
ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 1

YAML Encoding ASCII format for GRACE/GRACE-FO mission Data

Status of this Memo
This RFC provides information to the NASA Earth Science Data Systems (ESDS) community.
This RFC does not specify an Earth Science Data Systems (ESDS) standard. Distribution of this
memo is unlimited.

Change Explanation

Not Applicable.

Copyright Notice
Copyright © 2019 United States Government as represented by the Administrator of the National
Aeronautics and Space Administration. No copyright is claimed in the United States under Title
17, U.S. Code. All Other Rights Reserved.

Abstract
This document introduces and describes the YAML encoding as the standard format for NASA
GRACE/GRACE-FO mission ASCII data. YAML encoding provides a simple and user-friendly
structure for representing earth science data in the ASCII format. YAML, technically, a super set
of JSON, is designed to be useful and friendly for people working with data. Its software agonistic
accessibility adds great power to data stored in an ASCII file that is being used across different
platforms and programming languages. The YAML format has been successfully applied to the
NASA GRACE/GRACE-FO Missions (a series of NASA missions to measure the earth’s gravity)
ASCII products, mainly focused on the file header structure. Adhering to a standardized metadata
model from the PO.DAAC metadata best practices document [8] that is in compliance with CF,
ACDD and ISO conventions, the YAML header enables the ASCII file to become more
discoverable, accessible, interoperable, and reusable. This document provides detailed guidance
for constructing a YAML formatted ASCII file for earth science data.

Table of Contents

STATUS OF THIS MEMO ... 1	
CHANGE EXPLANATION .. 1	
COPYRIGHT NOTICE ... 1	
ABSTRACT ... 1	
TABLE OF CONTENTS ... 1	
1	 INTRODUCTION ... 2	
2	 BASIC YAML SYNTAX .. 4	

2.1	 KEY-VALUE PAIR SCHEME .. 4	
2.2	 INDENTATION SCHEME ... 4	

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 2

2.3	 SCALAR DATA TYPES ... 5	
2.4	 LINE CONTINUATION SYMBOLS “|” OR “>” ... 6	
2.5	 COLLECTIONS .. 7	

2.5.1	 Sequences .. 7	
2.5.2	 Mapping .. 8	

2.6	 COMMENT SYMBOL “#” ... 8	
3	 ASCII FILE STRUCTURE IN YAML FORMAT .. 9	

3.1	 HEADER ... 9	
3.1.1	 Dimensions .. 10	
3.1.2	 Global_attributes .. 11	
3.1.3	 Non-standard_attributes ... 11	
3.1.4	 Variables ... 12	

3.2	 DATA-BLOCK .. 13	
3.2.1	 YAML standard data-block structure .. 13	
3.2.2	 GRACE legacy data-block .. 14	
3.2.3	 Convert to YAML formatted data-block .. 14	

4	 PARSE YAML FILE IN PYTHON .. 15	
4.1	 OPENING/READING A YAML FILE ... 15	
4.2	 OUTPUTTING A YAML FILE ... 16	
4.3	 EXTRACTING THE METADATA INFORMATION ... 16	
4.4	 EXTRACTING THE DATA RECORD VALUES .. 17	

5	 YAML ENCODING IMPLICATIONS TO EARTH SCIENCE DATA 17	
5.1	 STANDARDIZING THE YAML ENCODING FOR AN ASCII FILE FORMAT 17	
5.2	 MAKING AND PROMOTING FAIR DATA .. 18	
5.3	 FEASIBLE FOR DEVELOPING GENERIC ACCESS TOOLS ... 18	

6	 REFERENCES .. 18	
7	 AUTHORS' ADDRESSES ... 19	
APPENDIX A .. 20	
APPENDIX B, AN EXAMPLE OF JPL GRACE LEVEL-2 RELEASE-06 DATASET
(DATA-BLOCK ONLY CONTAINS A PARTIAL DATA RECORD) 21	
APPENDIX C, PO.DAAC METADATA BEST PRACTICE TABLE. 25	

1 Introduction
The American Standard Code for Information Interchange (ASCII) data format is widely used and
adopted in the Earth science community for its simplicity and accessibility. Many NASA Earth
observing missions are required to have the ASCII format for their mission product data. However,
the ASCII format for different products can vary dramatically due to the complexity of Earth

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 3

science data. It is a challenge to develop a standard format which can fit most NASA mission
ASCII products. There have been previous efforts to develop standard ASCII formats. So far, the
NASA Earth Science Data and Information System (ESDIS) Standards Office (ESO) has
approved ASCII File Format Guidelines for Earth Science Data [1] as an overall guidance for
developing ASCII encoded data files. Several ASCII formats have been approved by the ESO,
including SeaBASS Data File Format [4], NASA Aerogeophysics ASCII File Format Convention,
and International Consortium for Atmospheric Research on Transport and Transformation
(ICARTT) File Format Standards [3], which are all in compliance with the ASCII file format
guidance. However, most of these formats are designed for the specific mission/project data and
their domain specific resources (research/tools/services), which may not be suitable for re-use. In
this document, we propose the YAML ASCII encoding as a format for GRACE/GRACE-FO
missions, which could be used for a broader set of Earth science data in the future.
 “YAML Ain’t Markup Language” (YAML) is a Unicode-based data serialization language
designed to be a human-friendly, text-based interface that works well with modern programming
languages for passing information [2]. It is built upon a few basic core components which make
the text clean and readable. The core syntax includes indentation, a key-value pair scheme, scalars
(data type), and collections (sequence and mapping); all of these features enable users to create a
YAML encoding file with minimal effort. YAML format structure is very much like the Common
Data Form Language (CDL): a human-readable text representation of netCDF data, giving a
netCDF user a familiar reference.
YAML is closely related with JavaScript Object Notation (JSON), another ASCII encoding
format, which is widely used across the internet in web tools and services. Technically YAML is
a superset of JSON. This means that, in theory at least, a YAML parser can understand JSON, but
not necessarily the other way around. However, the YAML format has a much cleaner and more
human-friendly format structure than JSON, while the JSON is simpler to generate and parse.
Currently, the ESO approved ASCII formats that are under the umbrella of the ASCII File Format
Guidelines for Earth Science Data [1] are designed for specific data and missions. These formats
require dataset specific readers to parse and extract values and information. Parsing such ASCII
files with cross-platform generic tools is often difficult to implement. These limiting factors all
drive the need for generic ASCII encoding formats which will work with multiple programs on
different platforms, thus ensuring sustained interoperability.
Unlike many other ASCII formats, the YAML format not only provides a user-friendly interface
but also can be easily parsed with many programming languages, including Python, Perl, JAVA,
C/C++, and more. This flexibility across languages and platforms enhances the utility of the
YAML-encoded ASCII file. Enabling the YAML parsing function for any programming language
is easy. Users just need to install the appropriate YAML library following directions described at
YAML official website: http://yaml.org/. These characteristics of YAML files allow them to be
more accessible and usable by web services and tools.
In this document, we will first briefly describe the basic YAML syntaxes which are used for
constructing a YAML ASCII file (section 2). Second, a generic YAML file structure is presented
with information from the GRACE Level-2 RL06 product (section 3). Third, we present an
example to demonstrate how the YAML file can be opened/read/parsed and information can be

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 4

extracted at any given key and time/location using Python scripts (section 4). Finally, we
summarize the YAML encoding implications to Earth science data (section 5).

2 Basic YAML syntax

In this section, we focus on the core YAML syntax used for constructing an ASCII file. For a
complete list of syntax, please see the YAML official website: http://yaml.org/. The YAML syntax
is basically composed with several key components, including the key-value pair scheme,
indentation scheme, hierarchy nested structure (layer), sequence (array/list), mapping (dictionary),
and common data type. In this document, for clarity and simplicity, we encourage the users to use
the most basic and common YAML syntax and try to avoid the use of complex syntax as much as
possible. The goal is to make the ASCII file implementation simple and readable.
The YAML language accepts the entirety of the Unicode character set, except for a small subset
of the control characters. A YAML document can be encoded in UTF-8, UTF-16 and UTF-32.
(Though UTF-32 is optional). We recommend to use the standard US-ASCII character set without
extensions, and avoid the use of ASCII control characters, except the end-of-line (EOL). Each row
should be terminated with the same EOL character. No escape mechanism is used in the YAML
encoding except appearing in string. An empty line (row) can be allowed for clarity between the
header and data section, but it is not necessary. Empty lines have no affects in parsing the YAML
files.

2.1 Key-value pair scheme

YAML format is built upon a series of key-value pairs separated by a colon (Example 2.1). The
“key” is on the left of the colon, referring to any item name which is defined by the “value” on the
right side of the colon. The “key” is just a string without a quote. The “value” can be any data type
which will be explained in later sections. The structure requires that the right side of the colon
must have at least one space (“:_”), which is an important feature to separate from an unquoted
string containing the colon, such as an url string (Example 2.3.3 String4). Often, for clarity, more
spaces can be added to either side of the colon. The key-value pair scheme is the fundamental
element in YAML syntax.

Example 2.1. Kay-value pair separated by a colon.

2.2 Indentation scheme

The scope of a YAML structure is defined by the indentation scheme, which is generated with
spaces rather than tabs. To maintain portability, tab characters are never allowed as indentation,
since different systems treat tabs differently. Each item that is a child of the parent item should be
indented with a fixed number of spaces, which must be consistent throughout each YAML file

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 5

(snippets:https://yamllint.readthedocs.io/en/stable/rules.html#module-yamllint.rules.indentation).
In this document, we adopt a two-space indentation scheme for all examples. The indentation is
the unique indicator to nest a child YAML structure (Example 2.2.1) or an array/list sequence
(Example 2.2.2), while for JSON, the curved bracket (“{}”) is used instead. YAML achieves a
unique cleanness by minimizing the amount of structural characters and allowing the data to
present itself in a natural and meaningful way.
Example 2.2.1. Child structures with two-space indentation.

Example 2.2.2. Sequence list with two-space indentation.

2.3 Scalar data types

The basic YAML data types include integer, float, double, Boolean, string, and date. The key on
the left colon can be assigned by any of these data types on the right of the colon. The data type
can be used implicitly (Example 2.3.1) or explicitly (Example 2.3.2) by using the “key-value” pair
scheme. For clarity, we recommend using implicit typing

Example 2.3.1. Implicit typing scheme (recommended).

Explicit typing is denoted with a tag using the exclamation point (“!”) but this is not recommended
in the YAML ASCII encoded files.

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 6

Example 2.3.2. Explicit typing scheme (not recommended)

Assigning a string value to the key is very straightforward. There are three ways to express a string
in YAML format. The string as a value can be unquoted or quoted with single (‘’) or double (“”)
quotes (Example 2.3.3). Within double-quotes, special characters may be represented with C-
style escape sequences starting with a backslash (\). According to the documentation the only octal
escape supported is \0.
If the colons or commas appear in an unquoted string, they can be distinguished from being used
as separators by adding a space right after, so that scalar values containing embedded punctuation
(such as 5,280 or http://www.wikipedia.org) can generally be represented without needing to be
enclosed in quotes (Example 2.3.3, string4).
Example 2.3.3. Three string assignments.

2.4 Line continuation symbols “|” or “>”
String values can be written in block notation with multiple lines using a literal style (“|”) or a
folded style (“>”). Using a “Literal Block Scalar” (“|”), spanning multiple lines will include the
newlines and any trailing spaces, while using a “Folded Block Scalar” (“>”), they will fold
newlines to spaces. In either case, it’s used to make what would otherwise be a very long line
easier to read and edit. Note that the indentation will be ignored in both cases.

Example 2.4.1. Using literal style “|”

Example 2.4.2. Using folded style “>”

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 7

2.5 Collections
YAML collections cover both the sequences (indexed arrays or lists in Python) and the mapping
(dictionaries in Python) structures. The syntax for these is a data block or nested blocks containing
multiple pieces of information, similar to a structure definition in C/C++ language.

2.5.1 Sequences

YAML sequences refer to arrays or lists depending on the content type of the elements and the
interpreters (such as Python/Perl/C). In addition to assigning a single scalar to a key, one could
assign an array of numerical values and/or a list of mixed data types. For a short list of data values,
there are two ways to assign the values to a key. The first case is that all elements in the array/list
are separated by comma (,) and are placed in one line closed with square brackets ([]) (example
2.5.1) – called compact in-line notation. This is generally useful for a short array/list. The second
case is that each element will be placed in a single line with leading hyphen (‘- ‘) and following
spaces (example 2.5.2) – called nested block notation. For a big data array/list, one can break the
data array/list into multiple lines. This will be discussed in more detail in section 3.2 data-block.

Example 2.5.1. Compact in-line notation

Example 2.5.2. Nested block notation

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 8

2.5.2 Mapping

Mapping refers to the dictionary structure in Python. It gives a user the ability to list and group
key-value pairs with a collection of information. This is useful in cases in which the user is passing
a group of names and properties to a specific element (attribute). The example (Example 2.5.2.1)
below shows the “header” key is a top-level dictionary with two child structures (dimension and
global_attributes), which in turn have their own children. A dictionary can have multiple nested
layers of sub-structures.

Example 2.5.2.1 Mapping structure

2.6 Comment symbol “#”
Comments begin with the number sign (#), can start anywhere in a line and continue until the end
of the line. It is a presentation detail and must not be used to convey content information.
Comments must be separated from other tokens by white space characters. If they appear inside
of a string, then they are number sign (#) literals.

Example 2.6

Above, we only describe very basic YAML encoding syntax which can satisfy 90% of the YAML
ASCII file formatting. There is more YAML syntax which is not described here. Some of them
are not so common for use in presenting Earth data in ASCII format. To keep the YAML ASCII
file simple and consistent across other YAML-formatted products, we recommend avoiding the
use of the special YAML syntax as much as possible.

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 9

3 ASCII file Structure in YAML format

Satellite ASCII products commonly contain two major components: a header and a data-block.
The header is composed of rich, complete metadata information which summarize and describe
the product, while the data-block contains all the data records for the product, including the
instrument measurements, model derived results, data quality, and ancillary data. In this section,
the construction of header and data blocks with YAML encoding is shown using examples from
GRACE/GRACE-FO Level-2 products.
Overall, the YAML formatted ASCII file recommendations are in compliance with the
requirements proposed by the ASCII File Format Guidelines for Earth Science Data [1], which has
been approved by ESO. The ASCII syntax recommendations in that document are applicable and
will not be discussed in detail here. In this document, we just focus on the YAML architecture and
format.

3.1 Header

The header should be located at beginning of the file, containing the metadata associated with the
data products. To clearly separate the header section with the data-block, the header should start
and end with specific comments, such as “# BEGIN HEADER” and “# END HEADER”. A YAML
formatted header is very similar to the CDL format, which is a human-readable text representation
of netCDF data, containing at least three key sections: “dimension”, “global_attributes”, and
“variables”.
The GRACE/GRACE-FO mission products have adopted the metadata conventions which are
recognized in the earth science community, including the Climate Forecast (CF) metadata
conventions, the Attribute Conventions for Data Discovery (ACDD) and International Standards
Organization (ISO) conventions. For a YAML header designed to meet the NASA requirements
for standardizing the ASCII data, we recommend that the header should follow an accepted NASA
metadata model such as the PO.DAAC Metadata Best Practices [8] which utilizes the
aforementioned CF, ACDD, and ISO conventions. Most of the elements (attributes) described in
the baseline ASCII File Format Guidelines have been defined and addressed.
An example of YAML format application for GRACE Level-2 RL06 dataset is presented in
Appendix B for reference. GRACE mission requires that each product file name must be uniquely
defined following the GRACE filename convention described in Level-2 Gravity Field Product
User Handbook [6]. The detailed descriptions of the data products, including the data type,
uncertainty (standard deviation), solution-flag, time_stamps, and others, are documented in the
Product Specification Document [7].
Using the examples of the YAML format applications in the GRACE/GRACE-FO Missions, the
header has been divided into four sections: “dimensions”, “non-standard_attributes”,
“global_attributes’’, and “variables”, of which the “non-standard_attributes” section is designed
for project specific global attributes. Figure 1 shows the basic skeleton of the header structure in
YAML format.

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 10

Figure 1, YAML header structure scheme, which contains four major sections (dimensions, non-
standard_attributes, global_attribute, and variables), and four layers of nested sub-structures
(denoted by four Tiers).

3.1.1 Dimensions
The “dimensions” section usually defines the spatial and temporal dimension. For the geolocation,
it could be latitude and longitude, following UDUNITS conventions [9] in unit of degree
(Appendix C, Table 3). The time refers to the satellite scan time (data recording time), following
the ISO 8601 convention (Appendix C, Table 4). However, in some special cases like GRACE,
the dimension could refer to the degree and order of a geopotential series (Example 3.1.1).
Example 3.1.1.

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 11

3.1.2 Global_attributes

The “global_attributes” covers common standard metadata attributes adhering to a metadata
model as described in PO.DAAC metadata best practices [8] recommendations that are in
compliance with the most recent versions of CF, ACDD and ISO conventions. It is recommended
to use these global attributes conventions as much as possible for all NASA mission products for
maintaining the data’s interoperability and reusability. Non-standard global attributes are allowed
as necessary to meet mission specific requirements.
The complete list of global attributes (elements) is summarized in Appendix C, Table 1, which
meet the majority of metadata requirements listed in the ASCII File Format List. Many of the
attributes are strongly recommended or required for most earth science data, such as the ‘title’,
‘summary’, ‘keywords’, ‘conventions’, ‘id/uuid’, ‘history’, ’source’, ‘processing_level’,
‘creator_name’, ‘time_coverage_start’, ‘time_coverage_end’, ‘date’_created’, ‘geospatial_(lat,
lon, vertical)_(min, max, unit, resolution)’ and so forth. For the best practice of constructing the
header metadata, we encourage using all the attributes which are applicable. However, for some
earth science products, not all of the attributes are suitable. For example, the GRACE mission
measures the spatial distribution of earth mass movement, so there are no vertical properties
presented in the datasets (see example in Appendix B).
In YAML format, the “global_attributes” section is a collection which contains multiple scalars
and sequences for assignment to the attribute keys. All the file global metadata can be defined with
attribute properties listed in Appendix C, Table 1 by using the YAML key:value pair syntax. See
example 3.1.2.

Example 3.1.2.

In this example, the “unused_days” attribute is not standard, but it is included here by the GRACE
project request.

3.1.3 Non-standard_attributes

The “non-standard_attributes” section is also covering file scope (global) metadata, similar to the
“global_attributes”, except defining any attributes that are specific to projects/missions, such as
GRACE/GRACE-FO. They are unique only to the particular mission/project, and will not be
suitable for other products. The example 3.1.3. shows a partial of the non-standard attributes from
a GRACE/GRACE-FO mission Level 2 product and a full version is included in Appendix B. In

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 12

this example, it includes the mission specific product_ID, format_ID, earth gravity parameter and
earth radius value, each of which is further defined by long name, standard name, unit, value, and
comment attributes.

Example 3.1.3.

3.1.4 Variables
All the variables in the ASCII product must be defined in a “variables” section and the variable
names must be unique, following earth science community standards, such as the GRACE mission
product specification [7]. In the YAML format, each variable has its own single nested-
substructure defining the properties of the variable. For example, the variables in example 3.1.4
include the long_name, units, coverage_content_type, valid_range, and comment, and also
identifies the column which is presented in the data section.
The Appendix C Table 2 summarizes the general comprehensive attributes used to define each
data variable (parameter), which are defined in the CF and ACDD conventions. In reality, some
attributes may not be applicable to certain products, so often, not all the attributes are used. We
recommend that each variable should have at least a standard_name or the long_name clearly
defined, and the variable unit should be included and defined whenever it is applicable. Missing
data should be clearly flagged in data (e.g. with _Fillvalue) or identified in global_attribute section
(e.g. unused_days). Again, we recommend the use as many attributes as applicable for all
variables. Georeferencing and temporal coordinates should also be defined as separate variables,
whose attributes are summarized in Appendix C Table 3 and 4.

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 13

Example 3.1.4.

3.2 Data-Block

3.2.1 YAML standard data-block structure
The YAML standard data-block should contain all data records for the variables in the product,
including sensor measurements, Level-1, 2, and 3 products, model derived physical parameters,
and other associated datasets. In ASCII format, these data record follow a certain order in space or
time or some sequential order, such as monotonically increasing in time presented in GRACE
Level 2 product. For most cases, each variable present in a single column, and each data record
takes a single row, forming a two-dimensional array/list (Figure 2). In most ASCII products, the
file contains only a single data-block. However, the YAML formatted file is capable of multiple
data-blocks. In this document, we just focus on the single data-block case (Figure 2)

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 14

Figure 2. Standard data-block structure diagram for two-dimension data records, row for
each record and column for each variable.
The syntax for standard data-block is basically related with YAML sequence methods for
capturing the array and/or list. The data-block should be closed in a square bracket ([]) with two-
space indentation. Each row represents a single data record with multiple variable values, which
are separated by a comma and closed again with squared brackets ([]). Thus, for a 2-D data-block,
it can be packed into a 2-D array/list with double squared brackets, like [[], [], …., []].
Commonly, the data-block may contain variables with different data types, including string, digital
numbers, and Booleans. However, the mixed data type doesn’t affect the YAML sequence syntax,
other than simply transform it into a list after parsed in Python as shown in Figure 2.

3.2.2 GRACE legacy data-block
The current GRACE ASCII files contain a data section that is not compliant with the recommended
YAML data block (array) format. Only the header sections in GRACE Level-1 and Level-2 ASCII
data are upgraded into YAML format, but not the data-block due to a mission requirement for
compatibility with GRACE legacy software. The GRACE legacy data-block contains a 2-D data
list with each data element separated by single or multiple spaces without any indentation (Figure
3.2.2) but no spaces are allowed in each data element. So, GRACE ASCII files are not 100%
YAML formatted files but can easily be converted as such (see 3.2.3).

3.2.3 Convert to YAML formatted data-block

The GRACE data-block could be made fully YAML-compatible by simply adding the data-block
key and square bracket around the entire data section (Figure 3.2.3). When the YAML file is first
loaded into Python, the data-block is not a 2-D list, but a 1-D list with only one string element,
which is holding the entire data records. Extra-steps are needed to convert this single string to a 2-
D list. A user could parse the string into a list of single elements by using space(s) as a separator
and then can be reshaped into a 2-D list (using Python for example). The value at a given location
can be extracted accordingly. Alternatively, indentation, square brackets, and commas between

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 15

values can be inserted into each line of the data block to simplify the interpretation of values in the
code.

YAML requirements for the data-block are flexible, as it could convert most data-block forms into
YAML compatible forms with minimal efforts, but additional efforts are needed to parse the
YAML file in Python. We will not cover all the special cases.

4 Parse YAML file in Python

One of the big advantages using YAML format is that it can work with many programming
languages, including C/C++, Ruby, Java, Python, and Perl. For a complete list, please see the
website at http://yaml.org.
In this document, we present some examples of parsing the YAML file in Python for GRACE
Level-2 ASCII products. The functionality of parsing YAML file in Python is relatively simple
and straight forward. The variation of parsing the YAML file depends on how the YAML file is
formatted, especially for the non-standard YAML data-block.

4.1 Opening/reading a YAML file

To “Open” and “Read” functions in the YAML file via Python takes only three steps as shown in
the example below.

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 16

Example 4.1.

The entire YAML file is loaded into the ‘data’ dictionary structure—the top layer, which has two
major children: header and data-block.

4.2 Outputting a YAML file
Similar to Opening/Reading a YAML file commands, saving a YAML file in python can be
implemented with the following two commands (Example 4.2.1).
Example 4.2.1.

A YAML format can also be converted to JSON serializable format by executing the following
commands in Python (Example 4.2.2).
Example 4.2.2.

However, if the YAML structure includes the ‘datatime’ data type, the YAML to JSON conversion
does not work, because the object of type 'datetime' is not JSON serializable. For example, in the
GRACE ASCII product, the “unused_days” (Example 4.2.3) has value of ‘datetime’ list, which
cannot be converted into JSON format.
Example 4.2.3.

4.3 Extracting the metadata information
After a YAML file is open/read into a Python environment, the header as a child of “data” leads
to a sub-dictionary structure, which contains all the metadata information. Users can then extract
any metadata value for a given key. For example, if a user wants to know what the first
‘unused_days’ is, he/she can do the following (Example 4.3).

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 17

Example 4.3.

Remember that the Python index starts with ‘0’ not ‘1’.

4.4 Extracting the data record values

Depending on the formats of the data-block (shown in section 3.2), the methods to extract the data
record value in Python will be different. With the YAML standard 2-D array/list data-block (Figure
2), the data value can be extracted with the following Python scripts (Example 4.4.1).
Example 4.4.1.

For GRACE legacy data-block format (shown in Figure 3), more complicated Python scripts are
needed to extract the values (Example 4.4.2).

Example 4.4.2.

If a user desires to extract the values from a column, they may need to convert the 1-D list to 2-D
list and then perform indexing on the first dimension. In practice, there are many more ways of
doing the same work in Python, which are out of the scope for this document.

5 YAML encoding implications to Earth Science Data

5.1 Standardizing the YAML encoding for an ASCII file format

YAML encoding has few limitations for formatting Earth science observations. Its syntax is
flexible enough to capture the variations of these datasets, including those of satellite mission
products, airborne data records, and in-situ measurements. It has the advantage of presenting
structured metadata and data records in a human-friendly interface, much more than other ASCII
data formats. It is in full compliance with ESO approved “ASCII File Format Guidelines for Earth
Science Data” [1], making itself a robust candidate as a standard ASCII data format representation
for Earth Science Data.

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 18

5.2 Making and promoting FAIR data

Formatted with a YAML encoding, Earth observing mission ASCII products more readily meet
the requirements for FAIR (Findable, Accessible, Interoperable, and Reusable) data status. The
YAML format with the inclusion of metadata best practices from CF and ACDD enables an ASCII
file to be more discoverable and understandable. This also allows the YAML file to be accessed
and used by much broader communities, increasing the interoperability and reusability.

5.3 Feasible for developing generic access tools

It is always handy to have generic tools for quickly opening/reading and extracting needed
information from a large dataset and to load the file into a user’s preferred programing language
for data analysis. For most ASCII files there is often simple but tedious programming preparation
that must be implemented to deal with the ever-changing nuances of heterogeneous file structures
from different providers and missions. YAML encoding is a candidate for standardized metadata
and data structures in the ASCII data format, allowing software developers a more straightforward
approach to build tools and services for these products.

6 References

Normative References
[1] Keith Evans, Aubrey Beach, Gao Chen, Peter Leonard, Emily Northup, Anne Wilson, 2016,

ASCII File Format Guidelines for Earth Science Data, Technical Note, ESDS-RFC-027v1.1.
[2] B-K, Oren et al., 2009, YAML Ain’t Markup Language (YAML™) Version-1.2, 3rd Edition,

Patched at 2009-10-01, http://yaml.org/spec/1.2/spec.html.
Informative References
[3] E. Northup, G. Chen, K. Aikin, C. Webster, 2017, ICARTT File Format Standards V2.0,

Technical Note, ESDS-RFC-029v2.
[4] P. Jeremy Werdell and Sean W. Bailey, 2002, The SeaWiFS Bio-Optical Archive and

Storage System (SeaBASS): Current Architecture and Implementation, NASA/TM-2002-
211617.

[5] H. Butler et al, IETF RFC7946 The GeoJSON Format, August 2016,
https://tools.ietf.org/html/rfc7946.

[6] S. Bettadpur, 2018, Level-2 Gravity Field Product User Handbook, GRACE 327-734, Center
for Space Research, The University of Texas at Austin

[7] S. Bettadpur, 2012, GRACE Product Specification Document, GRACE 327-720, Center for
Space Research, The University of Texas at Austin

[8] PO.DAAC Metadata Best Practices:
https://podaac.jpl.nasa.gov/PO.DAAC_DataManagementPractices#Metadata%20Convention
s

[9] UDUNITS: https://www.unidata.ucar.edu/software/udunits/#home

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 19

7 Authors' Addresses
Wen-Hao Li, Raytheon IIS, 300 N Lake Ave Suite 1120, Pasadena, CA 91765, Tel: 626-744-
5536, email: wen-hao.li@jpl.nasa.gov
Edward M. Armstrong, NASA Jet Propulsion Laboratory, California Institute of Technology,
4800 Oak Grove Dr., Pasadena, CA 91109, Edward.M.Armstrong@jpl.nasa.gov
Christopher J. Finch, NASA Jet Propulsion Laboratory, California Institute of Technology, 4800
Oak Grove Dr., Pasadena, CA 91109, Christopher.J.Finch@jpl.nasa.gov
David N. Wiese, NASA Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak
Grove Dr., Pasadena, CA 91109, David.N.Wiese@jpl.nasa.gov

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 20

Appendix A

Glossary of acronyms
Acronym Description

ACDD: Attribute Convention for Data Discovery
ASCII: American Standard Code for Information Interchange

CF: Climate and Forecast
CDL: Common Data Form Language

ESDIS: Earth Science Data and Information System
ESDS: Earth Science Data Systems

ESO: ESDIS Standard Office
GRACE: Gravity Recovery and Climate Experiment

GRACE-FO: Gravity Recovery and Climate Experiment Follow-On
ISO: International Standard Office

JSON: JavaScript Object Notation
NASA: National Aeronautics and Space Administration

NetCDF: Network Common Data Form
PO.DAAC: Physical Oceanography Distributed Active Achieve Center

XML: eXtensible Markup Language
YAML: YAML Ain't Markup Language

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 21

Appendix B, An example of JPL GRACE Level-2 Release-06 dataset (data-block only
contains a partial data record)

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 22

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 23

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 24

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 25

Appendix C, PO.DAAC Metadata Best Practice Table.

Taken from :
https://podaac.jpl.nasa.gov/PO.DAAC_DataManagementPractices#Metadata%20Conventions

A. Global Attributes

Attribute Name Type Definitions Priority Source

title string

A short phrase or sentence describing the
dataset. In many discovery systems, the title
will be displayed in the results list from a
search, and therefore should be human
readable and reasonable to display in a list of
such names. This attribute is recommended by
the NetCDF Users Guide (NUG) and the CF
conventions.

required ACDD 1.3,
CF 1.7

summary string A paragraph describing the dataset, analogous
to an abstract for a paper. required ACDD 1.3

keywords string

A comma-separated list of key words and/or
phrases. Keywords may be common words or
phrases, terms from a controlled vocabulary
(GCMD is often used), or URIs for terms from a
controlled vocabulary (see also
"keywords_vocabulary" attribute).

required ACDD 1.3

keywords_vocabulary string

If you are using a controlled vocabulary for the
words/phrases in your "keywords" attribute,
this is the unique name or identifier of the
vocabulary from which keywords are taken. If
more than one keyword vocabulary is used,
each may be presented with a prefix (e.g.,
"CF:NetCDF COARDS Climate and Forecast
Standard Names") and a following comma, so
that keywords may optionally be prefixed with
the controlled vocabulary key.

suggested ACDD 1.3

Conventions string

A comma-separated list of the conventions
that are followed by the dataset. For files that
follow this version of ACDD, include the string
'ACDD-1.3'. (This attribute is defined in NUG
1.7.)

required ACDD 1.3,
CF 1.7

id string

An identifier for the data set, provided by and
unique within its naming authority. The
combination of the "naming authority" and the
"id" should be globally unique, but the id can
be globally unique by itself also. IDs can be
URLs, URNs, DOIs, meaningful text strings, a
local key, or any other unique string of
characters. The id should not include white
space characters.

recommended ACDD 1.3

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 26

uuid string

A uuid (Universal Unique Identifier) is a 128-bit
number used to uniquely identify some object
or entity on the Internet. Depending on the
specific mechanisms used, a uuid is either
guaranteed to be different or is, at least,
extremely likely to be different from any
other uuid generated until 3400 A.D.

required PO.DAAC

naming_authority string

The organization that provides the initial id
(see above) for the dataset. The naming
authority should be uniquely specified by this
attribute. We recommend using reverse-DNS
naming for the naming authority; URIs are also
acceptable. Example: 'edu.ucar.unidata'.

recommended ACDD 1.3

cdm_data_type string

The data type, as derived from Unidata's
Common Data Model Scientific Data types and
understood by THREDDS. (This is a THREDDS
"dataType", and is different from the CF
NetCDF attribute 'featureType', which
indicates a Discrete Sampling Geometry file in
CF.)

suggested ACDD 1.3

history string

Provides an audit trail for modifications to the
original data. This attribute is also in the
NetCDF Users Guide: 'This is a character array
with a line for each invocation of a program
that has modified the dataset. Well-behaved
generic netCDF applications should append a
line containing: date, time of day, user name,
program name and command arguments.' To
include a more complete description you can
append a reference to an ISO Lineage entity;
see NOAA EDM ISO Lineage guidance.

recommended ACDD 1.3,
CF 1.7

source string

The method of production of the original data.
If it was model-generated, source should name
the model and its version. If it is observational,
source should characterize it. This attribute is
defined in the CF Conventions. Examples:
'temperature from CTD #1234'; 'world model
v.0.1'.

recommended ACDD 1.3,
CF 1.7

platform string

Name of the platform(s) that supported the
sensor data used to create this data set or
product. Platforms can be of any type,
including satellite, ship, station, aircraft or
other. Indicate controlled vocabulary used in
platform_vocabulary.

suggested ACDD 1.3

platform_vocabulary string Controlled vocabulary for the names used in
the "platform" attribute. suggested ACDD 1.3

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 27

instrument string

Name of the contributing instrument(s) or
sensor(s) used to create this data set or
product. Indicate controlled vocabulary used in
instrument_vocabulary.

suggested ACDD 1.3

instrument_vocabulary string Controlled vocabulary for the names used in
the "instrument" attribute. suggested ACDD 1.3

processing_level string A textual description of the processing (or
quality control) level of the data. recommended ACDD 1.3

comment string
Miscellaneous information about the data, not
captured elsewhere. This attribute is defined
in the CF Conventions.

recommended ACDD 1.3,
CF 1.7

standard_name_vocabulary string

The name and version of the controlled
vocabulary from which variable standard
names are taken. (Values for any
standard_name attribute must come from the
CF Standard Names vocabulary for the data file
or product to comply with CF.) Example: 'CF
Standard Name Table v27'.

recommended ACDD 1.3

acknowledgement string
A place to acknowledge various types of
support for the project that produced this
data.

recommended ACDD 1.3

license string

Provide the URL to a standard or specific
license, enter "Freely Distributed" or "None",
or describe any restrictions to data access and
distribution in free text.

recommended ACDD 1.3

metadata_link string
A URL that gives the location of more complete
metadata. A persistent URL is recommended
for this attribute.

suggested ACDD 1.3

product_version string

Version identifier of the data file or product as
assigned by the data creator. For example, a
new algorithm or methodology could result in
a new product_version.

suggested ACDD 1.3

references string

Published or web-based references that
describe the data or methods used to produce
it. Recommend URIs (such as a URL or DOI) for
papers or other references. This attribute is
defined in the CF conventions.

suggested ACDD 1.3,
CF 1.7

creator_name string
The name of the person (or other creator type
specified by the creator_type attribute)
principally responsible for creating this data.

recommended ACDD 1.3

creator_email string

The email address of the person (or other
creator type specified by the creator_type
attribute) principally responsible for creating
this data.

recommended ACDD 1.3

creator_url string
The URL of the of the person (or other creator
type specified by the creator_type attribute)
principally responsible for creating this data.

recommended ACDD 1.3

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 28

creator_type string

Specifies type of creator with one of the
following: 'person', 'group', 'institution', or
'position'. If this attribute is not specified, the
creator is assumed to be a person.

suggested ACDD 1.3

creator_institution string

The institution of the creator; should uniquely
identify the creator's institution. This
attribute's value should be specified even if it
matches the value of publisher_institution, or
if creator_type is institution.

suggested ACDD 1.3

institution string

The name of the institution principally
responsible for originating this data. This
attribute is recommended by the CF
convention.

recommended ACDD 1.3,
CF 1.7

project string

The name of the project(s) principally
responsible for originating this data. Multiple
projects can be separated by commas, as
described under Attribute Content Guidelines.
Examples: 'PATMOS-X', 'Extended Continental
Shelf Project'.

recommended ACDD 1.3

program string

The overarching program(s) of which the
dataset is a part. A program consists of a set
(or portfolio) of related and possibly
interdependent projects that meet an
overarching objective. Examples: 'GHRSST',
'NOAA CDR', 'NASA EOS', 'JPSS', 'GOES-R'.

suggested ACDD 1.3

contributor_name string

The name of any individuals, projects, or
institutions that contributed to the creation of
this data. May be presented as free text, or in
a structured format compatible with
conversion to ncML (e.g., insensitive to
changes in whitespace, including end-of-line
characters).

suggested ACDD 1.3

contributor_role string

The role of any individuals, projects, or
institutions that contributed to the creation of
this data. May be presented as free text, or in
a structured format compatible with
conversion to ncML (e.g., insensitive to
changes in whitespace, including end-of-line
characters). Multiple roles should be
presented in the same order and number as
the names in contributor_names.

suggested ACDD 1.3

publisher_name string

The name of the person (or other entity
specified by the publisher_type attribute)
responsible for publishing the data file or
product to users, with its current metadata
and format.

recommended ACDD 1.3

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 29

publisher_email string

The email address of the person (or other
entity specified by the publisher_type
attribute) responsible for publishing the data
file or product to users, with its current
metadata and format.

recommended ACDD 1.3

publisher_url string

The URL of the person (or other entity
specified by the publisher_type attribute)
responsible for publishing the data file or
product to users, with its current metadata
and format.

recommended ACDD 1.3

publisher_type string

Specifies type of publisher with one of the
following: 'person', 'group', 'institution', or
'position'. If this attribute is not specified, the
publisher is assumed to be a person.

suggested ACDD 1.3

publisher_institution string

The institution that presented the data file or
equivalent product to users; should uniquely
identify the institution. If publisher_type is
institution, this should have the same value as
publisher_name.

suggested ACDD 1.3

geospatial_bounds float

Describes the data's 2D or 3D geospatial
extent in OGC's Well-Known Text (WKT)
Geometry format (reference the OGC Simple
Feature Access (SFA) specification). The
meaning and order of values for each point's
coordinates depends on the coordinate
reference system (CRS). The ACDD default is
2D geometry in the EPSG:4326 coordinate
reference system. The default may be
overridden with geospatial_bounds_crs and
geospatial_bounds_vertical_crs (see those
attributes). EPSG:4326 coordinate values are
latitude (decimal degrees_north) and
longitude (decimal degrees_east), in that
order. Longitude values in the default case are
limited to the (-180, 180) range. Example:
"POLYGON ((40.26 -111.29, 41.26 -111.29,
41.26 -110.29, 40.26 -110.29, 40.26 -111.29))".

recommended ACDD 1.3

geospatial_bounds_crs string

The coordinate reference system (CRS) of the
point coordinates in the geospatial_bounds
attribute. This CRS may be 2-dimensional or 3-
dimensional, but together with
geospatial_bounds_vertical_crs, if that
attribute is supplied, must match the
dimensionality, order, and meaning of point
coordinate values in the geospatial_bounds
attribute. If geospatial_bounds_vertical_crs is
also present then this attribute must only
specify a 2D CRS. EPSG CRSs are strongly
recommended. If this attribute is not specified,

recommended ACDD 1.3

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 30

the CRS is assumed to be EPSG:4326.
Examples: "EPSG:4979" (the 3D WGS84 CRS),
"EPSG:4047".

geospatial_bounds_vertical_crs string

The vertical coordinate reference system (CRS)
for the Z axis of the point coordinates in the
geospatial_bounds attribute. This attribute
cannot be used if the CRS in
geospatial_bounds_crs is 3-dimensional; to use
this attribute, geospatial_bounds_crs must
exist and specify a 2D CRS. EPSG CRSs are
strongly recommended. There is no default for
this attribute when not specified. Examples:
"EPSG:5829" (instantaneous height above sea
level), "EPSG:5831" (instantaneous depth
below sea level), or "EPSG:5703" (NAVD88
height).

recommended ACDD 1.3

geospatial_lat_min float

Describes a simple lower latitude limit; may be
part of a 2- or 3-dimensional bounding region.
Geospatial_lat_min specifies the southernmost
latitude covered by the dataset.

recommended ACDD 1.3

geospatial_lat_max float

Describes a simple upper latitude limit; may be
part of a 2- or 3-dimensional bounding region.
Geospatial_lat_max specifies the
northernmost latitude covered by the dataset.

recommended ACDD 1.3

geospatial_lat_units string

Units for the latitude axis described in
"geospatial_lat_min" and
"geospatial_lat_max" attributes. These are
presumed to be "degree_north"; other options
from udunits may be specified instead.

suggested ACDD 1.3

geospatial_lat_resolution float

Information about the targeted spacing of
points in latitude. Recommend describing
resolution as a number value followed by the
units. Examples: '100 meters', '0.1 degree'. For
level 1 and 2 swath data this is an
approximation of the pixel resolution.

suggested ACDD 1.3

geospatial_lon_min float

Describes a simple longitude limit; may be part
of a 2- or 3-dimensional bounding region.
geospatial_lon_min specifies the westernmost
longitude covered by the dataset. See also
geospatial_lon_max.

recommended ACDD 1.3

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 31

geospatial_lon_max float

Describes a simple longitude limit; may be part
of a 2- or 3-dimensional bounding region.
geospatial_lon_max specifies the easternmost
longitude covered by the dataset. Cases where
geospatial_lon_min is greater than
geospatial_lon_max indicate the bounding box
extends from geospatial_lon_max, through the
longitude range discontinuity meridian (either
the antimeridian for -180:180 values, or Prime
Meridian for 0:360 values), to
geospatial_lon_min; for example,
geospatial_lon_min=170 and
geospatial_lon_max=-175 incorporates 15
degrees of longitude (ranges 170 to 180 and -
180 to -175).

Recommended ACDD 1.3

geospatial_lon_units string

Units for the longitude axis described in
"geospatial_lon_min" and
"geospatial_lon_max" attributes. These are
presumed to be "degree_east"; other options
from udunits may be specified instead.

suggested ACDD 1.3

geospatial_lon_resolution float

Information about the targeted spacing of
points in longitude. Recommend describing
resolution as a number value followed by
units. Examples: '100 meters', '0.1 degree'. For
level 1 and 2 swath data this is an
approximation of the pixel resolution.

suggested ACDD 1.3

geospatial_vertical_min float

Describes the numerically smaller vertical
limit; may be part of a 2- or 3-dimensional
bounding region. See
geospatial_vertical_positive and
geospatial_vertical_units.

recommended ACDD 1.3

geospatial_vertical_max float

Describes the numerically larger vertical limit;
may be part of a 2- or 3-dimensional bounding
region. See geospatial_vertical_positive and
geospatial_vertical_units.

recommended ACDD 1.3

geospatial_vertical_resolution float Information about the targeted vertical
spacing of points. Example: '25 meters' suggested ACDD 1.3

geospatial_vertical_units string

Units for the vertical axis described in
"geospatial_vertical_min" and
"geospatial_vertical_max" attributes. The
default is EPSG:4979 (height above the
ellipsoid, in meters); other vertical coordinate
reference systems may be specified. Note that
the common oceanographic practice of using
pressure for a vertical coordinate, while not
strictly a depth, can be specified using the unit
bar. Examples: 'EPSG:5829' (instantaneous

suggested ACDD 1.3

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 32

height above sea level), 'EPSG:5831'
(instantaneous depth below sea level).

geospatial_vertical_positive string

One of 'up' or 'down'. If up, vertical values are
interpreted as 'altitude', with negative values
corresponding to below the reference datum
(e.g., under water). If down, vertical values are
interpreted as 'depth', positive values
correspond to below the reference datum.
Note that if geospatial_vertical_positive is
down ('depth' orientation), the
geospatial_vertical_min attribute specifies the
data's vertical location furthest from the
earth's center, and the
geospatial_vertical_max attribute specifies the
location closest to the earth's center.

suggested ACDD 1.3

time_coverage_start string

Describes the time of the first data point in the
data set. Use the ISO 8601:2004 date format,
preferably the extended format as
recommended in the Attributes Content
Guidance section.

recommended ACDD 1.3

time_coverage_end string

Describes the time of the last data point in the
data set. Use ISO 8601:2004 date format,
preferably the extended format as
recommended in the Attributes Content
Guidance section.

recommended ACDD 1.3

time_coverage_duration string

Describes the duration of the data set. Use ISO
8601:2004 duration format, preferably the
extended format as recommended in the
Attributes Content Guidance section.

recommended ACDD 1.3

time_coverage_resolution string

Describes the targeted time period between
each value in the data set. Use ISO 8601:2004
duration format, preferably the extended
format as recommended in the Attributes
Content Guidance section.

recommended ACDD 1.3

date_created string

The date on which this version of the data was
created. (Modification of values implies a new
version, hence this would be assigned the date
of the most recent values modification.)
Metadata changes are not considered when
assigning the date_created. The ISO 8601:2004
extended date format is recommended, as

recommended ACDD 1.3

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 33

described in the Attribute Content Guidance
section.

date_modified string

The date on which the data was last modified.
Note that this applies just to the data, not the
metadata. The ISO 8601:2004 extended date
format is recommended, as described in the
Attributes Content Guidance section.

suggested ACDD 1.3

date_issued string

The date on which this data (including all
modifications) was formally issued (i.e., made
available to a wider audience). Note that these
apply just to the data, not the metadata. The
ISO 8601:2004 extended date format is
recommended, as described in the Attributes
Content Guidance section.

suggested ACDD 1.3

date_metadata_modified string

The date on which the metadata was last
modified. The ISO 8601:2004 extended date
format is recommended, as described in the
Attributes Content Guidance section.

suggested ACDD 1.3

B. Variable Attributes

Attribute Name Type Definitions Priority Source

long_name string

A long descriptive name for the variable (not
necessarily from a controlled vocabulary). This
attribute is recommended by the NetCDF Users
Guide, the COARDS convention, and the CF
convention.

required ACDD 1.3,
CF 1.7

standard_name string

A long descriptive name for the variable taken
from a controlled vocabulary of variable names.
We recommend using the CF convention and the
variable names from the CF standard name table
(http://cfconventions.org/Data/cf-standard-
names/36/build/cf-standard-name-table.html).
This attribute is recommended by the CF
convention.

required ACDD 1.3,
CF 1.7

units string

The units of the variable's data values. This
attribute value should be a valid udunits string.
The "units" attribute is recommended by the
NetCDF Users Guide, the COARDS convention,
and the CF convention
(http://www.unidata.ucar.edu/software/udunits/
udunits-1/udunits.txt).

required ACDD 1.3,
CF 1.7

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 34

coverage_content_type string

An ISO 19115-1 code to indicate the source of the
data --MD_CoverageContentTypeCode
(https://geo-
ide.noaa.gov/wiki/index.php?title=ISO_19115_an
d_19115-
2_CodeList_Dictionaries#CI_PresentationFormCo
de). For example, image, thematicClassification,
physicalMeasurement, auxiliaryInformation,
qualityInformation, referenceInformation,
modelResult, or coordinate.

required ACDD 1.3

valid_range variable
type

Comma seperated minimum and maximum
values of the physical quantity defining the valid
measuremnt range.

required CF 1.7

coordinates string

This attribute contains a space seperated list of
all the coordinates corresponding to the
variable.The list should contain all the arxiliary
coordinate variables and optionally the
coordinate variables.

required CF 1.7

scale_factor variable
type

Slope of scaling relationship applied to transform
measuement data to appropriate geophysical
quantity representations. Should not be used if
the scale_factor is '1' and add_offset is '0'

required CF 1.7

add_offset variable
type

Intercept of scaling relationship applied to
transform measuement data to appropriate
geophysical quantity representations. Should not
be used if the scale_factor is '1' and add_offset is
'0'

required CF 1.7

_FillValue variable
type

Assigned value in the data file desiganting a null
or missing observation required CF 1.7

grid_mapping string

Describes the horizontal coordinate system used
by the data. The grid_mapping attribute should
point to a variable which would contain the
parameters corresponding to the coordinate
system. There are typically several parameters
associated with each coordinate system. CF
defines a separate attributes for each of the
parameters. Some examples are
"semi_major_axis", "inverse_flattening",
"false_easting"

recommended CF 1.7

comment string Optional attribute field allowing provision of
further free-form information about the variable recommended CF 1.7

flag_masks variable
type

A number of independent Boolean (binary)
conditions using bit field notation and setting
unique bits whose values are associated with a
list of descriptive phrases in attribute
flag_meanings. The flag_masks attribute is the
same type as the variable to which it is attached,
and contains a list of values matching unique bit

recommended CF 1.7

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 35

fields. (See CF document section 3.5;
http://cfconventions.org/Data/cf-conventions/cf-
conventions-1.7/cf-conventions.html#flags)

In this example variableY has 6 unique
flag_masks bit flag states which are defined by
the strings in flag_meanings

variableY:flag_masks = 1b, 2b, 4b, 8b, 16b, 32b ;
variableY:flag_meanings = "land_contamination
open_ocean coastal_ocean lake river
ice_contamination " ;

flag_meanings string

A list of strings that defines the the physical
meaning of each flag_masks bit field or
flag_values scaler field with a single text string.
The strings are often phrases with words
catenated with underscores, and strings are
separated by a single space.

CF allows a single variable to contain both
flag_values and flag_masks. The interpretation of
the flags in such cases is slightly tricky. In such
cases flag_masks is used to "group" a set of
flag_values into a nested conditional. Please see
the example 3.5 in the CF document on how to
interpret flag_meanings in such cases. It is
recommended that Boolean (flag_masks) and
enumerated flags (flag_values) be kept in
separate variables.

recommended CF 1.7

flag_values variable
type

flag_values consists of an enumerated list of
status flags indicating unique conditions whose
meaning is described by the commensurate list of
descriptive phrases in attribute flag_meanings.
The status flags are scaler of the same type as the
variable.

In this example, data points in variableX have one
of 3 possible status flags having values of 0, 1, or
2

variableX:flag_values = 0b, 1b, 2b ;
variableX:flag_meanings = "good_quality
suspect_data sensor_nonfunctional”

recommended CF 1.7

ESDS-RFC-038 Wen-Hao Li et al.
Category: Technical Note April 2019
Updates/Obsoletes: None YAML format for GRACE Data

 36

C. Georeferencing Coordinate Variable Attributes.

Attribute Name Type Definitions Priority Source

long_name string custom/long descriptive name of variable required ACDD 1.3,
CF 1.7

standard_name string standard variable name used to describe the georefencing
variable (eg. latitude, longitude, height) required ACDD 1.3,

CF 1.7

units string standard unit name for the standard georeferencing variable
(eg. "degrees_north", "degrees_east", "m" required ACDD 1.3,

CF 1.7

axis string Corresponding variable axis for plotting (eg. X, Y, Z) required CF 1.7

_FillValue variable
type

Assigned value in the data file desiganting a null or missing
observation. NASA best practices specifies that for satellite
datasets there should not be a _FillVlalue for these
geolocation variables.

required CF 1.7

valid_min variable
type

The minimum values of georeferancing variables (eg.
latitude, longitude, height) required CF 1.7

valid_max variable
type

The maximum values of georeferancing variables (eg.
latitude, longitude, height) required CF 1.7

comment string Optional attribute field allowing provision of further
free-form information about the variable required CF 1.7

D. Temporal Coordinate Variable Attributes.

Attribute Name Type Definitions Priority Source

long_name string custom/long descriptive name of variable required ACDD 1.3,
CF 1.7

standard_name string standard variable name used to describe the temporal
variable (ie. time) required ACDD 1.3,

CF 1.7

units string
standard unit descriptor (eg. days, hours, seconds etc) cited
against a standard reference date ("since".. date/time in ISO
8601 format)

required ACDD 1.3,
CF 1.7

axis string Corresponding variable axis for plotting (eg. T) required CF 1.7

_FillValue variable
type

Assigned value in the data file desiganting a null or missing
observation. NASA best practices specifies that for satellite
datasets there should not be a _FillVlalue for time variables.

required CF 1.7

comment string Optional attribute field allowing provision of further free-
form information about the variable required CF 1.7

