0), w=0.8 for the second retrieval, w=0.6 for the 
third consecutive retrieval, and w=0.5 thereafter. This method of update increases the quality of 
solution when the surface is relatively stable, but it delays the response of the solution to surface 
changes. 

Often, the solution for some pixels or the full area cannot be produced because of lack of clear-
skies measurements. In these cases, we assume that the surface does not change and the gaps are 
filled-in with the previous LSRT solution for up to a 32-day period. During short time intervals, 
this is the most natural way of gap-filling with specific BRF/albedo solution for a given pixel. In 
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most cases, the assumption of a stable surface is reasonable. The gap-filled pixels are marked as 
“Extended” in the quality assurance (QA) value, with parameter QA.nDelay giving the number 
of days since the last update. 
 
7.3 Tracking Surface Change 
During spring green-up or fall senescence, the surface may entirely change in a period of one or 
two weeks. This period is often accompanied by high cloudiness which may be caused by the 
onset of the rain season in tropics, or by the changing boundary layer meteorology due to thawed 
soil releasing the moisture into the warmer air at northern latitudes in spring. The surface BRF 
changes considerably during these periods not only by magnitude but also in shape. In these 
conditions, the response of the full Queue solution is delayed, often significantly, depending on 
cloudiness. To ameliorate this problem, we always make two LSRT inversions, one with the full 
Queue, and another using the last four clear days of the Queue. We compute the maximal 
difference of both solutions with measurements dif= LSRTMeas RR −  over the last four days. The 
four-day solution is less reliable and more prone to errors. Therefore, provided it has lower value 
of dif, we chose the 4-day solution only if surface change has independently been confirmed by 
measurements. The latter is accomplished as follows: 

IF(RB7 < Th
BR 7 -0.03  &  (NDVI – NDVITh)>THRESH_NDVI & RB2 > Th

BR 2 +0.04) ⇒ green-up. 

IF(RB7 > Th
BR 7 +0.03 & (NDVI - NDVITh)< -THRESH_NDVI & RB2 < Th

BR 2 -0.04) ⇒ senescence. 

Here, superscript Th indicates theoretical values which are computed using known LSRT 
parameters for a given day of observations. The NDVI threshold has a default value of 0.07, 
which is increased to 0.1 when the atmosphere is hazy (AOT>0.5). 

Thus, when i) the 4-day LSRT solution gives a better fit to the last 4 days of measurements, and 
ii) surface change is confirmed by MODIS data, then the status of the pixel is dropped to zero 
and the new solution takes precedence. 
 
7.4 MAIAC Surface Reflectance Products 
MAIAC computes two main products at 1 km resolution for seven 500m MODIS bands, the set 
of BRF coefficients, and the surface albedo. The albedo is defined by Equation (5.5a) as a ratio 
of surface-reflected to incident radiative fluxes. Thus, it represents a true albedo at a given solar 
zenith angle in ambient atmospheric conditions, the value, which can be directly compared to 
ground-based measurements. 

MAIAC also computes several derivative products useful for science data analysis and validation: 
1) NBRF - a BRF Normalized to the common geometry of nadir view and SZA = 45o. 

This product is analogous to MODIS NBAR (nadir BRF-adjusted reflectance) product (part of 
the MOD43 standard product suite). With the geometry variations removed, the time series of 
NBRF is useful for studying vegetation phenology, performing surface classification, etc. 

2) IBRF – an Instantaneous (or one-angle) BRF value for the specific viewing geometry 
of the last day of observations. In essence, IBRF is a bidirectional reflectance which would be 
measured if the atmosphere were absent. This product is calculated from the latest MODIS 
measurement using known BRF shape. To illustrate computation of IBRF, we re-write equation 
for the measured TOA reflectance as follows: 
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 ),,(),,( 00 ϕµµϕµµ DRR =  + ),,( 0 ϕµµSurfbR , (7.5) 

where RSurf combines all surface related terms and is calculated using the current LSRT solution 
and retrieved aerosol data. b is spectrally-dependent scaling factor. Then,  

 ),,(),,( 00 ϕµµϕµµ λλλ BRFbIBRF = , (7.6) 

where BRFλ is calculated using LSRT model. This algorithm (Equation 7.6) will be referred to as 
scaling. This description was given for the purpose of illustration. In reality, RSurf is a non-linear 
function so computing parameter bλ and IBRF is done accurately using the formulas given in sec. 
5. 

The IBRF is computed for the land pixel if it is cloud-free, AOT is retrieved and it is not too high 
(AOT<1), and LSRT coefficients for the pixel are known. Based on its definition, IBRF is what 
is supposed to be produced by the operational MODIS atmospheric correction algorithm (product 
MOD09). Because IBRF is derived using the last day of measurements, it responds to surface 
changes immediately contrary to LSRT parameters (or NBRF) whose response may be delayed.  

A list of MAIAC products and their  operational MODIS counterparts are given in Table 3. 

Table 3. MAIAC product suite 
Product 
Name 

Data Type Descriptions MODIS Product 
Counterpart 

CloudMask DFNT_UINT8 Cloud mask and Land-Water-
Snow dynamic classification. 

MOD35 cloud Mask 

NBRF DFNT_FLOAT32 Bi-directional reflectance 
factor normalized to SZA=45o 
and nadir view.   

MOD43B4 Nadir BRDF-
Adjusted Reflectance 
(NBAR)  

Albedo DFNT_FLOAT32 Surface albedo at a given solar 
zenith angle in ambient 
atmospheric conditions. 

A combination of MOD43B3 
black-sky and white-sky 
albedo weighted with 
respective relative direct and 
diffuse incident fluxes.  

IBRF DFNT_FLOAT32 Instantaneous (or one-angle) 
BRF for specific viewing 
geometry of the last day of 
observations. 

MOD09 Surface reflectance 

Kiso DFNT_FLOAT32 The isotropic coefficient of 
LSRT model.  

MOD43B1 BRDF/Albedo 
Model Parameters 

Kvol DFNT_FLOAT32 The volumetric coefficient of 
LSRT model. 

MOD43B1 BRDF/Albedo 
Model Parameters 

Kgeo DFNT_FLOAT32 The geometric-optics 
coefficient of LSRT model. 

MOD43B1 BRDF/Albedo 
Model Parameters 

Snow Fraction DFNT_FLOAT32 Sub-pixel snow fraction (0-1). N/A 
Optical snow 

grain size 
DFNT_FLOAT32 Snow grain size which 

provides an equivalent spectral 
reflectance in spectral range 
0.4-2.2 µm.  

N/A 
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8. Retrieval Examples and AERONET Validation 
 
8.1 Illustration of the Algorithm Performance 
We will illustrate MAIAC performance using 50 km MODIS TERRA subsets for the GSFC site 
(Greenbelt, Maryland). Our usual method of analysis includes visualization of the input and 
output data in a form of time series, similarly to the data arrangement in the processing Queue. 
This way we can analyze both the overall quality of solution and complex interrelationships 
between different parameters. Figure 17 shows 4 different 15-day periods for the year of 2000. 
Eleven columns show MODIS TERRA top of atmosphere RGB and B7 reflectance, and MAIAC 
products, including cloud mask, RGB NBRF, RGB IBRF, spectral regression coefficient, 
retrieved AOT and aerosol model (fractional ratio), the Blue band NBRF, and the B7 IBRF. 
Because B7 LSRT retrievals play critical role in the total MAIAC processing, the B7 IBRF is 
shown next to the measured B7 reflectance for better assessment of the retrieval quality. The first 
period shows the beginning of processing starting from day 1. Because the surface is dark, the 
cloud mask initializes at the very beginning, whereas LSRT retrievals start with accumulation of 
4 clear days. The SRC retrievals begin on the 4th day after initialization of B7 BRF, or on 11th 
day from start. Until that time, the aerosol retrievals are performed using constant value of 
SRC=0.3 in the Lambertian approximation. The SRC coefficients are fully initialized the week 
after the first period (days 72-78, not shown). The second and third sets show the middle and the 
end of the green-up period. During green-up, B7 reflectance reduces substantially followed by 
SRC increase. It remains high throughout the summer and begins to decrease in the second half 
of autumn (days 301-314). 

The retrieved surface reflectance does not show artifacts from clouds or incorrectly derived 
aerosol. 
 
8.2 Seasonal Surface Change and Spectral Regression Coefficient 
The spectral relation between the SWIR and visible reflectance depends on the surface type. 
Laboratory measured spectra from ASTER (http://speclib.jpl.nasa.gov) and USGS (Clark et al., 
2003) Spectral Libraries show that the ratio of the reflectance in the visible spectrum to 
reflectance in the SWIR is a variable function for different types of soil and minerals. The range 
of ratio from these measurements is 0.05-3 for the blue, and 0.15-5 for the red band. Over the 
vegetated regions of the world, SRC changes with vegetation type, cover, and phenology, and 
usually has a strong seasonal cycle. Agricultural regions have a very large seasonal variability 
from crop growth to ripening to harvesting (soil exposure). 

Two more examples are used here to illustrate dynamic nature of the surface spectral 
relationships (SRC), and adaptability of MAIAC. Figure 18 shows the area of Mongu, Zambia. 
The Mongu village can be seen as a bright spot in the middle of the subset. A lower area to the 
east is a floodplain, which is flooded by the waters of Zambezi river each year following the rain 
season. Days 116-131 show maximum of flooded area, identified by MAIAC cloud mask. 
Because of standing water on the left part of image, reflectance in band 7 is very low and SRC is 
high. Due to availability of water, grasses grow very fast and the area left of the flooded zone is 
very green. Vegetation reaches its maximal strength following water retreat (days 140-150). The 
surface begins to dry up by the end of the second and through the third periods, which correlates 
with the increase of reflectance in the Blue and SWIR bands and reduction of SRC. The last set 
of images (days 195-210) shows a stable dry period with high B3, B7 reflectance and low SRC. 
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Figure 17. Illustration of MAIAC performance for 4 different 15-day periods of 2000 for GSFC. Columns 
have the following correspondence (scale): 1,2 - MODIS TERRA TOA RGB, 3 - CM, 4 – RGB NBRF, 5 
– RGB IBRF, 6 – SRC (0-1), 7 – AOT (0-1), 8 – aerosol model (fractional ratio), 9– Blue band NBRF (0-
0.1), 10 - TOA R7, 11 – B7 IBRF (0-0.3). The palette for monochromatic bands is the same as in Fig. 7. 
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Figure 18. Seasonal trend of surface reflectance and SRC for 2003 over Mongu. Columns and scales are 

the same as in Figure 17. 
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Figure 19. Seasonal trend of surface reflectance and SRC for 2005 over Bondville. Columns and scales 

are the same as in Figure 17. 
 
Figure 19 shows the agricultural area of Bondville for the middle of summer with high greenness 
and end of autumn where bright soil is exposed. One can see a significant change in surface 
reflectance and spectral regression coefficient. 

Finally, Figure 20 shows the difference in response of NBRF and IBRF to a rapid surface change 
caused by a fire. The two-day fire (days 243-244) is shown by an oval shape. The disturbance 
(burnt area) is clearly visible in the IBRF image the next day. It takes 4 days for the LSRT 
coefficients (or NBRF) to become adjusted to the surface change. This example shows that the 
IBRF product rather than NBRF should be used to detect rapid surface changes and disturbances. 
 
8.3 Bright Surfaces 

Figure 21 shows the time series of retrieved AOT (black line) for the bright desert site of Solar 
Village, Saudi Arabia. Overall, MAIAC retrievals agree well with AERONET (red line). Due to 
low cloudiness, the SRC and surface BRF retrievals for this site are remarkably stable with very 
low noise, which can be generalized to other bright surfaces. However, the scatterplot shows a 
high scatter caused by the high-frequency noise in our retrievals. A detailed analysis showed that 
this noise correlates with MODIS TERRA viewing geometry (forward vs back-scattering). 
MAIAC slightly underestimates AOT for the forward scattering directions and overestimates 
AOT for the backscattering observations. Adding dust non-sphericity to our look-up tables did 
not reduce this effect. Further investigation showed that the “culprit” is the difference in the BRF 
shape between B7 and the Blue band. Over brighter surfaces, reflectance in the SWIR band 
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 Figure 20. Illustration of difference in the response time of IBRF and NBRF to the rapid surface change 
caused by a fire in the area of Skukuza, Africa. Columns and scales are the same as in Figure 17. 

 

may be 3-5 time higher than the blue band reflectance, for example 0.45-0.6 vs 0.1-0.15 for the 
Solar village. Because of low absorption (high reflectance), photons in the SWIR band may 
scatter many times on the microscopic surface roughness thus flattening the BRF shape. 
Therefore, although the single scattering BRF shape would be the same or very similar between 
SWIR and Blue bands, the difference in the multiple scattering would cause the angular 
dependence of the SRC. As an example, Figure 22 shows the angular dependence of SRC for the 
blue and red channels for the azimuthal plane 45-135o. This dependence was computed using 
LSRT coefficients from the AERONET-based Surface Reflectance Validation Network 
(ASRVN) dataset [Wang et al., 2008]. The ASRVN is an operational processing system which 
performs atmospheric correction of MODIS data for the AERONET sites using AERONET 
aerosol and water vapor data. The surface retrieval algorithm is similar to the one used in 
MAIAC. Thus, ASRVN data render an accurate representation of the surface bidirectional 
reflectance in MODIS channels. Figure 22 shows that SRC depends on the viewing geometry for 
both bright and dark vegetated surfaces. However, this error has little effect over dark vegetation 
because of low magnitude of reflectance, whereas it becomes prominent over bright surfaces. 

Because the Queue combines measurements from all directions, the retrieved SRC represents the 
average value typical of nadir view VZA=0o. Our algorithm underestimates SRC and surface 
BRF for the backscattering directions, which results in higher AOT values. This effect shows as 
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Figure 21. Time series of MAIAC (black) and AERONET (red) AOT for Solar Village, 2003. 
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Figure 22. Spectral Ratio for the blue (BRFB3/BRFB7) and red (BRFB1/BRFB7) bands for the desert pixel 
of Solar Village (left) and vegetated pixel of Konza_EDC (right). The bidirectional reflectance was 
computed using LSRT parameters of ASRVN database [Wang et al, 2008] for the azimuthal plane 45-
135o. Positive (negative) values of the view zenith angle represent back- (forward) scattering directions. 
The solid, dashed and dotted lines correspond to solar zenith angle of 30, 45 and 60o. 
 

high scattering on all MAIAC-AERONET scatterplots over bright surfaces (see next section), for 
example over Mexico City and Sao Paulo. This effect appears in such locations as Bondville and 
Maricopa in spring and autumn when foliage sheds and reflectance of bright soil becomes 
dominant. 

We believe that our current study will resolve the described problem. The idea is to find an 
angular correction function for SRC. We may assume that the shapes of BRF in the single 
scattering are the same in the Blue and SWIR bands, whereas the single scattering albedo is 
significantly lower in the blue band. The surface albedo in these bands, which should be 
unbiased due to equal angular coverage between the forward and the backscattering directions, is 
an integrated function of BRF and can be used to evaluate single scattering albedo. Once this is 
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done, the multiple scattering component of the SWIR BRF can be corrected, giving more 
accurate BRF shape for SRC retrievals. 

 
8.4 NDVI Time Series 

Figure 23 shows the NDVI time series using MAIAC NBRF and IBRF for locations of Bondville, 
GSFC (USA), Mongu (Zambia) and Cuiaba-Miranda (Brazil). The NDVI plots are built for 
individual pixels without averaging or pre-processing. For each location, we selected a bright 
(soil-dominated) and a green (vegetated) pixel. The NDVI time series has a very low noise and a 
highly reproducible interannual pattern. The IBRF NDVI is not normalized in the view 
geometry, and this causes scatter for the bright soil pixels. The periods where the NBRF NDVI 
does not change correspond to either high cloudiness or missing MODIS data when the 16-day 
Queue did not have enough clear-sky observations to make a new retrieval. These plots also 
show that the NBRF NDVI has a delayed response to the surface seasonal change, whereas IBRF 
NDVI tracks seasonal variations in a timely manner. The average delay of the NBRF NDVI, as 
can be seen from the stretched image c) is 4-7 days depending on cloudiness. This set of images 
shows different climate zones and vegetation types. This difference manifests itself in variable 
seasonal pattern and different magnitude of seasonal NDVI change. 
 

8.5 AERONET Validation 

Figure 24 shows scatterplots of MAIAC AOT (0.465 µm) vs AERONET AOT at 0.44 µm based 
on 8+ years of MODIS TERRA data (2000 – august 2008). A long dataset provides a good 
statistics for each plot accumulating from ~300 to ~900 points. Due to the wavelength difference, 
AERONET AOT is expected to be a little higher. For example, the difference for the GSFC site 
based on simulations should be about 5-7%. Following MODIS validation strategy [Remer et al., 
2005], AERONET v2.0 data were averaged over ±30 min interval of TERRA satellite overpass. 
MAIAC retrievals are averaged over 10 km area. MAIAC value is reported if the number of 
retrievals exceeds 20. Two pixels around a cloud or a clear-sky snow pixel were discarded. Cases 
of inhomogeneous aerosols were filtered according to the criterion: AOTav – AOTmin>0.15. 

The top row scatterplots shows comparisons for relatively dark and vegetated surfaces, Goddard 
Space Flight Center (MD, USA), Bondville, (IL, USA), Ispra (Italy). A low absorption aerosol 
model (fine fraction #2, coarse fraction #5) was used for these sites. The middle row shows three 
megacities with population over 12 million people. To fit AERONET record for Moscow, we 
had to use a very low absorption model (fine fraction #1, coarse fraction #5). Beijing and Mexico 
City were processed with moderate-to-high absorption model (fine fraction #3, coarse fraction 
#6). Finally, the bottom row represents sites of biomass burning in Africa and Brazil. High 
absorption models (fine fraction #4, coarse fraction #7) typical of African Savannah biomass 
burning were used for Mongu, and a moderate-to-high absorption model (fine fraction #3, coarse 
fraction #6) was used for Cuiaba-Miranda and Skukuza. Our use of absorption models agrees 
with AERONET classification [Dubovik et al., 2002] and with MOD04 aerosol model derived 
from AERONET data.  

In addition to pollution, there are several dust storms per year over Beijing with dust blown from 
the nearest Gobi desert located to the north of the city. In this comparison, we did not use dust 
model. On average, MAIAC results compare well with the AERONET data for most of sites with 
high correlation. There is a considerable scattering for Mexico City, which has a bright surface. 
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a) Bondville, Bright pixel 
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b) Bondville, Green pixel 
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c) Bondville, Green pixel, 2002-2003 
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d) GSFC, Green pixel 
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e) Mongu, Bright pixel 
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f) Mongu, Green pixel 
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g) Cuiaba Miranda, Bright pixel 
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h) Cuiaba Miranda, Green pixel 
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Figure 23. Time series of NBRF NDVI (red) and IBRF NDVI (blue). 
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Figure 24. Scatterplots MAIAC AOT (0.47 µm) – AERONET AOT (0.44 µm) for MODIS TERRA 

(2000-august 2008). 
 

This source of systematic uncertainty was explained previously in sec. 8.3. Strong scattering 
effect with large number of MAIAC’s low AOT values skews the slope of regression. A 
somewhat lower scattering, observed for Bondville, Skukuza and Mongu, has the same origin. 
The surface becomes rather bright in the dry season over Mongu and Skukuza, and in the late 
fall-early spring time period over Bondville. 

 

8.6 Examples of Large-Scale Processing 

We have evaluated MAIAC performance over the different world regions for an extended period 
of time. Typically, we order MODIS data for large areas of several thousand square kilometers 
for at least one year, and process the full set of data. Two examples of the large-scale AOT 
retrievals from MODIS TERRA are shown in Figures 25-26. Figure 25 shows smoke from 
biomass-burning during the dry season over an area of 1200×1200 km2 in Zambia, Africa. The 



 68

TOA image for the day 205 shows dozens of small-to-large fires. The fine 1 km resolution 
allows MAIAC to resolve and trace plumes of the individual fires. The fire plumes disappear at 
the coarse 10 km resolution of operational MODIS aerosol product MOD04 shown on the inset. 
The comparison shows that the magnitude of MOD04 and MAIAC retrieved AOT and its spatial 
distribution is rather similar, although there are certain differences depending on the surface type 
and geometry of observations. This particular example shows that through significantly higher 
spatial resolution, MAIAC offers quantitatively new information about aerosols and their sources 
unavailable before. The gradient of AOT at 1 km resolution is high enough to implement an 
automatic delineation algorithm for the smoke plume detection, with the data that could be used 
in different applications, such as air quality. 

Figure 26 shows MAIAC aerosol retrievals over a large portion of bright Arabian Peninsula (area 
1800×1800 km2) for day 207 of 2005 with rather complex conditions. On one hand, the dust is 
transported across the Red Sea from Sudan (Africa). The wind does not penetrate the mountains 
along peninsular’s western shore. It is clear on the top of the mountain ridge, and the dust is 
concentrated along the shore, as can be seen both from the MODIS RGB image and from the 
AOT image. On the other hand, a separate internal dust storm has developed in the southern part 

 

0.0 0.2 0.4 0.6 0.8

MAIAC AOT,  
     0.47 µm 

MOD04_C4

Figure 25. Fires during dry biomass-burning season in Zambia, Africa, for day 205 of 2005 (area 
1200×1200 km2). The 1km gridded MODIS TERRA TOA RGB image is shown on the left and 
MAIAC-retrieved AOT at 0.47 µm is on the right. The AOT scale is the same for MOD04 and MAIAC. 
The high resolution (1 km) of AOT product allows detecting and tracing individual fire plums. The 
inset shows result of the MODIS dark target algorithm MOD04_C4.
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Figure 26. MODIS TERRA RGB TOA image and MAIAC AOT at 0.47 µm over Arabian Peninsula 

(area 1800×1800 km2) for day 207 of 2005. 
 

 
Figure 27. RGB 
image of surface 
NBRF (BRF for a 
fixed geometry, 
VZA=0o, SZA=45o) 
for Arabian Peninsula 
for day 184 of 2005. 
The image is built 
with equal weights for 
RGB bands. 
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Figure 28. Fires in the North-Western Rocky Mountains in the summer of 2007. The images show AOT 
(scale 0-1: the red color shows AOT≥1), RGB NBRF, cloud mask and MODIS RGB images. 

225 
250 251
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of peninsula, with winds carrying dust in the north-west direction. For comparison, Figure 27 
shows the true color RGB image of the surface NBRF for this area. The bright surface feature, 
corresponding to the epicenter of the dust storms, is absent on the NBRF image, which confirms 
that this event is indeed a local dust storm.  

A sequence of images with extensive fires is shown for the summer period of 2007 for the North-
West Rocky Mountain region. This area was processed by the request of the US Forest Service. 
One can see glaciers of Mt. StHelen and Rocky Mountains on day 150. Most of surface is green 
except very bright areas to the south. There are several black spots in the NBRF image which 
remain un-initialized for the full time. The largest is the Salt Lake. The second largest, in the 
middle of very bright area on the south-west of Salt Lake City, is salt playa whose spectrum of 
reflectance is close to that of a snow: it is extremely bright in the visible (r~0.6-0.7) and very 
dark in the SWIR (r~0.04-0.1). Current MAIAC algorithm systematically gives wrong very high 
AOT values for these spots. 
The surface dries out and becomes brighter by day 220, as clearly visible from the NBRF image. 
The fire have been active, with some intermissions, for about a two month period, and we are 
showing only several of them. With high MAIAC AOT resolution, one can distinguish different 
fire epicenters changing from day to day. We find the last image (day 251) particularly 
interesting with smoke plume in the middle of the image below two large cloud systems. 
 
9. Summary 
 
MAIAC is a new algorithm which uses a time series processing and combines an image- and 
pixel-level processing. It includes cloud mask and generic aerosol-surface retrieval algorithm. 
The suite of MAIAC products includes column water vapor, cloud mask, dynamic mask of 
standing water and snow, AOT at 0.47 µm and Angstrom exponent (or the ratio of volumetric 
concentrations of the coarse and fine fractions), and spectral surface reflectance metrics, which 
include LSRT coefficients, albedo, NBRF and IBRF. The suite of products is generated in a 
systematic and mutually consistent way to observe the energy conservation principle. In other 
words, the radiative transfer calculation with the given set of parameters closely corresponds to 
measurements. All products are produced in gridded format at the resolution of 1 km. 

A high spatial resolution of MAIAC (1 km vs 10 km for operational MODIS aerosol product) 
allows a new type of analysis and applications. One demonstrated example is a possibility of 
detection and tracing fire plumes from biomass burning. A high resolution of 1 km makes this 
application possible, whereas most of the information disappears at coarse 10 km resolution. 
MAIAC provides high quality surface reflectance parameters. We demonstrated a high quality 
and reliability of NBRF, IBRF and NDVI at 1 km resolution. 

We have started validation of different MAIAC products, and this work will be continued 
together with cross-comparison with current operational MODIS products. 

This ATBD does not describe two additional MAIAC products, sub-pixel snow fraction and 
optical snow grain size. Use of the time series and knowledge of the surface spectral BRF prior 
to the onset of winter allows us to implement snow retrievals in the most simple and 
straightforward manner using linear unmixing approach. This algorithm is not yet validated. 

The current performance of the algorithm is not yet fully optimized. Nevertheless, MAIAC is 
already sufficiently fast for operational processing: it takes ≈50 sec. of one single-core AMD 
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Opteron-64 processor to process one Tile (600×600 km2) of MODIS data. The operational 
testing of MAIAC is planned to begin in the end of 2008 in collaboration with the University of 
Wisconsin and GSFC-based MODIS land processing team.  

 
 
10. Remaining Tasks for 2009 
 
Cloud Mask: 
 
- Improve CM performance on the land-water boundaries. 
- Perform global testing of algorithm, and extensive inter-comparison with MODIS CM product 
(MOD35) in collaboration with University of Wisconsin, Madison (P. Menzel, S. Ackerman, R. 
Frey, S. Dutcher et al.). 
 
 
Aerosol Retrievals: 

- Development of global geographically prescribed aerosol climatology model. The following 
work is underway: we are studying the AERONET-based classification [Holben et al., 2001] 
and MODIS Collection 5 aerosol model [Levy, 2007] and plan to investigate MISR level 3 
aerosol product, which provides an independent global aerosol climatology over land. 

- The current version of MAIAC uses MODIS blue band (B3) as a reference channel for aerosol 
retrievals. The AERONET validation analysis shows that MAIAC may underestimate AOT 
over bright surfaces by 0.05-0.1. We plan to investigate the use of MODIS deep blue channel 
(B8) as a reference band as a possible solution to this problem. 

- Currently, we use MODIS red (B1) and SWIR (B7) bands to evaluate coarse-to-fine mode 
fractional ratio (aerosol model). This band selection works well, based on comparison with 
AERONET, over dark surfaces. However, it often fails over bright surfaces, selecting the 
highest weight of coarse fraction and accordingly, very high AOT. We plan to analyze the 
use of MODIS deep blue channel (B8) instead of (or in addition to) the SWIR band. This 
channel is expected to improve aerosol model selection because surface at 0.412 µm is 
significantly darker, and uncertainties associated with surface reflectance will have little 
impact. 

- Develop a correction method to compensate the angular bias in the spectral regression 
relationship over bright surfaces (see sec. 8.3). 

 
 
Atmospheric Correction: 

The climate change research, and global carbon analysis as its part, relies on accurate estimates 
of carbon balance of planet Earth. These estimates critically depend on accurate tracking of 
surface change, for example the date of onset and magnitude of spring green-up at northern 
latitudes. The early period of vegetation photosynthesis is particularly important because soil is 
not warmed up, and soil respiration, usually balancing carbon uptake by photosynthesis, is very 
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low. As we described above, even the 4-day LSRT solution may be delayed if surface changes 
rapidly and the cloudiness is high. 

This problem can be solved if for every pixel we kept two sets of LSRT coefficients from the 
previous year (or season) in the memory. These solutions will represent the maximal and 
minimal greenness of the surface, which can be tracked in the time series using NDVI and 
magnitude of NBRF in several spectral bands. In this case, once the surface change has been 
detected from measurements, the LSRT will be modeled as a linear combination of the two 
solutions, exactly fitting any given day of the transition period with no delay. In fact, this is the 
only possible way to maintain the best accuracy of both aerosol retrievals and atmospheric 
correction. When the surface reflectance changes both in magnitude and shape of BRF during the 
accumulation period, then the Queue LSRT retrievals, strictly speaking, are not valid. This is a 
straightforward approach which only requires an additional memory for several spectral bands. 
We will implement this method in 2009. 
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