
ESDS-RFC-011v2.0 R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron
Category: Community Standard August 2008
Updates/Obsoletes: None NetCDF File Format

1

NetCDF Classic and 64-bit Offset File Formats
Status of this Memo
This is a description of an ESDS Community Standard.

Distribution of this memo is unlimited.

Change Explanation
V2.0 – Split the RFC into two parts: the RFC and the NetCDF File Format. The RFC (this
document) incorporates the NetCDF File Format as a normative reference. This was done to
allow for a different copyright notice on the NetCDF File Format portion.

V1.1 - This is a second draft incorporating minor changes needed to permit netCDF names to
begin with a numeric character.

V1.0 – Initial version

Copyright Notice
Copyright © NASA (2009). All Rights Reserved.

Abstract

This document nominates the NetCDF File Format document [1] for adoption as a NASA ESDS
community standard. The NetCDF File Format document specifies netCDF file format variants
in a way that is independent of I/O libraries designed to read and write netCDF data. The
purpose of netCDF is to provide a data model, software libraries, and machine-independent data
format for geoscience data. Together, the netCDF interfaces, libraries, and format support the
creation, access, and sharing of scientific data.

With suitable community conventions, netCDF can help improve interoperability among data
providers, data users, and data services.

ESDS-RFC-011v2.0 R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron
Category: Community Standard August 2008
Updates/Obsoletes: None NetCDF File Format

2

TABLE OF CONTENTS
1 INTRODUCTION .. 2

2 REFERENCES.. 3

3 AUTHORS' ADDRESSES ... 3

4 APPENDIX A.. 3

5 APPENDIX B – NETCDF FILE FORMAT... 3

1 Introduction

NetCDF (network Common Data Form) is a data model for array-oriented scientific data, a
freely distributed collection of access libraries implementing support for that data model, and a
machine-independent format. Together, the interfaces, libraries, and format support the creation,
access, and sharing of scientific data.

NetCDF data is intended to make possible the creation of collections of data that are:

• Self-Describing: NetCDF datasets include information about the data they contain.
• Portable: Computers with different ways of storing integers, characters, and floating-

point numbers can access netCDF data.
• Direct-access: A small subset of a large data set may be accessed efficiently, without first

reading through all the preceding data.
• Appendable: Data may be appended to a properly structured netCDF file without copying

the data set or redefining its structure.
• Sharable: One writer and multiple readers may simultaneously access the same netCDF

file. Using parallel netCDF interfaces, multiple writers may write a file concurrently.
• Archivable: Access to current and earlier forms of netCDF data will be supported by

current and future versions of the software.

This specification is needed because no standard currently exists that describes the format in
sufficient detail for independent implementations of netCDF access software. Making it an
ESDS standard provides a reference that precisely documents the netCDF format stored in a
multitude of archives. A published reference standard assures the long term usability of netCDF
data archives, because it transcends issues concerning the future availability of specific hardware
and software.

Such a standard may also encourage increased interoperability of data services, scientific
analysis software, and data management software, as current and potential developers learn of
the simplicity and representational power of a widely used format.

Limitations of this standard include a lack of precise specification for the new netCDF-4 format
(which uses an underlying HDF5 format), lack of description of conventions layers such as the
CF Conventions that provide representations for coordinate systems and other abstractions, and

ESDS-RFC-011v2.0 R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron
Category: Community Standard August 2008
Updates/Obsoletes: None NetCDF File Format

3

absence of detailed examples. Some of these limitations may be overcome in future versions of
the standard.

The netCDF reference library, developed and supported by Unidata, is written in C, with
Fortran77, Fortran90, and C++ interfaces. A number of community and commercially supported
interfaces to other languages are also available, including IDL, Matlab, Perl, Python, and Ruby.
An independent implementation, also developed and supported by Unidata, is written entirely in
Java.

2 References
Normative References

[1] NetCDF File Format, R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron, Attached as
Appendix B to ESDS-RFC-011v2

3 Authors' Addresses
Russ Rew, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
russ@ucar.edu

Ed Hartnett, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
edh@ucar.edu

Dennis Heimbigner, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
dmh@ucar.edu

Ethan Davis, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
edavis@ucar.edu

John Caron, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
caron@ucar.edu

4 Appendix A Glossary of Acronyms
Acronym Description

HDF5: Hierarchical Data Format, version 5

netCDF: network Common Data Form

5 Appendix B – NetCDF File Format

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 4

NetCDF Classic and 64-bit Offset File Formats

1 Status of this Memo
This is a description and formal specification of the Unidata network Common Data Form
(netCDF) “classic” file format and of a 64-bit offset variant of that format, provided in enough
detail to support independent implementations of software to read and write netCDF data.

Distribution of this memo is unlimited.

2 Change Explanation
This is the first version of this document

3 Copyright Notice
Copyright © UCAR (2009). The Federal government has a nonexclusive, nontransferable,
irrevocable, royalty-free license to exercise or have exercised for or on behalf of the U.S.
Government throughout the world all the exclusive rights provided by this copyright.

4 Abstract

This document specifies netCDF file format variants in a way that is independent of I/O libraries
designed to read and write netCDF data. The purpose of netCDF is to provide a data model,
software libraries, and machine-independent data format for geoscience data. Together, the
netCDF interfaces, libraries, and format support the creation, access, and sharing of scientific
data.

With suitable community conventions, netCDF can help improve interoperability among data
providers, data users, and data services.

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 5

TABLE OF CONTENTS
1  STATUS OF THIS MEMO ... 4 
2  CHANGE EXPLANATION .. 4 
3  COPYRIGHT NOTICE ... 4 
4  ABSTRACT... 4 
5  INTRODUCTION .. 5 

5.1  THE CLASSIC DATA MODEL ... 7 
5.2  THE NETCDF-4 FORMAT.. 8 
5.3  THE NETCDF-4 CLASSIC MODEL FORMAT .. 9 

6  CLASSIC FORMAT SPECIFICATION.. 9 
6.1  INFORMAL DESCRIPTION... 9 
6.2  FORMAL SPECIFICATION OF THE CLASSIC FORMAT .. 10 
6.3  THE 64-BIT OFFSET FORMAT VARIANT... 15 

7  REFERENCES.. 15 
8  AUTHORS' ADDRESSES ... 16 
9  APPENDIX A.. 16 

5 Introduction

NetCDF (network Common Data Form) is a data model for array-oriented scientific data, a
freely distributed collection of access libraries implementing support for that data model, and a
machine-independent format. Together, the interfaces, libraries, and format support the creation,
access, and sharing of scientific data.

NetCDF data is intended to make possible the creation of collections of data that are:

• Self-Describing: NetCDF datasets include information about the data they contain.
• Portable: Computers with different ways of storing integers, characters, and floating-

point numbers can access netCDF data.
• Direct-access: A small subset of a large data set may be accessed efficiently, without first

reading through all the preceding data.
• Appendable: Data may be appended to a properly structured netCDF file without copying

the data set or redefining its structure.
• Sharable: One writer and multiple readers may simultaneously access the same netCDF

file. Using parallel netCDF interfaces, multiple writers may write a file concurrently.
• Archivable: Access to current and earlier forms of netCDF data will be supported by

current and future versions of the software.

In different contexts, “netCDF” may refer to an abstract data model, a software implementation
with associated application program interfaces (APIs), or a data format. Confusion may easily

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 6

arise in discussions of different versions of the data models, software, and formats, because the
relationships among versions of these entities are more complex than a simple one-to-one
correspondence by version. For example, compatibility commitments require that new versions
of the software support all previous variants of the format and data model.

To avoid this potential confusion, we assign distinct names to versions of the formats, data
models, and software releases that will be used consistently in the remainder of this document.

This document formally specifies two format variants, the classic format and the 64-bit offset
format for netCDF data. It also informally describes two additional format variants, the netCDF-
4 format and the netCDF-4 classic model format.
The classic format was the only format for netCDF data created between 1989 and 2004 by
various versions of the reference software from Unidata. In 2004, the 64-bit offset format
variant was introduced for creation of and access to much larger files. The reference software,
available for C-based and Java-based programs, supported use of the same APIs for accessing
either classic or 64-bit offset files, so programs reading the files would not have to depend on
which format was used.

There are only two netCDF data models, the classic model and the enhanced model. The classic
model is the simpler of the two, and is used for all data stored in classic format, 64-bit offset
format, or netCDF-4 classic model format. The enhanced model (also referred to as the netCDF-
4 data model) was introduced in netCDF-4 as an extension of the classic model that adds more
powerful forms of data representation and data types at the expense of some additional
complexity. Although data represented with the classic model can also be represented using the
enhanced model, datasets that use features of the enhanced model, such as user-defined nested
data types, cannot be represented with the classic model. Use of added features of the enhanced
model requires that data be stored in the netCDF-4 format.

Versions 1.0 through 3.5 of the Unidata C-based reference software, released between 1989 and
2000, supported only the classic data model and classic format. Version 3.6, released in late
2004, first provided support for the 64-bit offset format, but still used the classic data model.
With version 4.0, released in 2008, the enhanced data model was introduced along with the two
new HDF5-based format variants, the netCDF-4 format and the netCDF-4 classic model format.
Evolution of the data models, formats, and APIs will continue the commitment to support all
previous netCDF data models, data format variants, and APIs in future software releases.

Use of the HDF5 storage layer in netCDF-4 software provides features for improved
performance, independent of the data model used, for example compression and dynamic schema
changes. Such performance improvements are available for data stored in the netCDF-4 classic
model format, even when accessed by programs that only support the classic model.

A full specification of the two netCDF-4 formats in terms of the underlying HDF5 storage layer
is outside the scope of this document. Other related formats not discussed in this document
include CDL (“Common Data Language”, the original ASCII form of binary netCDF data), and
NcML (NetCDF Markup Language, an XML-based representation for netCDF metadata and
data).

Knowledge of format details is not required to read or write netCDF datasets. Software that
reads netCDF data using the reference implementation automatically detects and uses the correct

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 7

version of the format for accessing data. Understanding details may be helpful for understanding
performance issues related to disk or server access.

This specification is needed because no standard currently exists that describes the format in
sufficient detail for independent implementations of netCDF access software. Making it an
ESDS standard provides a reference that precisely documents the netCDF format stored in a
multitude of archives. A published reference standard assures the long term usability of netCDF
data archives, because it transcends issues concerning the future availability of specific hardware
and software.

Such a standard may also encourage increased interoperability of data services, scientific
analysis software, and data management software, as current and potential developers learn of
the simplicity and representational power of a widely used format.

Limitations of this standard include a lack of precise specification for the new netCDF-4 format
(which uses an underlying HDF5 format), lack of description of conventions layers such as the
CF Conventions that provide representations for coordinate systems and other abstractions, and
absence of detailed examples. Some of these limitations may be overcome in future versions of
the standard.

The netCDF reference library, developed and supported by Unidata, is written in C, with
Fortran77, Fortran90, and C++ interfaces. A number of community and commercially supported
interfaces to other languages are also available, including IDL, Matlab, Perl, Python, and Ruby.
An independent implementation, also developed and supported by Unidata, is written entirely in
Java.

5.1 The Classic Data Model

The classic model represents information in a netCDF data set using dimensions, variables, and
attributes, to capture the meaning of array-oriented scientific data. Figure 1 presents a simplified
UML diagram of the classic data model.

Variables hold data values. In the classic model, a variable can hold a multidimensional array
of values of the same type. A variable has a name, type, shape, attributes, and values. The
shape of a variable is specified with a list of zero or more dimensions:

• 0 dimensions: a scalar variable with only one value
• 1 dimension: a 1-D (vector) variable
• 2 dimensions: a 2-D (matrix or grid) variable
• ...

Dimensions are used to specify variable shapes, common grids, and coordinate systems. A
dimension has a name and a length. Dimensions may be shared among variables, indicating a
common grid. Dimensions may be associated with coordinate variables to identify coordinate
axes. In the classic model, at most one dimension can have the unlimited length, which means
variables can grow along that dimension. Record dimension is another term for an unlimited
dimension. (In the enhanced model, multiple dimensions can have the unlimited length.)

Attributes hold metadata (data about data). An attribute contains information about properties of

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 8

a variable or an entire data set. Variable attributes may be used to specify properties such as
units. Attributes that apply to a whole data set, also called global attributes, may be used to
record properties of all the data in a file, such as processing history or conventions used. An
attribute may have zero, one, or multiple values (1-D), but attributes cannot be multidimensional.
NetCDF conventions are defined primarily in terms of attributes. Thus the names of attributes
are typically standardized in conventions rather than the names of variables.

Figure 1 The netCDF “classic” data model

For a more comprehensive explanation of the netCDF data model, see the NetCDF User's Guide
[1] or the online NetCDF Workshop for Developers and Data Providers [3].

5.2 The NetCDF-4 Format
The netCDF-4 format implements and expands the classic model by using an enhanced version
of HDF5 [7] as the storage layer. Use is made of features that are only available in HDF5
version 1.8 and later.

Using HDF5 as the underlying storage layer, netCDF-4 files remove many of the restrictions for
classic and 64-bit offset files. The richer enhanced model supports user-defined types and data
structures, hierarchical scoping of names using groups, more primitive types including strings,
larger variable sizes, and multiple unlimited dimensions. The underlying HDF5 storage layer
also supports per-variable compression, multidimensional tiling, and efficient dynamic schema

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 9

changes, so that data need not be copied when adding new variables to a file schema.

Although every file in netCDF-4 format is an HDF5 file, there are HDF5 files that are not
netCDF-4 format files, because the netCDF-4 format intentionally uses a limited subset of the
HDF5 data model and file format features. Some HDF5 features not supported in the netCDF
enhanced model and netCDF-4 format include non-hierarchical group structures, HDF5
reference types, multiple links to a data object, user-defined atomic data types, stored property
lists, more permissive rules for data object names, the HDF5 date/time type, and attributes
associated with user-defined types.

5.3 The NetCDF-4 Classic Model Format
Every classic and 64-bit offset file can be represented as a netCDF-4 file, with no loss of
information. There are some significant benefits to using the simpler netCDF classic model with
a netCDF-4 file format. For example, software that writes or reads classic model data can write
or read netCDF-4 classic model format data by recompiling/relinking to a netCDF-4 API library,
with no or only trivial changes needed to the program source code. The netCDF-4 classic model
format supports this usage by enforcing rules on what functions may be called to store data in the
file, to make sure its data can be read by older netCDF applications (when relinked to a netCDF-
4 library).

Writing data in this format prevents use of enhanced model features such as groups, added
primitive types not available in the classic model, and user-defined types. However performance
features of the netCDF-4 formats that do not require additional features of the enhanced model,
such as per-variable compression and chunking, efficient dynamic schema changes, and larger
variable size limits, offer potentially significant performance improvements to readers of data
stored in this format, without requiring program changes.

6 Classic Format Specification

6.1 Informal Description

To make the formal description more easily understood, we begin with an informal description
of the classic format, which also applies to the 64-bit offset variant. Understanding the format at
this level can make clear which netCDF operations are expensive, for example adding a new
variable to an existing file.

A classic or 64-bit offset file is stored in three parts:

1. The header, containing information about dimensions, attributes, and variables
2. The fixed-size data, containing data values for variables that don't have an unlimited

dimension
3. The record data, containing data values for variables that have an unlimited dimension

The header has information about the dimensions, variables, and attributes, including all the
attribute values. There is typically little extra space in the header, unless such space is reserved
when the file is created. This is why the dimensions, variables, and attributes in a netCDF file

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 10

are typically defined when the file is created, before any data is written. Operations that require
the header to grow force moving all the data by copying it.

Only one unlimited dimension, the record dimension, is permitted in classic model files. The
current size of the record dimension is stored in the header, which specifies how many records
the file contains. New data may be efficiently added to record variables (variables that use the
record dimension in specifying their shape) along the record dimension.

The fixed-size data part has all the data for each non-record variable. The data for each variable
is stored contiguously, in row-major order for multi-dimensional variables.

Each record in the record data part is similar to the fixed-size data part, containing all the data for
that record for each record variable. Each record's worth of data for each record variable is
stored contiguously, in row major order for multidimensional variables. All records are the same
size, because they each contain all the data for a particular record for each record variable.

6.2 Formal Specification of the Classic Format

To present the format more formally, we use a BNF grammar notation. In this notation:

• Non-terminals (entities defined by grammar rules) are in lower case.
• Terminals (atomic entities in terms of which the format specification is written) are in

upper case, and are specified literally as US-ASCII characters within single-quote
characters or are described with text between angle brackets (‘<’ and ‘>’).

• Optional entities are enclosed between braces (‘[’ and ‘]’).
• A sequence of zero or more occurrences of an entity is denoted by ‘[entity ...]’.
• A vertical line character (‘|’) separates alternatives. Alternation has lower precedence

than concatenation.
• Comments follow ‘//’ characters.
• A single byte that is not a printable character is denoted using a hexadecimal number with

the notation ‘\xDD’, where each D is a hexadecimal digit.
• A literal single-quote character is denoted by ‘\'’, and a literal back-slash character is

denoted by ‘\\’.

Following the grammar, a few additional notes are included to specify format characteristics that
are impractical to capture in a BNF grammar, and to note some special cases for implementers.
Comments in the grammar point to the notes and special cases, and help to clarify the intent of
elements of the format.

netcdf_file = header data

header = magic numrecs dim_list gatt_list var_list

magic = 'C' 'D' 'F' VERSION

VERSION = \x01 | // classic format

 \x02 // 64-bit offset format

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 11

numrecs = NON_NEG | STREAMING // length of record dimension

dim_list = ABSENT | NC_DIMENSION nelems [dim ...]

gatt_list = att_list // global attributes

att_list = ABSENT | NC_ATTRIBUTE nelems [attr ...]

var_list = ABSENT | NC_VARIABLE nelems [var ...]

ABSENT = ZERO ZERO // Means list is not present

ZERO = \x00 \x00 \x00 \x00 // 32-bit zero

NC_DIMENSION = \x00 \x00 \x00 \x0A // tag for list of dimensions

NC_VARIABLE = \x00 \x00 \x00 \x0B // tag for list of variables

NC_ATTRIBUTE = \x00 \x00 \x00 \x0C // tag for list of attributes

nelems = NON_NEG // number of elements in following sequence

dim = name dim_length

name = nelems namestring

 // Names a dimension, variable, or attribute.

 // Names should match the regular expression

 //([a-zA-Z0-9_]|{MUTF8})([^\x00-\x1F/\x7F-\xFF]|{MUTF8})*

 // For other constraints, see “Note on names”, below.

namestring = ID1 [IDN ...] padding

ID1 = alphanumeric | '_'

IDN = alphanumeric | special1 | special2

alphanumeric = lowercase | uppercase | numeric | MUTF8

lowercase = 'a'|'b'|'c'|'d'|'e'|'f'|'g'|'h'|'i'|'j'|'k'|'l'|'m'|

 'n'|'o'|'p'|'q'|'r'|'s'|'t'|'u'|'v'|'w'|'x'|'y'|'z'

uppercase = 'A'|'B'|'C'|'D'|'E'|'F'|'G'|'H'|'I'|'J'|'K'|'L'|'M'|

 'N'|'O'|'P'|'Q'|'R'|'S'|'T'|'U'|'V'|'W'|'X'|'Y'|'Z'

numeric = '0'|'1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9'

 // special1 chars have traditionally been

 // permitted in netCDF names.

special1 = '_'|'.'|'@'|'+'|'-'

 // special2 chars are recently permitted in

 // names (and require escaping in CDL).

 // Note: '/' is not permitted.

special2 = ' ' | '!' | '"' | '#' | '$' | '%' | '&' | '\'' |

 '(' | ')' | '*' | ',' | ':' | ';' | '<' | '=' |

 '>' | '?' | '[' | '\\' | ']' | '^' | '`' | '{' |

 '|' | '}' | '~'

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 12

MUTF8 = <multibyte UTF-8 encoded, NFC-normalized Unicode character>

dim_length = NON_NEG // If zero, this is the record dimension.

 // There can be at most one record dimension.

attr = name nc_type nelems [values ...]

nc_type = NC_BYTE | NC_CHAR | NC_SHORT | NC_INT | NC_FLOAT | NC_DOUBLE

var = name nelems [dimid ...] vatt_list nc_type vsize begin

 // nelems is the dimensionality (rank) of the

 // variable: 0 for scalar, 1 for vector, 2

 // for matrix, ...

dimid = NON_NEG // Dimension ID (index into dim_list) for

 // variable shape. We say this is a "record

 // variable" if and only if the first

 // dimension is the record dimension.

vatt_list = att_list // Variable-specific attributes

vsize = NON_NEG // Variable size. If not a record variable,

 // the amount of space in bytes allocated to

 // the variable's data. If a record variable,

 // the amount of space per record. See “Note on

 // vsize” below.

begin = OFFSET // Variable start location. The offset in

 // bytes (seek index) in the file of the

 // beginning of data for this variable.

data = non_recs recs

non_recs = [vardata ...] // The data for all non-record variables,

 // stored contiguously for each variable, in

 // the same order the variables occur in the

 // header.

vardata = [values ...] // All data for a non-record variable, as a

 // block of values of the same type as the

 // variable, in row-major order (last

 // dimension varying fastest).

recs = [record ...] // The data for all record variables are

 // stored interleaved at the end of the

 // file.

record = [varslab ...] // Each record consists of the n-th slab

 // from each record variable, for example

 // x[n,...], y[n,...], z[n,...] where the

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 13

 // first index is the record number, which

 // is the unlimited dimension index.

varslab = [values ...] // One record of data for a variable, a

 // block of values all of the same type as

 // the variable in row-major order (last

 // index varying fastest).

values = bytes | chars | shorts | ints | floats | doubles

string = nelems [chars]

bytes = [BYTE ...] padding

chars = [CHAR ...] padding

shorts = [SHORT ...] padding

ints = [INT ...]

floats = [FLOAT ...]

doubles = [DOUBLE ...]

padding = <0, 1, 2, or 3 bytes to next 4-byte boundary>

 // Header padding uses null (\x00) bytes. In

 // data, padding uses variable's fill value.

 // See “Note on padding” below for a special

 // case.

NON_NEG = <non-negative INT>

STREAMING = \xFF \xFF \xFF \xFF // Indicates indeterminate record

 // count, allows streaming data

OFFSET = <non-negative INT> | // For classic format or

 <non-negative INT64> // for 64-bit offset format

BYTE = <8-bit byte> // See “Note on byte data”, below.

CHAR = <8-bit byte> // See “Note on char data”, below.

SHORT = <16-bit signed integer, Bigendian, two's complement>

INT = <32-bit signed integer, Bigendian, two's complement>

INT64 = <64-bit signed integer, Bigendian, two's complement>

FLOAT = <32-bit IEEE single-precision float, Bigendian>

DOUBLE = <64-bit IEEE double-precision float, Bigendian>

 // following type tags are 32-bit integers

NC_BYTE = \x00 \x00 \x00 \x01 // 8-bit signed integers

NC_CHAR = \x00 \x00 \x00 \x02 // text characters

NC_SHORT = \x00 \x00 \x00 \x03 // 16-bit signed integers

NC_INT = \x00 \x00 \x00 \x04 // 32-bit signed integers

NC_FLOAT = \x00 \x00 \x00 \x05 // IEEE single precision floats

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 14

NC_DOUBLE = \x00 \x00 \x00 \x06 // IEEE double precision floats

 // Default fill values for each type, may be

 // overridden by variable attribute named

 // ‘_FillValue’, see “Note on fill values”, below

FILL_BYTE = \x81 // (signed char) -127

FILL_CHAR = \x00 // null byte

FILL_SHORT = \x80 \x01 // (short) -32767

FILL_INT = \x80 \x00 \x00 \x01 // (int) -2147483647

FILL_FLOAT = \x7C \xF0 \x00 \x00 // (float) 9.9692099683868690e+36

FILL_DOUBLE = \x47 \x9E \x00 \x00 \x00 \x00 //(double)9.9692099683868690e+36

Note on vsize: This number is the product of the dimension lengths (omitting the record
dimension) and the number of bytes per value (determined from the type), increased to the next
multiple of 4, for each variable. If a record variable, this is the amount of space per record. The
netCDF “record size” is calculated as the sum of the vsize's of all the record variables.

The vsize field is actually redundant, because its value may be computed from other
information in the header. The 32-bit vsize field is not large enough to contain the size of
variables that require more than 232 - 4 bytes, so 232 - 1 is used in the vsize field for such
variables.

Note on names: Earlier versions of the netCDF C-library reference implementation enforced a
more restricted set of characters in creating new names, but permitted reading names containing
arbitrary bytes. This RFC extends the permitted characters in names to include multi-byte UTF-
8 encoded[7] Unicode[4] and additional printing characters from the US-ASCII alphabet. The
first character of a name must be alphanumeric, a multi-byte UTF-8 character, or '_'
(traditionally reserved for names with meaning to implementations, such as the “_FillValue”
attribute). Subsequent characters may also include printing special characters, except for '/'
which is not allowed in names. Names that have trailing space characters are also not permitted.

Implementations of the netCDF classic and 64-bit offset format must ensure that names are
normalized according to Unicode NFC normalization rules [5] during encoding as UTF-8 for
storing in the file header. This is necessary to ensure that gratuitous differences in the
representation of Unicode names do not cause anomalies in comparing files and querying data
objects by name.

Note on streaming data: The largest possible record count, 232-1, is reserved to indicate an
indeterminate number of records. This means that the number of records in the file must be
determined by other means, such as reading them or computing the current number of records
from the file length and other information in the header. It also means that the numrecs field in
the header will not be updated as records are added to the file.

Note on padding: In the special case of only a single record variable of character, byte, or short
type, no padding is used between data values.

Note on byte data: It is possible to interpret byte data as either signed (-128 to 127) or unsigned
(0 to 255). When reading byte data through an interface that converts it into another numeric

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 15

type, the default interpretation is signed. There are various attribute conventions for specifying
whether bytes represent signed or unsigned data, but no standard convention has been
established. The variable attribute “_Unsigned” is reserved for this purpose in future
implementations.

Note on char data: Although the characters used in netCDF names must be encoded as UTF-8,
character data may use other encodings. The variable attribute “_Encoding” is reserved for this
purpose in future implementations.

Note on fill values: Because data variables may be created before their values are written, and
because values need not be written sequentially in a netCDF file, default “fill values” are defined
for each type, for initializing data values before they are explicitly written. This makes it possible
to detect reading values that were never written. The variable attribute “_FillValue”, if present,
overrides the default fill value for a variable. If _FillValue is defined then it should be scalar
and of the same type as the variable.

Fill values are not required, however, because netCDF libraries have traditionally supported a
“no fill” mode when writing, omitting the initialization of variable values with fill values. This
makes the creation of large files faster, but also eliminates the possibility of detecting the
inadvertent reading of values that were not written.

6.3 The 64-bit Offset Format Variant

The netCDF 64-bit offset format differs from the classic format only in the VERSION byte, \x02
instead of \x01, and the OFFSET entity, a 64-bit instead of a 32-bit offset from the beginning of
the file.

This small format change permits much larger files, but there are still some practical size
restrictions. Each fixed-size variable and the data for one record's worth of each record variable
are still limited in size to a little less that 4 GiB. The rationale for this limitation is to permit
aggregate access to all the data in a netCDF variable (or a record's worth of data) on 32-bit
platforms.

7 References
Normative References

[4] The Unicode Standard, Version 5.0, Fifth Edition, The Unicode Consortium, Addison-
Wesley Professional, 2006.

[5] Unicode Standard Annex #15. Unicode Normalization Forms, The Unicode Consortium,
http://www.unicode.org/reports/tr15/

[6] HDF5 Library Documentation, Release 1.8.0, February 2008.

[7] RFC3629 - UTF-8, a transformation format of ISO 10646, F. Yergeau,
http://ietfreport.isoc.org/idref/rfc3629/

Informative References

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 16

[1] NetCDF User's Guide for version 3.6.3, R. Rew, H. Davies, G. Davis, S. Emmerson, and E.
Hartnett. (UCAR/Unidata Program Center, Boulder, Colorado), 2008 edition.
http://www.unidata.ucar.edu/netcdf/old_docs/docs_3_6_3/netcdf.html

[2] NetCDF User's Guide (most recent version), R. Rew, H. Davies, G. Davis, S. Emmerson, and
E. Hartnett. (UCAR/Unidata Program Center, Boulder, Colorado), 2008 edition.
http://www.unidata.ucar.edu/netcdf/docs/netcdf.html

[3] NetCDF Workshop for Developers and Data Providers, Russ Rew and Ed Hartnett, URL:
http://www.unidata.ucar.edu/netcdf/workshops/2007/

8 Authors' Addresses
Russ Rew, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
russ@ucar.edu

Ed Hartnett, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
edh@ucar.edu

Dennis Heimbigner, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
dmh@ucar.edu

Ethan Davis, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
edavis@ucar.edu

John Caron, UCAR Unidata, P.O. Box 3000, Boulder CO 80307-3000, USA, email:
caron@ucar.edu

9 Appendix A
Glossary of acronyms

Example:

Acronym Description

ASCII: American Standard Code for Information Interchange

BNF: Backus-Naur Form

CDL: netCDF Common Data Language

GiB: GibiByte, 230 bytes which is 1,073,741,824 bytes

HDF5: Hierarchical Data Format, version 5

netCDF: network Common Data Form

NFC: Unicode Normalization Form C

NcML: NetCDF Markup Language

UML: Unified Modeling Language

UTF-8: Unicode Transfer Format, 8 bit

NetCDF File Format R. Rew, E. Hartnett, D. Heimbigner, E. Davis, J. Caron

 17

XML: eXtensible Markup Language

