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1. Introduction 

Reservoirs serve as a lifeline in water management (e.g., irrigation, hydropower generation, 

water supply, and flood control), especially under the ongoing fast population growth and 

changing climate (Biemans et al. 2011; Cooke et al. 2016; Plate 2002; Schewe et al. 2014; 

Veldkamp et al. 2017). Globally, reservoirs supply about 40% of the total irrigation water 

demand (Biemans et al. 2011) and contribute to more than 60% of renewable energy via 

hydroelectricity (Murdock et al. 2019). Reservoir storage varies according to natural climate 

variability as well as the human water use/demand for different sectors (i.e., domestic, 

agricultural, and industrial). On one hand, near real-time reservoir storage monitoring is 

essential for mitigating the negative effects of hydro-climatic extremes (droughts and floods) 

(Mehran et al. 2015; Zhou 2020). On the other hand, long term records of water retained by 

global reservoirs can help to evaluate the human impacts on global and regional water cycles 

(Yigzaw et al. 2018; Zhou et al. 2016). However, because gauge observations for reservoir 

storage (and/or elevation) are typically not shared, both of the aforementioned data needs are 

difficult to satisfy at regional and global scales. 

Among the reservoir water budget terms, reservoir evaporation accounts for a substantial 

amount of the loss of available water—particularly for reservoirs in arid/semi-arid regions 

(Friedrich et al. 2018). For example, the evaporation volume of Lake Tahoe (located in the 

western U.S.) represents 40%‒60% of the total reservoir output (Friedrich et al. 2018). The 

annual evaporation rate of Lake Mead is ~1800 mm/year (Moreo 2015), which greatly exceeds 

the surrounding evapotranspiration rate (~50 mm/year) (Mu et al. 2011). At a regional scale, 

the water losses due to evaporation for 200 reservoirs in Texas are equivalent to 20% of their 

active storage value (Zhang et al. 2017). Thus, it is crucial to incorporate information about 

reservoir evaporation losses into existing water management practices. Nonetheless, because 

reservoir evaporation information obtained through reliable in situ measurements (e.g., eddy 

covariance, energy balance) is hard to acquire, pan evaporation data (which is less accurate due 

to the lack of consideration of heat storage and fetch effects) have been commonly used as an 

approximation (Friedrich et al. 2018). For most developing countries, even data about pan 

evaporation (or its equivalent) are not available. 

This is the Algorithm Theoretical Basis Document (ATBD) for the global Moderate Resolution 

Imaging Spectroradiometer (MODIS) reservoir product (Li et al. 2021). The reservoir product 

is available at two temporal resolutions: 8-day (MxD28C2) and monthly (MxD28C3). Here, 
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MxD stands for the fact that the product comes from both Terra (MOD) and Aqua (MYD) 

satellites. The objectives of this ATBD are: (1) to give a brief review of the current methods 

used for monitoring reservoirs using satellite observations; (2) to describe the MODIS reservoir 

algorithms, which are used to generate the product at two temporal resolutions (i.e., 8-day and 

monthly); (3) to introduce the required input datasets and parameters; (4) to show the validation 

results for that reservoir area, elevation, storage, and evaporation rate; and (5) to discuss the 

sources of product uncertainty. 

2. Overview and Technical Background 

Satellite remote sensing provides an alternative for filling in such reservoir data gaps. Since 

the 1990s, satellite radar altimeters have been utilized to measure the water levels of large lakes 

and reservoirs (Birkett 1995). To date, several databases have been developed to monitor the 

water levels of inland water bodies at a global scale—including the Global Reservoir and Lake 

Monitor (G-REALM) (Birkett et al. 2011), the Hydroweb database (Crétaux et al. 2011), and 

the Database for Hydrological Time Series of Inland Waters (DAHITI) (Schwatke et al. 2015). 

Meanwhile, the global surface area variations of lakes and reservoirs have been assessed from 

various satellite instruments, such as the Landsat and MODIS (Donchyts et al. 2016; 

Khandelwal et al. 2017; Ling et al. 2020; Pekel et al. 2016; Yao et al. 2019; Zhao and Gao 

2018). Pekel et al. (Pekel et al. 2016) developed a Global Surface Water (GSW) dataset using 

expert system classifiers based on Landsat observations obtained over the last three decades. 

The more recently published Global Reservoir Surface Area Dataset (GRSAD) provides 

monthly water area values for over 7000 reservoirs (Zhao and Gao 2018), which were 

generated by correcting the underestimations due to cloud contamination in the GSW dataset. 

Khandelwal et al. (Khandelwal et al. 2017) generated 8-day composite water area time series 

datasets for 94 reservoirs using MODIS multispectral data at 500 m resolution. In the 

meantime, many studies have focused on generating satellite-based reservoir storage 

estimations by combining elevation and area observations collected from multiple missions 

(Busker et al. 2019; Crétaux et al. 2011; Gao et al. 2012; Zhang et al. 2014). For example, Gao 

et al. (Gao et al. 2012) monitored storage values for 34 global reservoirs from 1992 to 2010 by 

combining water surface areas from MODIS with water elevations from satellite radar 

altimetry (which represented 15% of the total global reservoir capacity during that period). The 

Hydroweb database (http://hydroweb.theia-land.fr/) estimates the storage changes for about 60 

large lakes and reservoirs beginning in 1992, using multi-source satellite imagery (e.g., MODIS 

and Landsat) and radar altimetry data (Crétaux et al. 2011). More recently, Busker et al. 

http://hydroweb.theia-land.fr/
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(Busker et al. 2019) analyzed the monthly volume variations between 1984 and 2015 for 137 

lakes and reservoirs at a global scale by combining water area values from the GSW dataset 

(Pekel et al. 2016) and elevation values from DAHITI (Schwatke et al. 2015).  

Meanwhile, some new approaches have been recently developed to estimate evaporation rates 

and losses from space. For instance, Zhang et al. (2017) estimated the monthly evaporation 

volumes based on pan-derived evaporative rates and Landsat surface areas for more than 200 

reservoirs in Texas. Zhao and Gao (2019) used the Penman Equation (with the heat storage and 

fetch effects addressed), and generated a first long-term evaporation data record for over 700 

reservoirs in the Contiguous United States. Zhao et al. (2020) further improved the calculation 

of the heat storage change term by leveraging MODIS surface temperature data. Many other 

approaches were developed and tested at individual locations (Althoff et al. 2019; Meng et al. 

2020; Mhawej et al. 2020). 

Despite the development of remotely sensed reservoir datasets, consistent, comprehensive, 

long-term, and operationally monitored reservoir products are still lacking at the global scale. 

Therefore, the newly developed NASA global MODIS water reservoir product (MxD28) can 

fill in this knowledge gap. 

3. MxD28 Algorithm Descriptions 

The MxD28C2 product includes the reservoir area, elevation, and storage results at 8-day 

temporal resolution. Figure 1 shows the flowchart for generating the MxD28C2 product. The 

algorithms corresponding to both products are explained in the following sections. First, the 8-

day reservoir area values were extracted from the 250-m Near Infrared (NIR) band of MODIS 

Terra/Aqua surface reflectance (MxD09Q1) data. Then, the area values were applied to the 

Area-Elevation (A-E) relationship for the given reservoir provided by the GRBD (Li et al. 

2020) to calculate the corresponding elevation values. Lastly, the reservoir storage was 

estimated after Gao et al. (2012). 

Figure 1. Flow chart of the algorithm for deriving the MxD28C2 (8-day) product. The green 

boxes represent the product components. 
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The MxD28C3 product includes the evaporation rate and volumetric evaporation loss in 

addition to the area, elevation, and storage results at monthly temporal resolution. Figure 2 

shows the flowchart for generating the MxD28C3 monthly product. The monthly area values 

were first estimated based on the composite of the 8-day area classifications, and then 

converted to monthly elevation and storage results using the A-E relationship (Figure 2). In 

addition, monthly evaporation rates were estimated after the Lake Temperature and 

Evaporation Model (LTEM) (Zhao et al. 2020) using MODIS LST product (MxD21A2) and 

meteorological data from the Global Land Data Assimilation System (GLDAS) (Rodell et al. 

2004). Lastly, the monthly evaporative volumetric losses were calculated as the product of 

evaporation rate and reservoir area values. 

Figure 2. Flow chart of the algorithm for deriving the MxD28C3 product, which contains 

monthly area, elevation, storage, evaporation rate, and volumetric evaporation loss results for 

the 164 reservoirs. The green boxes represent the product components. 

The detailed algorithms for generating reservoir area, elevation, storage, evaporation rate, and 

evaporation volume are explained in the following subsections. 

3.1 Algorithms for reservoir area 

3.1.1 Algorithm for MxD28C2 (8-day Product) 

The algorithm for estimation of reservoir area is explained using the following steps (as 

illustrated in Figure 3). 
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Figure 3. Flowchart for the the Image Enhancement Algorithm. 

1. Mask creation: For a given reservoir of interest, the shapefiles from HydroLAKES 

(Messager et al. 2016) and OpenStreetMap (Haklay and Weber 2008) were compared and 

the one with the larger area was selected. By leveraging these two shapefile datasets, the 

possible underestimations from either of them can be eliminated. It should be noted that we 

manually corrected some polygons that were found to have large discrepancies from 

Google maps. These alterations are reported in Li et al. (2020). The reservoir mask was 

then generated by buffering the selected shapefile outward by 1000 m. This buffering 

approach allowed the mask to include all possible water pixels (Gao et al. 2012). All of the 

subsequent steps were executed within the masked region.  

2. Otsu classification. For each of the MODIS NIR image, the contaminated pixels (i.e., 

cloud, cloud shadow, or snow/ice) were removed by using the quality assurance (QA) band 
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of MOD09Q1. Then, the Otsu thresholding method (Otsu 1979) was applied to the clear 

pixels for classifying the raw water area.  

3. Enhancement decision. The contamination percentage (CP) were calculated for each 

image using the number of contaminated pixels divided by the total number of pixels inside 

of the reservoir mask. If CP ≥ 60%, which indicating severe contamination of the NIR 

image, the raw water area was discarded and the water area was reported as a “missing” 

value (i.e., -9999). If CP < 15%, the image was regarded as clear image and the raw water 

area was reported as the final water area for this 8-day timeframe. Otherwise (15% ≤ CP 

<60%), the following enhancement algorithm was performed.  

4. Percentile image creation. The surface water occurrence (value ranges from 0% to 100%) 

image from global surface water dataset (GSWD; Pekel et al. (2016)) was resampled from 

its original 30m resolution to MODIS 250m resolution. Then it was grouped into 50 zones 

based on the occurrence values, using a fixed increment percentile value of 2%. This 

threshold (of 2%) allowed us to narrow down the differences among pixels within a given 

zone. In other words, all the pixels within the same zone indicate that they have a similar 

possibility of being classified as water. 

5. Water fraction calculation (by zone): Zonal water coverage maps are created for each 

classification image overlaying the percentile mask image on it (shown in Figure 4, rows a 

and b). The percentage of water pixels within each zone is calculated using Equation (1): 

 

𝑝𝑖 =  
𝑛𝑖

𝑁𝑖
,    𝑖 = 1, 2, … , 𝑘                                                 (1) 

where 𝑛𝑖 is the number of pixels in the ith zone that are classified as water (according to the 

MODIS NIR classification), 𝑁𝑖 is the total number of pixels in the ith zone (according to 

the delineation of the percentile image), and 𝑘  is the total number of zones. In the 

simplification example, the 𝑝𝑖 value for zone 1, zone 2, and zone 3 are 15/16, 6/9, and 0/3, 

respectively.  
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Figure 4. A simple example showing the classification image enhancement process: (a) 

dividing the mask file into multiple zones (i.e., three zones in this example); (b) assigning 

zone values to the classified image; and (c) enhancing the classified image based on image 

quality. 

6. Image quality assessment: A quality parameter (𝑄) is computed for each classification 

image according to Equation (2).  

 

𝑄 =  
∑ (𝑝𝑖 − 0.5)2𝑘

𝑖=1

𝑘
                                                 (2) 

𝑄 is a measure of the overall consistency of the surface water classification from a MODIS 

NIR image. Given 𝑝𝑖 is from 0 to 1, 𝑄 has a range between 0 to 0.25. The 𝑄 value increases 

as the quality of a water classification image increases. If a classification is of high quality, 

then the 𝑝𝑖 values for the zones classified as water should be 1 (or close to 1), while the 𝑝𝑖 

values for the zones classified as land should be zero (or close to zero). In the case of an 

ideal classification (i.e., 𝑝𝑖 equal or close to 1 or 0 for all i values), the 𝑄 value is close to 
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the maximum (0.25). In contrast, if a classification image is of very low quality, the 𝑝𝑖 

values for most of the zones should be close to 0.5 (0.5 represents the case of a random 

distribution of water pixels within a zone). As a result, the 𝑄 value is close to zero for a 

low-quality image. For the sample classification illustrated in Figure 4, its 𝑄 value equals 

to 0.156. 

7. Classification image enhancement: For each zone (i = 1, 2, …, k) within one classification 

image, if its 𝑝𝑖  value is larger than a threshold 𝑇, then all pixels in the jth zone (j ranges from 

i+1 to k) are set as water. The threshold 𝑇 is determined according to equation (3): 

𝑇 =  {
𝐶𝑝  𝑄 >  𝐶𝑄

 𝑝𝑚 𝑄 ≤  𝐶𝑄
                                                     (3) 

where  𝑝𝑚 is the median of all the  𝑝𝑖  values within one classification image, and 𝐶𝑝 and 

𝐶𝑄  are each constant parameters. The threshold value 𝑇 for each image is based on its 

quality 𝑄: if 𝑄 is larger than 𝐶𝑝, then 𝑇 is equal to 𝐶𝑝; otherwise, 𝑇 equals  𝑝𝑚. Calibrated 

over two reservoirs where observations are available (i.e., the Pong and Hirakud 

reservoirs), 𝐶𝑝 and 𝐶𝑄  are set to 0.7 and 0.1, respectively. The enhancement process for this 

simplified example is illustrated in Figure 4 (row c). Given that the 𝑄 value (𝑄 = 0.156) of 

the classification image is larger than 𝐶𝑄 (𝐶𝑄=0.1), the threshold 𝑇 is set to 0.7. For this 

classification image, since  𝑝1 ( 𝑝1 = 0.94) is larger than 𝑇 (𝑇 = 0.7), all pixels in zone 2 

and zone 3 are assigned as water. 

This classification image enhancement is based on two principles. First, a good 

classification image should have good consistency—meaning pixels in the same zone 

should have the same classification results. Second, pixels in the zones with a higher 

percentile should have a greater possibility of being classified as water than those in zones 

with lower percentile values. This means that if the probability that a zone is covered by 

water exceeds the threshold T (as defined in Equation (3)) all pixels of the remaining inner 

reservoir zones are labeled as water. 

3.1.2 Algorithm for MxD28C3 (Monthly Product) 

The monthly enhanced area values were estimated similarly as 8-day product but based on the 

composite of the 8-day area classifications. A pixel was assigned as a water pixel if this pixel 

was classified as water in any of the 8-day images within this month. This “max” composite 

approach might slightly overestimate the monthly mean water area value. However, given that 
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the water area variation within a month is relatively small for large reservoirs (except when 

there is flooding), the monthly area time series can adequately represent the long-term 

dynamics of the reservoir.  

3.2 Algorithms for reservoir elevation and storage 

The enhanced area values (𝐴𝑀𝑂𝐷𝐼𝑆) were applied to the Area-Elevation (A-E) relationship 

(Equation (4)) to calculate the corresponding elevation values (ℎ𝑀𝑂𝐷𝐼𝑆 ). For each given 

reservoir, the A-E relationship function, 𝑓() , was adopted from the Global Reservoir 

Bathymetry Dataset (GRBD; Li et al. (2020)). 

  ℎ𝑀𝑂𝐷𝐼𝑆 = 𝑓(𝐴𝑀𝑂𝐷𝐼𝑆)     (4) 

The corresponding reservoir storage can be estimated using Equation (5) (after Gao et al. 

(2012)): 

𝑉𝑀𝑂𝐷𝐼𝑆 =  𝑉𝑐 − (𝐴𝑐 + 𝐴𝑀𝑂𝐷𝐼𝑆)(ℎ𝑐 − ℎ𝑀𝑂𝐷𝐼𝑆) 2⁄                                 (5) 

where 𝑉𝑐, 𝐴𝑐, and ℎ𝑐 represent storage, area, and water elevation values at capacity; and 𝑉𝑀𝑂𝐷𝐼𝑆, 

𝐴𝑀𝑂𝐷𝐼𝑆, and ℎ𝑀𝑂𝐷𝐼𝑆 are the estimated storage, area, and water elevation from MODIS.   

3.3  Algorithms for evaporation rate and evaporation volume 

The detailed algorithm for the evaporation rate and volumetric evaporation loss (for 

MxD28C3) is explained in following sections. 

3.3.1 Generating water surface temperature (WST) value 

Similar to the monthly water area calculation, the WST value for each month was calculated 

using the monthly composite of 8-day LST images (i.e., MOD21A2 and MYD21A2). For each 

month, a composite image was first created by averaging the 8-day LST images in this month. 

Then, the two bands (daytime LST and nighttime LST) were averaged to generate the monthly 

mean LST image. Since the daily temperature variations roughly follow a sinusoidal curve, the 

average of the MODIS daytime and nighttime temperatures (1:30/13:30 local time for Aqua 

and 10:30/22:30 for Terra) can effectively represent the mean daily temperature.  

The reservoir average WST was then calculated by averaging the LST pixel values that overlap 

with the raw water area (generated in Section 3.1.2). Because the raw water area has a 

resolution of 250m and LST image has a resolution of 1km, the raw water area image was up-

scaled to 1km resolution: For each 1km pixel (overlapping with 16 pixels in 250m resolution), 
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the percentage of water area inside of this pixel was calculated. For example, if there are 9 

pixels out of 16 in the 250m image is classified as water, then the water area percentage of this 

1km pixel is 9/16 = 56.25%. In order to reduce the impacts of mixed pixel in the LST image 

on the average WST value, we only selected the 1km pixels that have water area percentage 

greater than or equal to 75% (i.e., at least 12 water pixels in 250m resolution). 

3.3.2 Calculating evaporation rate time series using LTEM 

The evaporation rate calculation in LTEM is based on the Penman equation, with the wind 

function represented after Zhao and Gao (2019) (Equation 6):  

𝐸 =
∆(𝑅𝑛 − 𝐺) + 𝛾𝑓(𝑢)(𝑒𝑠 − 𝑒𝑎)

𝜆𝑣(∆ + 𝛾)
                                           (6) 

where 𝐸 is the open water evaporation rate (mm·d-1); ∆ is the slope of the saturation vapor 

pressure curve (kPa·°C-1); 𝑅𝑛 is the net radiation (MJ·m-2·d-1); 𝐺 is the heat storage change of 

the water body (MJ·m-2·d-1); 𝛾  is the psychrometric constant (kPa·°C-1); 𝑓(𝑢) is the wind 

function that is dependent on reservoir fetch (MJ·m-2·d-1·kPa-1) (McJannet et al. 2012); 𝑒𝑠 is 

the saturated vapor pressure at air temperature (kPa); 𝑒𝑎 is the air vapor pressure (kPa); and 𝜆𝑣 

is the latent heat of vaporization (MJ·kg-1). The Penman equation and its variants (e.g., the 

Penman-Monteith equation) have been widely employed for potential evapotranspiration as 

well as for open water evaporation estimations (McJannet et al. 2008; McMahon et al. 2013; 

Tanny et al. 2008).  

However, there are two key factors that need to be considered when applying the Penman 

equation to open water evaporation estimation. The first is associated with the meteorological 

data that are used to drive the Penman equation. Ideally, the meteorological data should be 

directly collected over the water surface. However, due to the difficulties, logistics, and costs 

associated with acquiring measurements over water, most studies have employed land-based 

meteorological data as a substitute (Dos Reis and Dias 1998; McJannet et al. 2012; Winter et 

al. 1995). Direct use of land-based meteorological data in the Penman equation is likely to 

result in a biased estimation, given the meteorological differences between land and water areas 

(Weisman and Brutsaert 1973). Specifically, when air moves from land across the water body, 

its humidity gradually increases due to the evaporation processes on the water surface. This 

will lead to decreasing evaporation fluxes in the downwind direction. 
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To solve this problem, McJannet et al. (2012) developed a generally applicable wind function 

that facilitates the open-water evaporation rate calculation using standard land-based 

meteorology. This empirical function uses a fetch length to include the effect of air becoming 

moister when moving from land to water surface (Equation 7):  

𝑓(𝑢2) = 𝜆𝑣(2.33 + 1.65𝑢2)𝐿𝑓
−0.1                                           (7) 

where 𝑓(𝑢2) is the wind function (MJ·m-2·d-1·kPa-1); 𝑢2 is the wind speed at the height of 2 m 

(m·s-1); and 𝐿𝑓 is the fetch length of the water body (m). The coefficients in Equation 7 were 

identified by regressing 𝑢2 and 𝐿𝑓 against data from 19 previously published wind functions, 

which represent a range of water bodies with various sizes and climate conditions (McJannet 

et al. 2012). Because the wind speed values from reanalysis datasets are generally reported at 

a 10-m height, they were converted to 2-m values using the standard grass surface roughness 

(Allen et al. 1998). Open water roughness was not used in order to be consistent with the 

generalized wind function from (McJannet et al. 2012).  

The fetch length was calculated for each reservoir and each month (Figure 5). With a given 

wind direction (monthly dominant wind direction derived from NCEP/NCAR Reanalysis data; 

Kalnay et al. (1996)), the width is defined as the distance between the two reservoir-tangent 

lines that are parallel to the wind direction. Then fetch length was calculated by dividing the 

total area with the width. 

 

Figure 5. Calculation of the reservoir fetch for a given wind direction. 
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The second key factor to be considered when applying the Penman equation to open water 

evaporation is the heat storage quantification. For instance, reservoirs tend to store heat in the 

spring/summer and release heat in the fall/winter. Without considering this heat storage effect, 

the evaporation rate would be overestimated in the former and underestimated in the latter.  

In the following sub-sections (3.3.2.1 to 3.3.2.3), we focused on explaining the new approach 

for quantifying the heat storage change term that leverages MODIS WST data. The heat storage 

changes (𝐺) can be calculated using temperature profile data for two consecutive time steps 

(Equation 8; Gianniou and Antonopoulos (2007)): 

𝐺 =
1

𝐴𝑠

d

d𝑡
∫ 𝜌𝑤,𝑧,𝑡𝑐𝑤,𝑧,𝑡𝐴𝑧,𝑡𝑇𝑧,𝑡 d𝑧

𝐷𝑡

0

                                          (8) 

where 𝐴𝑠 is the surface area of the water body (m2); 𝑡 is the current time step (d); 𝜌𝑤,𝑧,𝑡 is the 

density of water at depth 𝑧 and time 𝑡 (kg·m-3); 𝑐𝑤,𝑧,𝑡 is the specific heat of water at depth 𝑧 

and time 𝑡  (J·kg-1·°C-1), 𝐴𝑧,𝑡  is the water area at depth 𝑧  and time 𝑡  (m2); 𝑇𝑧,𝑡  is the water 

temperature at depth 𝑧 and time 𝑡 (°C); and 𝐷𝑡 is the total depth of the water body at time 𝑡 

(m). 

To simulate the temperature profile for each time step (𝑇𝑧,𝑡, 0 ≤ 𝑧 ≤ 𝐷𝑡 and 0 ≤ 𝑡 ≤ 𝐸𝑁𝐷) in 

LTEM, we integrated MODIS WST data into the 1-D Hostetler Model (Hostetler and Bartlein 

1990). In this subsection, we first explain the reservoir energy budget terms (3.3.2.1) and then 

the Hostetler Model (3.3.2.2), which were used to facilitate temperature profile and evaporation 

rate simulation in LTEM (3.3.2.3).  

3.3.2.1 Reservoir energy budget terms 

The evaporation process of a reservoir involves both energy fluxes at the water surface and 

energy transfer in the water body (Figure 6).  

 



15 
 

 

Figure 6. Schematic of the Lake Temperature and Evaporation Model (LTEM) model, which 

involves both energy fluxes at the water surface and energy transfer in the water body. PAR 

and NIR represent photosynthetically active radiation and near infrared radiation, respectively. 

Definitions for other energy terms can be found in Equations 9 and 16. 

 

For a water body, the net radiation (𝑅𝑛, MJ·m-2·d-1) can be formulated after Equation 9: 

𝑅𝑛 = 𝐾𝑖𝑛 − 𝐾𝑜𝑢𝑡 + 𝐿𝑖𝑛 − 𝐿𝑜𝑢𝑡                                               (9) 

where 𝐾𝑖𝑛 , 𝐾𝑜𝑢𝑡 , 𝐿𝑖𝑛 , and 𝐿𝑜𝑢𝑡  are surface incoming shortwave radiation (MJ·m-2·d-1), 

outgoing shortwave radiation (MJ·m-2·d-1), surface incoming longwave radiation (MJ·m-2·d-1), 

and outgoing longwave radiation (MJ·m-2·d-1), respectively. Among these terms, 𝐾𝑖𝑛 can be 

directly adopted from meteorological forcing inputs, while the others are calculated. 𝐾𝑜𝑢𝑡 can 

be calculated using the water surface albedo (𝛼) following Equation 10 after (Subin et al. 2012): 

𝐾𝑜𝑢𝑡 = 𝛼 ∙ 𝐾𝑖𝑛 =
0.05

cos 𝜃𝑠 + 0.15
∙ 𝐾𝑖𝑛                                         (10) 

where 𝜃𝑠 is the solar zenith angle (Zhao and Gao 2019). 𝐿𝑖𝑛 (MJ·m-2·d-1) and 𝐿𝑜𝑢𝑡 (MJ·m-2·d-

1) can be calculated using Equations 11 and 12 after the Stefan–Boltzmann Law: 

𝐿𝑖𝑛 = 𝜀𝑎𝜎(𝑇𝑎 + 273.15)4                                                   (11) 

𝐿𝑜𝑢𝑡 = 𝜀𝑤𝜎(𝑊𝑆𝑇 + 273.15)4                                               (12) 
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where 𝜀𝑎 is the emissivity of air with a cloudiness factor included (0-1; Zhao and Gao (2019)); 

𝜀𝑤 is the emissivity of water (0.97); 𝜎 is the Stefan-Boltzman constant (4.9×10-9 MJ·m-2·K-4·d-

1); and 𝑇𝑎 is the air temperature (℃). 

The net shortwave radiation ( 𝐾𝑖𝑛 − 𝐾𝑜𝑢𝑡 ) penetrates the water column and is absorbed 

according to the Beer-Lambert Law. The net shortwave radiation is divided into 

photosynthetically active radiation (PAR) and near-infrared radiation (NIR). The transmitted 

shortwave energy at depth 𝑧 (denoted as 𝐾𝑧) can be calculated after Equation 13 (Ingle Jr and 

Crouch, 1988): 

𝐾𝑧 = (𝐾𝑖𝑛 − 𝐾𝑜𝑢𝑡) ∙ (𝜃𝑃𝐴𝑅𝑒−𝜆𝑃𝐴𝑅∙z + 𝜃𝑁𝐼𝑅𝑒−𝜆𝑁𝐼𝑅∙z)                             (13) 

where 𝜃𝑃𝐴𝑅  and 𝜃𝑁𝐼𝑅  are the shortwave radiation fractions of PAR and NIR; and 𝜆𝑃𝐴𝑅  and 

𝜆𝑁𝐼𝑅 are the light attenuation coefficients of PAR and NIR. After Escobedo et al. (2009), 𝜃𝑃𝐴𝑅 

and 𝜃𝑁𝐼𝑅  are set to 0.54 and 0.46, respectively. 𝜆𝑁𝐼𝑅  is set to 1.4 m-1 after Bowling and 

Lettenmaier (2010). The 𝜆𝑃𝐴𝑅  value is provided by the user when direct light attenuation 

measurements are available, or it can be calculated from the Secchi depth measurement (𝑍𝑠𝑑, 

in m) using Equation 14 (Devlin et al. 2008). Alternatively, 𝜆𝑃𝐴𝑅 can be empirically calculated 

using the lake/reservoir average depth (𝐷, in m) after Equation 15 (Bennington et al. 2014; 

Håkanson 1995). Because Secchi depth data is not available at a global scale (for all the 164 

reservoirs), we used Equation 15 here for calculating 𝜆𝑃𝐴𝑅. 

𝜆𝑃𝐴𝑅 = 𝑒𝑥 𝑝(0.253 − 1.029 ∙ 𝑙𝑛𝑍𝑠𝑑)                                        (14) 

𝜆𝑃𝐴𝑅 = 1.1925𝐷−0.424                                                     (15) 

Unlike shortwave radiation which can penetrate water, the incoming longwave radiation (𝐿𝑖𝑛) 

is only absorbed by the water surface. Meanwhile, the surface also loses energy through 

outgoing longwave radiation (𝐿𝑜𝑢𝑡), latent heat flux (𝐿𝐸, MJ·m-2·d-1), and sensible heat flux 

(𝐻, MJ·m-2·d-1). In summary, for a given water body, the energy it receives can be separated 

into two parts based on location: 1) the “penetrating” net shortwave radiation (𝐾𝑖𝑛 − 𝐾𝑜𝑢𝑡), and 

2) the “surface” energy influx (𝐸𝐼𝑠) which is defined after Equation 16: 

𝐸𝐼𝑠 = 𝐿𝑖𝑛 − 𝐿𝑜𝑢𝑡 − 𝐿𝐸 − 𝐻                                                (16) 
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3.3.2.2 The Hostetler Model 

To facilitate the calculation of temperature profile, the modified Hostetler Model scheme was 

adopted from Bowling and Lettenmaier (2010) and Subin et al. (2012). The governing equation 

for water temperature profile is denoted as a partial differential equation (Equation 17):  

𝜕𝑇𝑧,𝑡

𝜕𝑡
=

1

𝐴𝑧,𝑡

𝜕

𝜕𝑧
[𝐴𝑧,𝑡(𝜅𝑚 + 𝜅𝐸,𝑧,𝑡 + 𝜅𝑒𝑛)

𝜕𝑇𝑧,𝑡

𝜕𝑧
] +

1

𝐴𝑧,𝑡

1

𝑐𝑤,𝑧,𝑡

𝜕(𝐾𝑧,𝑡𝐴𝑧,𝑡)

𝜕𝑧
              (17) 

where 𝑇𝑧,𝑡  is the water temperature at depth 𝑧  and time 𝑡 ; 𝜅𝑚  is the molecular diffusivity 

(1.39×10-7 m2·s-1); 𝜅𝐸,𝑧,𝑡 and 𝜅𝑒𝑛 are the eddy and enhanced diffusivities, respectively (m2·s-

1); 𝐾𝑧,𝑡  is 𝐾𝑧  (Equation 13) at time 𝑡 ; and 𝐴𝑧,𝑡  is the area at depth 𝑧  and time 𝑡  (which is 

calculated using the reservoir bathymetry). Following Hostetler and Bartlein (1990), 𝜅𝐸,𝑧,𝑡 can 

be calculated after Equation 18: 

𝜅𝐸,𝑧,𝑡 =
(𝜅𝜈𝑠𝑧/𝑃0)𝑒−𝑘𝑒𝑧

1 + 37𝑅𝑖
2                                                       (18) 

where 𝜅 is the von Kármán constant (0.4); 𝜈𝑠 is the surface shear velocity (which depends on 

surface forcing and temperature; Vickers et al. (2015)); 𝑃0 is the neutral value of the turbulent 

Prandtl number (1.0); 𝑘𝑒 is the Ekman profile parameter; and 𝑅𝑖 is the gradient Richardson 

number. The detailed formulation for these parameters can be found in Hostetler and Bartlein 

(1990). 

The enhanced diffusion is introduced by turbulence sources other than wind-driven eddies, 

such as surface water inflow/outflow, seiches, the horizontal temperature gradient, and aquatic 

life movement. 𝜅𝑒𝑛 can be written as Equation 19: 

𝜅𝑒𝑛 = 𝛼𝜅 ∙ 1.04 × 10−8(𝑁2)−0.43                                           (19) 

where 𝛼𝜅 is the enhanced diffusion coefficient (0 ≤ 𝛼𝜅 ≤ 1000; Bennington et al. (2014)), and 

𝑁2 is the Brunt-Vaisala frequency (s-2) (Fang and Stefan 1996; Subin et al. 2012). The value 

of 𝛼𝜅 can be calibrated using temperature profile measurements (Ellis et al. 1991). We used an 

empirical value of 20 for 𝛼𝜅 for this MODIS product. We did, however, test the sensitivity of  

𝛼𝜅 (using Lake Mead as an example) to find its impacts on the temperature profile and the 

evaporation rate (Section 4.4 of Zhao et al. (2020)).  

For general Hostetler Model applications, the water temperature profiles are calculated after 

Equation 17 with 𝐾𝑖𝑛 − 𝐾𝑜𝑢𝑡 and 𝐸𝐼𝑠 as energy inputs. Then, the convection is implemented 
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from the top layer to the bottom according to the temperature-based density gradient. For 

instance, if an upper layer is denser than its adjacent lower layer (density calculated based on 

temperature), then these two layers will be mixed and the resulting thickness-weighted average 

temperature will be assigned to both of them. This convection process is executed until there 

is no inverse density gradient. 

3.3.2.3 Reservoir temperature profile and evaporation simulation 

The process at each time step is summarized in the following 6 steps (and in the flowchart in 

Figure 7): 

1. Prior to the iteration at the current time step (𝑡), it was first assumed that there is no 

heat storage effect in the Penman equation (i.e., 𝐺 = 0 in Equation 6). Thus, an initial 

value of 𝐸𝐼𝑠 can be calculated, with 𝐿𝐸 = 𝜆𝑣𝐸 and 𝐻 calculated after Equation 20 

(with the same wind function as used in Equation 6): 

𝐻 = 𝛾𝑓(𝑢)(𝑊𝑆𝑇𝑡 − 𝑇𝑎)                                                     (20) 

2. 𝑇𝑧,𝑡  (0 ≤ 𝑧 ≤ 𝐷𝑡) can then be calculated using the Hostetler Model based on 𝑇𝑧,𝑡−1 

(0 ≤ 𝑧 ≤ 𝐷𝑡−1), along with 𝐾𝑖𝑛 − 𝐾𝑜𝑢𝑡, 𝐸𝐼𝑠, and the layer configuration derived from 

the reservoir bathymetry. For the current version of the calculation, the reservoir 

bathymetry was assumed to be cylindrical to avoid the impacts of reservoir sediment 

heating⸺meaning the radiative energy will be trapped in the bottom instead of 

reflecting back in the shallow reservoirs.   

3. The remotely sensed skin temperature at time 𝑡  (𝑊𝑆𝑇𝑡 ) was converted to the bulk 

temperature (𝑇𝑡
𝑏𝑢𝑙𝑘) by considering the cool-skin effect (∆𝑇𝑠𝑘𝑖𝑛,𝑡) after Equation 21 

(Artale et al. 2002). Compared to the more complex formulation provided by Fairall et 

al. (1996), the formulation by (Artale et al. 2002) significantly simplifies the 

computation and still produces satisfactory outputs (Tu and Tsuang 2005).  

𝑇𝑡
𝑏𝑢𝑙𝑘 = 𝑊𝑆𝑇𝑡 + ∆𝑇𝑠𝑘𝑖𝑛,𝑡 = 𝑊𝑆𝑇𝑡 +

𝐸𝐼𝑠/0.0864 ∙ 𝛿

𝑘
                             (21) 

where 𝛿 is the thickness of the skin layer (m), and 𝑘 is the thermal conductivity of water 

(W·m-1·K-1). This bulk temperature represents the water temperature of the first water 

layer right beneath the skin layer.  
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4. If the simulated 𝑇0,𝑡 was different from the remotely sensed 𝑇𝑡
𝑏𝑢𝑙𝑘—which indicated 

that the initial 𝐸𝐼𝑠 was biased— ∆𝐸𝐼 was subtracted from 𝐸𝐼𝑠, and Steps 2 and 3 were 

repeated. This iteration was executed until |𝑇0,𝑡 − 𝑇𝑡
𝑏𝑢𝑙𝑘| was smaller than 𝜖 (e.g., 0.01 

°C). ∆𝐸𝐼 is defined as: 

∆𝐸𝐼 = 𝑙𝑟 ∙ (𝑇0,𝑡 − 𝑇𝑡
𝑏𝑢𝑙𝑘)                                                 (22) 

where 𝑙𝑟 is the learning rate (e.g., 𝜋, or other irrational numbers).  

5. After the model had converged (i.e., |𝑇0,𝑡 − 𝑇𝑡
𝑏𝑢𝑙𝑘| < 𝜖), the heat storage change (𝐺) 

was calculated following Equation 8 (Gianniou and Antonopoulos 2007). 

6. The evaporation rate (𝐸) was then calculated using the Penman equation (with the wind 

function represented) after Equation 1 in Zhao and Gao (2019). 

 

Figure 7. Flowchart for calculating the water temperature profile from 𝑡 − 1 to 𝑡, and the heat 

storage and evaporation rates. Green and blue colors indicate inputs and outputs, respectively. 
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In summary, by implementing the above iterations, the water temperature profile at the 

previous time step (𝑇𝑧,𝑡−1)—and the water skin temperature at the current time step (𝑊𝑆𝑇𝑡)—

can lead to the water temperature profile at the current time step (𝑇𝑧,𝑡 ). To get a stable 

temperature profile time series, LTEM can be spun up for a sufficient period of time (e.g., 24-

months), and then normal simulations can be started. We implemented LTEM at a monthly 

time step—meaning that we solved the temperature profile for each month, and then calculated 

the evaporation rate for each month.  

3.3.3 Calculating volumetric evaporation 

After calculating the evaporation rate time series, the volumetric evaporation can be inferred 

by multiplying the evaporation rate with the surface area (Equation 23). 

𝑉𝐸 = 𝐸 × 𝐴                                                                 (23) 

where 𝐸 is the evaporation rate (mm/d) and 𝐴 is the enhanced water area (km2). 

4. Input Datasets 

The input datasets include three categories: reservoir shapefiles, input variables, and reservoir 

parameters. The details of these inputs can be found in the following sub-sections. 

4.1 Reservoir shapefiles 

The reservoir shapefiles were adopted from HydroLAKES (Messager et al. 2016) and 

OpenStreetMap (Haklay and Weber 2008). For a given reservoir, the two shapefiles were 

compared and the one with the larger area was selected. By leveraging these two shapefile 

datasets, the possible underestimations from either of them can be eliminated. It should be 

noted that we manually corrected some polygons that were found to have large discrepancies 

from Google maps. The purposes of the shapefiles are two-fold: for extracting the 

meteorological data over the reservoirs and for generating reservoir masks.  

4.2 Input variables 

The time varying input variables are from other MODIS products and meteorological data, 

which are summarized in Table 1. 
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Table 1. Summary of the input variable names, sources and purposes used in this study 

Data Spatial 

resolution 

Temporal 

resolution 

Purpose Reference 

Terra surface 

reflectance 

(MOD09Q1) 

250 m 8-day Water area 

extraction 

Vermote (2015) 

Aqua surface 

reflectance 

(MYD09Q1) 

250 m 8-day Water area 

extraction 

Vermote (2015) 

Terra LST 

(MOD21A2) 

1 km 8-day WST 

extraction 

Hulley and Hook 

(2017) 

Aqua LST 

(MYD21A2) 

1 km 8-day WST 

extraction 

Hulley and Hook 

(2017) 

GLDAS-2.1 0.25° 1-month Meteorological 

forcing data for 

LTEM 

Rodell et al. 

(2004); Beaudoing 

and Rodell (2020) 

The land surface temperature contains day/night surface temperature for inland water areas.  

(1) Inputs from other MODIS products 

For MxD28C2, the 8-day Terra/Aqua surface reflectance (MxD09Q1) data were collected for 

water area extraction (Vermote 2015). Specially, only the near-infrared (NIR) band was used 

due to its high spatial resolution (i.e., 250 m for MODIS). The NIR band has been commonly 

utilized for the extraction of water bodies because it is strongly absorbed by water but scarcely 

absorbed by terrestrial dry soil and vegetation (McFeeters 1996). The A-E relationships were 

adopted from GRBD (Li et al. 2020), which have proven to be of high quality through 

validation against in situ data. Then, the 8-day water area estimations were applied to the A-E 

relationships to derive elevation and storage values.  Moreover, we used the 8-day day/night 

land surface temperature (LST) products (MxD21A2; Hulley and Hook (2017)) and Global 

Land Data Assimilation System (GLDAS; Rodell et al. (2004)) meteorological forcing data to 

estimate the evaporation rates and volumes (see Section 3.3 for more detailed approach).  

(2) Meteorological data 

We obtained the meteorological data from the NASA Global Land Data Assimilation System 

Version 2.1 (GLDAS-2.1; Rodell et al. (2004); Beaudoing and Rodell (2020)) to drive the 
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LTEM. In this version GLDAS is forced with a combination of model and observation data 

from 2000 to present. For instance, it was forced with National Oceanic and Atmospheric 

Administration (NOAA)/Global Data Assimilation System (GDAS) atmospheric analysis 

fields (Derber et al. 1991), the disaggregated Global Precipitation Climatology Project (GPCP) 

precipitation fields (Adler et al. 2003), and the Air Force Weather Agency's AGRicultural 

METeorological modeling system (AGRMET) radiation fields which became available for 

March 1, 2001 onwards. We used monthly downward shortwave radiation (W/m2), air 

temperature (in K), specific humidity (in kg/kg), and wind speed (in m/s) data from Mar 2000 

to present, with a spatial resolution of 0.25 degree to drive the LTEM. For any reservoir 

covering multiple GLDAS grids, the meteorological forcings were first averaged over those 

grids. 

4.3 Reservoir parameters 

The following reservoir parameters are used for generating the products: storage at capacity, 

elevation at capacity, surface area at capacity, A-E relationship, average reservoir depth, and 

average latitude. The detailed information for each reservoir is provided in appendix A. More 

details about the algorithms for generating the A-E relationships are available in Li et al. 

(2020)).  

5. Results and Uncertainties 

5.1 Validation results 

5.1.1 Comparing water surface areas with Landsat measurements 

At the global scale, long-term in situ reservoir area records are still lacking. Therefore, we 

compared the MODIS area values with Landsat based results (at a finer spatial resolution of 30 

m) for purposes of area validation. The Landsat monthly reservoir area values for all of the 164 

reservoirs were collected from Global Reservoir Surface Area Dataset (GRSAD; Zhao and Gao 

(2018)) between 2000 and 2018. GRSAD corrected the water area underestimation of the 

GSWD dataset (Pekel et al. 2016) caused by both cloud contamination and the Landsat-7 scan 

line corrector failure (Zhao and Gao 2018). Note that the Landsat based area estimation for a 

given month was based on the one or two images obtained during that month, while the monthly 

MODIS area value was derived from the composite of the 8-day classification. However, due 

to the deficiency of the in-situ area values, we used this Landsat based dataset to validate the 

overall consistency of the MODIS area products.  
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According to Figure 8, the MODIS based area values agree well with the Landsat based results 

(with an R2 value over 0.99). Additionally, the data points are mainly centered on the 1:1 line 

(slope = 0.99). The disagreements that do exist can be attributed to two sources: The first is 

because Landsat and MODIS collected data at different times. If a reservoir experienced a large 

change within a month, it may have caused a large area discrepancy. The second is related to 

the low spatial resolution of MODIS, which makes it more susceptible to mixed pixels. This 

can explain the area underestimations for relatively small reservoirs.  

 

Figure 8. The density plot of monthly area estimations between Landsat and MODIS from 

February 2000 to December 2018 for the 164 reservoirs. Note that the x-axis and y-axis 

use a logarithmic scale, and there are a total of 37228 (227×164) pairs. 

5.1.2. Validating the MODIS elevation and storage products against in situ observations 

For the elevation and storage validations, we collected in situ daily observations for twelve 

Indian reservoirs (Ukai, Matatila, Rana Pratap Sagar, Gandhi Sagar, Ban Sagar, Bargi, Hirakud, 

Jayakwadi, Sriram Sagar, Nagarjuna Sagar, Yeleru, and Tungabhadra) from the Indian Central 

Water Commission (http://cwc.gov.in/) between 2000 and 2019.  

The validation results of the 8-day MODIS elevation and storage products are shown in Figure 

9 and Figure 10, respectively. Overall, the elevation estimations from MODIS agree well with 

http://cwc.gov.in/


24 
 

the in-situ data (Figure 9), with an average R2 value of 0.87, an average RMSE value of 2.22 

m, and an average NRMSE value of 12.28%. The biases (e.g., overestimation for Tungabhadra 

and underestimation for Yeleru) are caused by a combination of mixed pixels of reservoir edge, 

parameterization of the enhancement algorithm, and the mismatch of MODIS water areas with 

Landsat water areas, which were used to derive A-E relationships for GRBD (Li et al. 2020). 

With regard to the storage validations (Figure 10), they have similar patterns with those of the 

elevation results because they were both derived from area time series. Validations against in 

situ data show an average R2 value of 0.88, an average RMSE value of 0.47 km3, and an average 

NRMSE value of 13.20%.  

 

Figure 9. Validation of MODIS 8-day elevation products for twelve Indian reservoirs from 

2000 to 2019. 
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Figure 10. Validation of MODIS 8-day storage products for twelve Indian reservoirs from 

2000 to 2019. 

Next, we validated the monthly elevation and storage products over these twelve Indian 

reservoirs. The daily in situ elevation and storage values were averaged at a monthly step, 

which were then compared to the monthly MODIS products (Figure 11 and 12). The validation 

results show similar patterns as those of the 8-day products, but higher accuracies. This is 

because the monthly reservoir area values were generated from the composited results of three 

or four 8-day reservoir areas from MxD28C2, and the composition process greatly reduced the 

adverse effects of cloud contamination at the 8-day time step. As shown in Figure 11, the 

MODIS based elevations show good consistency with the in situ measured data, with an 

average R2 value of 0.90, an average RMSE value of 1.99 m, and an average NRMSE value of 
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11.33%. Regarding the storage validations (Figure 12), the results are consistent with those of 

the elevations—with an average R2 value of 0.91, an average RMSE value of 0.43 km3, and an 

average NRMSE value of 11.91%.  

 

Figure 11. Validation of monthly elevation products for twelve Indian reservoirs from 

2000 to 2019. 
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Figure 12. Validation of monthly storage products for twelve Indian reservoirs from 2000 

to 2019. 

5.1.3. Validating the evaporation rate product against in situ observations 

The evaporation rate results were validated over two locations—Lake Nasser in Africa, and 

Lake Mead in North America—where in situ observations are available. The eddy covariance 

(EC) evaporation rate measurements for Lake Mead between 2010 and 2015 were provide by 

the United States Geological Survey (USGS) (Moreo 2015) With regard to Lake Nasser, the 

evaporation rate estimations were obtained using the Bowen ratio energy budget (BREB) 

method (Elsawwaf et al. 2010). Although it is not as accurate as EC observations, the BREB 

method has been widely utilized to estimate evaporation rates due to its operability and 

reliability (Lenters et al. 2005). As seen in Figure 13, the MODIS evaporation rate products 
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have an overall good agreement with values obtained via observation. Compared to the results 

which were calculated using the regular Penman equation (without heat storage), our MODIS 

evaporation rate estimates have shown great improvement in terms of both annual peak values 

and seasonal variations.  For Lake Nasser, the R2 value increases from 0.30 to 0.61, with the 

NRMSE decreasing from 26.86% to 16.25%. A greater improvement is observed for Lake 

Mead in terms of both R2 (from 0.26 to 0.66) and NRMSE (from 41.06% to 21.76%). These 

results suggest that better evaporation rate estimates are achieved when considering heat 

storage within the algorithm. 

 

Figure 13. Validation of the evaporation rates for (a) Lake Nasser and (b) Lake Mead 

using Bowen ratio energy budget (BREB) estimations and eddy covariance (EC) 

measurements. The evaporation rate for Lake Mead (from 2010 to 2015) was calculated 

using MYD21A2 LST data because current version of MOD21A2 only covers the years 

from 2000 to 2005 (when acquired in Nov 2020). Evaporation rate for Lake Nasser (from 

2000 to 2004) was calculated using MOD21A2 because the MYD21A2 product started 

from July 2002.  
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5.2 Sources of uncertainties 

The sources of uncertainty with regard to the MODIS reservoir surface area are associated with 

both the raw image classification using the MODIS reflectance product, and the classification 

enhancement algorithm. The accuracy of the Ostu classification of the MODIS NIR images is 

affected by the mixed pixels (i.e., partially covered by water and partially covered by land) at 

the reservoir boundaries, as well as by ice over the lakes. The reliability of the enhancement 

algorithm depends on the data quality of both the water occurrence image and the raw water 

classification. In high latitude regions, the water occurrence image generally shows small 

surface area dynamics (i.e., the distribution of occurrence values highly skewed to the left). 

Thus, the pixels with low occurrence values have relatively large uncertainties.   

The reservoir elevation and storage estimation uncertainties include reservoir surface area 

uncertainties (see above), A-E relationship uncertainties, and the reservoir configuration 

uncertainties. According to Equation (5), the estimated storage will be biased if the 

characteristics at capacity (storage, area, and elevation) are not accurate. Even when these 

factors have been correctly documented, the storage capacity may have changed due to 

sedimentation over time. Since the reservoir elevations are inferred only from areas and A-E 

relationships, they are not affected by reservoir configuration uncertainties.  

Sources of evaporation rate uncertainty mainly include forcing data uncertainty and model 

structure/parameter uncertainty. Specifically, the forcing data used in this study (i.e. GLADS-

2) is a land-based meteorological record. Although the increased humidity on the lake surface 

is represented by the wind function (McJannet et al. 2012; Zhao and Gao 2019), differences in 

the wind speeds between lake and land regions are ignored—which might introduce some 

uncertainties (Schwab and Morton 1984). In addition, the LTEM and its parameters can also 

produce uncertainties. For example, the formulation of the light attenuation coefficient 

(λ_PAR) is simplified using Equations 14 and 15. However, λ_PAR is affected by suspended 

solids, phytoplankton concentration level, and spectral distribution of solar radiation, and thus 

is constantly changing (Lee et al. 2005; Pinhassi et al. 2016).  

The reservoir volumetric evaporation uncertainties can be attributed to evaporation rate and 

surface area uncertainties, which have been discussed above. 
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Appendix-A 

Table A1. List of the 164 reservoirs and their attributes 

ID GRanD_id Res_name Country Continent A-E Coeff.1 

a, b 

Vc 

(km3) 

Ac 

(km2) 

Ec 

(m) 

Average 

Depth 

(m) 

Lon (⸰) Lat (⸰) 

1* 5058 Baikal Russia Asia 0.0045,312.77 23,615.4 32265.61 456.88 738.70 104.32 52.24 

2 3667 Volta Ghana Africa 0.0037,55.59 148.0 8502.00 86.65 24.50 0.06 6.30 

3 4478 Nasser Egypt Africa 0.0047,152.82 162.0 6500.00 183.28 30.10 32.89 23.97 

4 4056 Kariba Reservoir Zambia Africa 0.011,424.98 180.0 5400.00 485.41 35.10 28.76 -16.52 

5 5055 Bratsk Reservoir Russia Asia 0.0066,367.92 169.3 5470.00 403.85 35.10 101.78 56.29 

6 4787 Zaysan Kazakhstan Asia 0.0047,370.21 49.8 5490.00 395.74 12.60 83.35 49.66 

7 2294 Guri Reservoir Venezuela South 

America 

0.014,217.17 135.0 4250.00 278.38 36.90 -63.00 7.77 

8 1995 Caniapiscau 

Reservoir 

Canada North 

America 

0.012,489 53.8 4275.00 541.08 15.20 -69.78 54.85 

9 1394 Robert Bourassa 

Reservoir 

Canada North 

America 

0.011,143.99 61.7 2905.00 176.24 22.40 -77.45 53.79 

10 2516 Sobradinho 

Reservoir 

Brazil South 

America 

0.0057,375.27 34.1 3017.90 392.50 13.00 -40.82 -9.42 

11 712 Cedar Canada North 

America 

0.0022,250.49 9.6 2668.46 256.29 3.90 -99.29 53.16 

12 1396 La Grande 3 

Reservoir 

Canada North 

America 

0.025,195.26 60.0 2451.00 257.48 25.00 -75.96 53.73 

13 2365 Tucurui 

Reservoir 

Brazil South 

America 

0.013,40.96 45.5 2606.00 75.40 21.10 -49.65 -3.83 

14 4375 Tsimlyanskoye 

Reservoir 

Russia Euro 0.012,7.64 23.9 2702.00 39.44 10.60 42.11 47.61 

15 5834 Zeyskoye 

Reservoir 

Russia Asia 0.021,266.44 68.4 2420.00 316.41 30.60 127.31 53.77 
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16 5180 Vilyuy Reservoir Russia Asia 0.029,182.74 35.9 2170.00 244.62 16.40 112.48 63.03 

17 4783 Khantayskoye 

Reservoir 

Russia Asia 0.0044,49.76 23.5 2221.61 59.64 10.70 87.81 68.16 

18 4505 Cahora Bassa 

Reservoir 

Mozambique Africa 0.015,286.96 55.8 2739.00 329.18 30.80 32.70 -15.58 

19 6 Williston Canada North 

America 

0.053,580.99 39.5 1773.00 674.79 43.20 -122.20 56.02 

20 4472 Buhayrat ath 

Tharthar 

Iraq Asia 0.04,-19.46 85.6 2135.54 65.00 25.60 43.46 33.69 

21 5056 Krasnoyarsk 

Reservoir 

Russia Asia 0.039,162.77 73.3 2000.00 240.04 45.00 92.29 55.93 

22 4623 Kama Reservoir Russia Euro 0.0074,96.08 12.2 1915.00 110.32 7.70 56.34 58.12 

23 1957 Okeechobee United States  

of America 

North 

America 

0.0062,-5.57 5.2 1536.80 3.90 4.00 -81.10 26.94 

24 5295 Hungtze China Asia 0.0075,1.46 13.5 2074.61 17.00 9.80 118.73 33.09 

25 4474 Razazah Iraq Asia 0.015,11.07 25.8 1621.00 34.69 19.50 43.89 32.70 

26 2023 Gouin Reservoir Canada North 

America 

0.00068,402.91 8.6 1570.00 403.98 6.50 -74.10 48.36 

27 4789 Qapshaghay 

Bogeni Reservoir 

Kazakhstan Asia 0.009,467.11 28.1 1850.00 483.71 23.30 77.10 43.92 

28 753 Fort Berthold 

Reservoir 

United States  

of America 

North 

America 

0.025,528.65 29.4 1477.40 565.10 26.80 -101.43 47.51 

29 2445 Aperea Reservoir Paraguay South 

America 

0.022,48.84 21.0 1600.00 84.71 18.90 -56.63 -27.39 

30 870 Oahe United States 

 of America 

North 

America 

0.022,462.73 28.3 1429.57 493.78 26.60 -100.40 44.46 

31 2390 Ilha Solteira 

Reservoir 

Brazil South 

America 

0.032,290.95 21.2 1200.00 329.78 19.70 -51.38 -20.37 

32 4629 Saratov 

Reservoir 

Russia Euro 0.026,-0.28 12.9 1117.70 28.36 12.00 47.76 52.05 

33 4350 Imandra Russia Euro 0.19,-62.87 10.8 1062.37 136.07 10.20 32.55 67.41 
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34 3640 Kainji Reservoir Nigeria Africa 0.04,94 15.0 1071.23 136.81 14.50 4.61 9.87 

35 4785 Novosibirskoye Russia Asia 0.014,98.78 8.8 1070.00 113.97 8.60 83.00 54.84 

36 4625 Cheboksary Russia Euro 0.024,39.3 13.9 1080.38 65.73 12.70 47.46 56.14 

37 4359 Ilmen Russia Euro 0.0083,9.98 12.0 1120.00 19.28 12.50 31.28 58.46 

38 4480 Jebel Aulia 

Reservoir 

Sudan Africa 0.0062,375.01 3.5 861.19 380.39 3.70 32.48 15.24 

39 1397 Opinaca 

Reservoir 

Canada North 

America 

0.021,194.08 8.5 1040.00 216.10 9.10 -76.58 52.21 

40 2392 Furnas Brazil South 

America 

0.044,720.07 22.6 1127.07 769.32 24.70 -46.31 -20.67 

41 2368 Serra da Mesa 

Reservoir 

Brazil South 

America 

0.034,410.2 54.4 1784.00 470.07 59.00 -48.30 -13.84 

42 4624 Votkinsk 

Reservoir 

Russia Euro 0.039,53.14 9.4 850.82 86.25 11.20 54.08 56.80 

43 6201 Argyle Reservoir Australia Oceania 0.028,66.44 10.8 981.21 93.97 13.00 128.74 -16.12 

44 731 Rainy Canada North 

America 

0.00078,336.09 0.7 829.45 336.73 8.00 -93.36 48.62 

45 307 Fort Peck United States 

of America 

North 

America 

0.044,643.32 22.8 969.86 685.76 28.90 -106.41 48.00 

46 2375 Tres Marias 

Reservoir 

Brazil South 

America 

0.036,539.11 21.0 1040.00 576.06 26.30 -45.27 -18.21 

47 2012 Pipmuacan 

Reservoir 

Canada North 

America 

0.05,360.46 13.9 978.00 409.16 17.60 -69.77 49.36 

48 4679 Chardarinskoye Kazakhstan Asia 0.018,238.24 5.7 800.66 252.54 9.00 67.96 41.25 

49 4626 Nizhnekamsk 

Reservoir 

Russia Euro 0.014,50.37 13.8 1084.00 65.34 18.70 52.28 55.70 

50 2456 Negro Reservoir Uruguay South 

America 

0.019,62.01 8.8 1070.00 82.77 12.20 -56.42 -32.83 

51 2343 Chocon 

Reservoir 

Argentina South 

America 

0.015,365.75 22.0 820.00 378.20 30.90 -68.76 -39.27 

52 4442 Ataturk Dam Turkey Asia 0.11,454.25 48.7 817.00 541.20 70.10 38.32 37.49 
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53 2513 Itaparica 

Reservoir 

Brazil South 

America 

0.033,279.33 10.7 781.21 305.40 15.70 -38.31 -9.14 

54 4464 Assad Syria Asia 0.059,266.63 11.7 610.00 302.87 18.20 38.55 35.86 

55 3650 Lagdo Reservoir Cameroon Africa 0.037,190.16 7.7 691.12 216.00 12.50 13.69 9.06 

56 1269 Toledo Bend 

Reservoir 

United States 

of America 

North 

America 

0.02,39.46 5.5 636.18 52.43 10.50 -93.57 31.18 

57 6922 Eastmain 

Reservoir 

Canada North 

America 

0.068,245.92 6.9 602.90 286.82 11.51 -75.89 52.19 

58 2009 Outardes 4 

Reservoir 

Canada North 

America 

0.19,239.61 24.5 640.00 361.53 41.50 -68.91 49.71 

59 4349 Kovdozero Russia Euro 0.0019,78.18 3.7 745.00 79.62 19.70 31.76 68.60 

60 2380 Sao Simao 

Reservoir 

Brazil South 

America 

0.052,369.17 12.5 703.00 405.94 21.50 -50.50 -19.02 

61 610 Mead United States 

of America 

North 

America 

0.14,288.76 34.1 659.30 374.60 63.20 -114.73 36.02 

62 5087 Yamdrok China Asia 0.013,4435.36 14.6 638.00 4443.49 28.20 90.38 29.10 

63 1391 Angostura 

Reservoir 

Mexico North 

America 

0.081,478.96 18.2 640.00 530.67 16.20 -92.78 16.40 

64 4991 Srisailam 

Reservoir 

India Asia 0.031,253.3 8.3 534.05 269.75 16.30 78.90 16.09 

65 2455 Grande Reservoir Argentina South 

America 

0.031,16.89 5.0 592.83 35.08 10.30 -57.94 -31.27 

66 4843 Gandhisagar 

Reservoir 

India Asia 0.034,379.03 6.8 619.89 399.90 14.00 75.55 24.70 

67 2397 Promissao 

Reservoir 

Brazil South 

America 

0.08,342.73 7.4 513.39 384.00 14.50 -49.78 -21.30 

68 282 Arrow Canada North 

America 

0.17,351.07 10.3 504.82 439.30 22.20 -117.78 49.34 

69 2382 Agua Vermelha 

Reservoir 

Brazil South 

America 

0.056,351.62 11.0 563.15 383.30 21.90 -50.35 -19.87 
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70 4898 Hirakud 

Reservoir 

India Asia 0.022,177.26 5.4 669.62 192.02 16.20 83.85 21.52 

71 3041 Kossour 

Reservoir 

Ivory Coast Africa 0.034,169.78 27.7 1058.20 206.00 55.30 -5.47 7.03 

72 4784 Kureiskaya Russia Asia 0.05,67.89 10.0 558.00 95.63 19.80 88.29 66.95 

73 3071 Storsjon Sweden Euro 0.0042,291.09 8.0 484.60 293.13 38.30 14.47 63.30 

74 316 Flathead Lake United States 

of America 

North 

America 

0.13,816.09 23.2 510.00 883.61 50.20 -114.23 47.68 

75 2004 Kempt Canada North 

America 

0.033,478.6 2.2 470.44 494.18 4.70 -70.53 50.66 

76 6700 Kolyma dam Russia Asia 0.14,390.91 15.1 454.60 453.00 33.17 150.23 62.05 

77 4501 Mtera Reservoir United 

Republic of 

Tanzania 

Africa 0.022,688.05 3.2 478.83 698.50 7.20 35.98 -7.14 

78 4686 Kayrakkumskoye Tajikistan Asia 0.021,335.24 4.2 513.00 346.23 9.70 69.82 40.28 

79 250 Kinbasket Canada North 

America 

0.32,622.77 24.8 430.00 759.15 59.60 -118.57 52.08 

80 4634 Mingechaurskoye Azerbaijan Asia 0.072,42.02 15.7 567.97 83.00 38.50 47.03 40.80 

81 2431 Lago del Río 

Yguazú 

Paraguay South 

America 

0.045,203.13 8.5 620.00 231.14 20.80 -54.97 -25.37 

82 4858 Govind Ballabah 

Pant 

India Asia 0.062,241.75 5.7 426.36 268.22 26.60 83.00 24.20 

83 4422 Keban Baraji Turkey Asia 0.11,772.51 30.6 675.00 848.79 77.00 38.76 38.81 

84 2340 Los Barreales Argentina South 

America 

0.31,290.07 27.7 413.00 417.11 67.07 -68.69 -38.58 

85 4859 Bansagar Lake India Asia 0.051,317.64 5.2 471.60 341.64 14.10 81.29 24.19 

86 1275 Sam Rayburn 

Reservoir 

United States 

of America 

North 

America 

0.036,35.66 3.5 455.64 50.11 20.60 -94.11 31.07 

87 2414 Barra Bonita Brazil South 

America 

0.0023,565.25 7.0 542.00 566.48 18.80 -49.23 -23.21 

88 4739 Ukal India Asia 0.042,83.6 6.6 509.85 105.16 23.00 73.60 21.26 
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89 479 Utah Lake United States 

of America 

North 

America 

0.023,1359.51 1.1 380.00 1368.28 4.70 -111.89 40.36 

90 305 Pend Oreille 

Lake 

United States 

of America 

North 

America 

0.23,541.66 54.2 381.47 628.80 142.08 -117.00 48.18 

91 4994 Tungabhadra India Asia 0.041,483.34 3.3 349.42 497.74 10.70 76.33 15.27 

92 4461 Mosul Dam Lake Iraq Asia 0.16,273.38 11.1 353.16 330.00 36.00 42.83 36.63 

93 4470 Habbaniyah Iraq Asia 0.071,114.62 8.2 418.40 144.43 32.40 42.35 34.21 

94 4946 Sriramsagar 

Reservoir 

India Asia 0.04,319.95 2.3 314.38 332.54 9.40 78.34 18.97 

95 2376 Lago das Brisas Brazil South 

America 

0.088,471.03 17.0 559.60 520.38 51.00 -49.10 -18.41 

96 2356 Meelpaeg Canada North 

America 

0.0041,269.36 2.2 314.90 270.65 15.00 -56.78 48.17 

97 4260 Hendrik 

Verwoerd 

South Africa Africa 0.069,1236.1 5.3 374.00 1261.93 19.30 25.50 -30.62 

98 1387 Malpaso Mexico North 

America 

0.3,89.06 9.2 309.45 182.00 28.40 -93.60 17.18 

99 1379 Inhernillo Mexico North 

America 

0.14,116.66 12.0 400.00 173.13 32.40 -101.89 18.27 

100 4184 Vaaldam South Africa Africa 0.036,1472.82 2.6 320.00 1484.27 11.10 28.12 -26.88 

101 5062 Longyangxia China Asia 0.18,2518.98 24.7 383.00 2589.15 97.10 100.92 36.12 

102 3727 Hoytiainen Finland Euro 0.0064,86.17 2.4 293.00 88.05 28.90 29.48 62.83 

103 1423 Baskatong Canada North 

America 

0.057,207.29 2.6 280.00 223.14 10.80 -75.98 46.72 

104 5803 Tri An Lake Vietnam Asia 0.072,39.48 2.8 323.00 62.79 10.00 107.04 11.11 

105 2007 Peribonka Canada North 

America 

0.11,411.54 5.2 270.72 440.26 18.70 -71.25 49.90 

106 4942 Jayakwadi India Asia 0.032,451.67 2.2 382.39 463.91 10.60 75.37 19.49 

107 3638 Shiroro Nigeria Africa 0.086,350.9 7.0 312.00 377.73 25.80 6.84 9.97 

108 4379 Tshchikskoye Russia Euro 0.062,16.04 3.0 286.28 33.68 11.30 39.12 44.99 
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109 710 Tobin Canada North 

America 

0.009,311.23 2.2 263.86 313.59 8.40 -103.40 53.66 

110 5796 Noi Thailand Asia 0.057,129.5 2.0 288.00 145.94 8.30 105.43 15.21 

111 4483 Roseires 

Reservoir 

Sudan Africa 0.025,475.84 7.4 450.00 487.12 13.30 34.39 11.80 

112 4675 Toktogul'skoye Kyrgyzstan Asia 0.55,743.53 19.5 284.30 901.24 87.30 72.65 41.68 

113 6698 Gordon Australia Oceania 0.37,208.54 12.4 278.00 311.42 56.30 145.98 -42.73 

114 4964 Ujani India Asia 0.055,482.17 1.5 268.91 496.83 14.30 75.12 18.07 

115 2312 Hondo Argentina South 

America 

0.029,266.72 1.7 330.00 276.36 8.00 -64.89 -27.52 

116 4362 Ivankovo 

Reservoir 

Russia Euro 0.018,119.51 1.2 220.57 123.47 5.40 37.12 56.73 

117 4702 Tarbela Pakistan Asia 0.53,351.46 13.7 250.00 483.55 66.90 72.69 34.09 

118 4985 Nagarjuna India Asia 0.29,100.78 6.8 272.18 179.83 59.20 79.31 16.57 

119 3070 Kallsjon Sweden Euro 0.028,387.52 6.1 189.74 392.80 39.00 13.34 63.43 

120 4431 Karakaya Turkey Asia 0.22,631.76 9.5 298.00 697.54 49.20 39.14 38.23 

121 4792 Beas India Asia 0.2,371.49 6.2 254.85 423.67 45.20 75.95 31.97 

122 4047 Tshangalele Democratic 

Republic of 

the Congo 

Africa 0.031,1119.03 1.1 225.65 1126.03 7.10 27.24 -10.75 

123 4485 Finchaa Ethiopia Africa 0.019,2216.55 0.7 196.13 2220.26 3.60 37.36 9.56 

124 4989 Almatti India Asia 0.053,504.12 3.1 293.42 519.60 36.20 75.89 16.33 

125 4707 Mangla Pakistan Asia 0.2,320.13 9.1 251.00 370.60 41.70 73.64 33.15 

126 4836 Rana Pratap India Asia 0.14,324.74 1.4 197.66 352.81 16.90 75.58 24.92 

127 3014 Bagre Burkina Faso Africa 0.057,223.54 1.7 255.00 238.12 10.10 -0.55 11.47 

128 1991 Junin Peru South 

America 

0.023,4079.84 1.1 206.71 4084.62 3.40 -76.19 -10.98 

129 4881 Bargi Dam 

Reservoir 

India Asia 0.085,401.51 3.2 236.24 422.76 25.60 79.93 22.95 

130 6686 Great Lake Australia Oceania 0.4,969.53 3.4 176.00 1040.54 22.60 146.73 -41.98 

131 6800 Hawea New Zealand Oceania 0.15,323.54 2.2 150.00 345.49 100.50 169.25 -44.61 
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132 3676 Albufeira da 

Quiminha 

Angola Africa 0.13,34.99 1.6 129.05 51.93 12.70 13.79 -8.96 

133 6629 Eucumbene Australia Oceania 0.46,1097.65 4.8 145.42 1165.24 39.50 148.62 -36.13 

134 1320 Falcon Reservoir United States 

of America 

North 

America 

0.07,71.74 3.9 311.84 93.48 32.50 -99.17 26.56 

135 597 Lake Powell United States 

of America 

North 

America 

0.14,1047.2 30.0 609.38 1127.76 40.00 -111.49 36.94 

136 4463 Dukan Iraq Asia 0.19,462.68 7.0 270.00 513.69 56.50 44.96 35.96 

137 1230 Cedar Creek 

Reservoir 

United States 

of America 

North 

America 

0.094,85.92 0.8 133.03 98.15 11.30 -96.07 32.18 

138 4041 Lake Maga Cameroon Africa 0.019,309.63 0.7 148.72 312.50 4.57 15.05 10.83 

139 5157 Pasak Chonlasit Thailand Asia 0.053,33.59 0.8 158.87 42.00 51.50 101.08 14.85 

140 6594 Fairbairn Australia Oceania 0.13,186.48 2.3 179.43 209.81 12.60 148.06 -23.65 

141 6628 Hume Australia Oceania 0.15,161.82 3.0 201.90 192.00 27.40 147.03 -36.11 

142 4500 Kikuletwa United 

Republic of 

Tanzania 

Africa 0.1,677.01 0.6 126.33 689.65 10.30 37.47 -3.82 

143 4958 Nizam sagar India Asia 0.089,419.96 0.5 92.75 428.24 10.10 77.93 18.20 

144 6606 Victoria Australia Oceania 0.17,7.53 0.7 122.00 27.73 6.30 141.28 -34.04 

145 1869 Grenada Lake United States 

of America 

North 

America 

0.13,49.35 1.5 128.29 65.53 31.20 -89.77 33.82 

146 138 Canyon United States 

of America 

North 

America 

0.69,1300.94 1.6 108.39 1373.12 15.70 -121.09 40.18 

147 4638 Aras Dam Lake Azerbaijan Asia 0.12,762.77 1.4 145.00 779.94 13.40 45.40 39.09 

148 4481 Khashm el-Girba Sudan Africa 0.093,463.08 1.3 125.00 474.76 13.00 35.90 14.93 

149 370 Lake Cascade United States 

of America 

North 

America 

0.16,1455.02 0.9 101.98 1471.57 8.50 -116.05 44.52 

150 3695 Seitevare Sweden Euro 0.63,419.19 1.7 81.00 470.15 18.20 18.57 66.97 

151 4484 Yardi Ethiopia Africa 0.33,533.59 2.3 104.87 568.25 26.60 40.54 10.23 

152 119 Clear Lake 

Reservoir 

United States 

of America 

North 

America 

0.2,1345.8 0.7 100.36 1365.84 8.10 -121.08 41.93 
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153 5196 Guanting Shuiku China Asia 0.11,465.09 4.2 130.00 479.09 25.20 115.60 40.23 

154 2953 Barrage Al 

Massira 

Morocco Africa 0.34,241.41 2.8 80.00 268.54 31.90 -7.64 32.47 

155 1319 Venustiano 

Carranza 

Mexico North 

America 

0.095,252.29 1.3 150.56 266.53 16.60 -100.62 27.51 

156 4471 Lake Hamrin Iraq Asia 0.12,80.23 4.6 228.00 107.50 7.90 44.97 34.12 

157 4826 Matatila India Asia 0.1,297.22 0.7 112.07 308.46 17.30 78.37 25.10 

158 1263 Twin Buttes United States 

of America 

North 

America 

0.5,576.78 0.2 29.47 591.37 21.80 -100.52 31.37 

159 4997 Somasila India Asia 0.17,74.32 2.0 153.17 100.58 36.00 79.30 14.49 

160 5183 Hongshan 

Reservoir 

China Asia 0.23,422.08 2.6 66.90 437.64 43.10 119.70 42.75 

161 6583 Lake Ross Australia Oceania 0.11,32.61 0.8 82.00 41.77 9.80 146.74 -19.41 

162 4978 Yeleru Reservoir India Asia 0.59,57.51 0.5 49.36 86.56 32.30 82.08 17.30 

163 4696 South Surkhan 

Reservoir 

Uzbekistan Asia 0.34,397.8 0.8 40.26 411.41 26.20 67.63 37.83 

164 5287 Zhaopingtai 

Reservoir 

China Asia 0.36,157.63 0.7 46.50 174.27 28.80 112.77 33.73 

 

*The 164 reservoirs include 13 regulated natural lakes, whose IDs are 1, 6, 20, 23, 33, 37, 44, 62, 73, 102, 131, 150, and 151.  

1a and b are the coefficients used in the A-E relationship equation: h=a*A + b, where h and A are elevation (m) and area (km2), respectively.  

Vc, Ac, and Ec represent storage, area, and elevation values at capacity, respectively. 

 

 


