

Community Tools for Analysis of NASA Earth Observation System Data in the Cloud

EOSDIS Webinar July 30, 2020 Proposal (project) Number: 17-ACCESS17-0003 Co-Operative Agreement Number(s): 80NSSC18M0157, 80NSSC18M0158, 80NSSC18M0159 Pls: Anthony Arendt (1), Joe Hamman (2), Daniel Pilone (3) Institutions: (1) University Of Washington, Seattle, (2) University Corporation For Atmospheric Research, (3) Element 84, Inc.

Project Overview

Anthony Arendt PI, University of Washington

UNIVERSITY of WASHINGTON

Science Institute

DVANCING DATA-INTENSIVE DISCOVERY IN ALL FIELDS

Joe Hamman PI, NCAR/CGD

NATIONAL CENTER FOR ATMOSPHERIC RESEARCH

Tom Augspurger PI, Anaconda Inc.

Dan Pilone PI, Element 84

Rob Fatland Scott Henderson Co-I, University of Washington Co-I, University of Washington

Sebastian Alvis UW eScience

ANACONDA.

Research Science: a New Era of Complexity

Data Deluge

Sensors, simulations, lab automation, field data

Interdisciplinarity

New insights occur at the intersection between disciplines

New Tools

Scientists require depth of knowledge in both data science and domain science

PANGEO

Geospatial community needs

Need better tools for scalable, data proximate computing to support exploration of increasingly large data volumes:

Size of CMIP Archives

Pangeo Goals

Improved search, discovery and interactive analysis of NASA data. In particular, deployable scalable algorithms rather than downloading data.

Scientific interaction w/ NASA data

existing model

*DAAC = "Distributed Active Archive Center"

Downloading bottleneck as researcher waits for data transfer

Difficult data management because researchers end up duplicating large subsets of original data with minor modifications

Difficult to share running someone else's code requires downloading all that data again!

Limited computational power since algorithms run on researcher's hardware

Benefits for Cloud-native analysis

*Schematic specific to NASA data moving to AWS Cloud, but same architecture applies for HPC **Instant access** to compute resources and data (no queueing)

Democratize access large computations accessed with web browser

No downloading since algorithms uploaded to data

Scalable computational power used and billed by time

On-demand special resources (GPUs)

Reproducible workflows thanks to network-accessible datasets and containerized software

Concerns for Cloud-native analysis

Unfamiliar cost model for cloud resources (utility pricing instead of sunk cost)

Steep learning curve to design and implement Cloud-based infrastructure

Concern over commercial management of public data

Potential vendor lock-in with major Cloud-providers (AWS, GCP, Azure...)

Ultimate Goal: Reallocate time!

Traditional Project Timeline

80%	10%	10%
Data Preparation	Batch	Think about
(download, clean, & organize files)	Processing	science

Cloud-based Project Timeline

,	5% Load AODS	5% Parallel Processing	90% Think about science

*Slide by Chelle Gentemann (Farallon Institute), ESIP 2020 Summer Meeting Keynote "Empowering Transformational Science"

https://speakerdeck.com/cgentemann/empowering-transformational-science

Cloud computing & JupyterHub

The Pangeo Computing Architecture

JupyterHub behind the scenes:

Dask-gateway for scalable computations

Pangeo with Dask Gateway

Tom Augspurger Follow Mar 31 · 4 min read

https://medium.com/pangeo/pangeo-with-dask-gateway-4b638825f105

- Administrator handles configuration
- Scientific users only need to connect
- Separates Dask clusters from JupyterHub
- Currently implemented for Kubernetes

Dask-gateway from a user's perspective:

Dask-Gateway Cluster

If we don't specify a specific cluster, dask will use the cores on the machine we are running our notebook on instead, lets connect to a Dask-Gateway cluster. You can read more about this cluster at https://gateway.dask.org/ .

[25]: from dask_gateway import GatewayCluster
from dask.distributed import Client

```
cluster = GatewayCluster()
client = cluster.get_client()
cluster.adapt(minimum=10, maximum=20)
cluster
```

GatewayCluster

Workers	10	▶ Manual Scaling
Cores	20	Adaptive Scaling
Memory 42	95 GB	

Name: icesat2-prod.a89934f463124d1cbe4266dc1e133567

Dashboard: https://aws-uswest2.pangeo.io/services/dask-gateway/clusters/icesat2-prod.a89934f463124d1cbe4266dc1e133567/status

* 🔊

What is Pangeo Cloud?

https://pangeo.io/cloud.html

"Pangeo Cloud is an experimental service providing cloud-based data-science environments (JupyterHubs and BinderHubs)."

https://aws-uswest2.pangeo.io/ https://binder.pangeo.io/ ••• <> C PANGEO JunyterHub O a us-central1-b.gcp.pangeo.io/hub/logi ••• <> @ aws-uswest2-binder pangeo io 6 0 PANGEO **US-CENTRAL1-B.GCP.PANGEO.IO** PANGEO A COMMUNITY HUB FOR OCEAN, ATMOSPHERIC, AND CLIMATE RESEARCH A COMMUNITY HUB FOR ICESAT2 HACKWEEK **S**binder Welcome to icesat2.pangeo.io, the computational environment for Icesat-2 Hackweek! This hub lives in AWS region us-west-Welcome to us-central1-b.gcp.pangeo.io. This hub lives in Google Cloud region us-central1-b. It 2. It is maintained by the Pangeo project and is supported by NASA Grant #17-ACCESS17-0003 and cloud credits from is maintained by the Pangeo project and supported by a grant from the National Science Foundation Amazon. Access is currently limited to the ICESAT-2HackWeek GitHub Organization. The hub's configuration is stored in this (NSF award 1740648), which includes a direct award of cloud credits from Google Cloud. The hub's althub repository. To provide feedback and report any technical problems, please use the althub issue tracker. configuration is stored in the github repository https://github.com/pangeo-data/pangeo-cloud-Turn a Git repo into a collection of interactive federation/. To provide feedback and report any technical problems, please use the github issue notebooks Have a repository full of Jupyter notebooks that use Dask to perform scalable computations? With Pangeo-Binder, open those notebooks in an executable environment, launch a Dask-Kubernetes cluster, access datasets stored on the cloud, and make your code immediately reproducible by anyone, anywhere. Build and launch a repository GitHub repository name or URL GitHub -Git branch, tag, or commit Path to a notebook file (optional) Git branch, tag, or commi Path to a notebook file (optional

17

https://us-central1-b.gcp.pangeo.io/

tracker.

Sign in with Panged

Scientific Python Software

Xarray data model

array XARRAY DATASET: MULTIDIMENSIONAL VARIABLES WITH COORDINATES AND METADATA

"netCDF meets pandas.DataFrame"

Credit: Stephan Hoyer

XARRAY MAKES SCIENCE EASY

```
import xarray as xr
url = 'https://www.esrl.noaa.gov/psd/thredds/dodsC/Datasets/'
fname = 'noaa.ersst.v5/sst.mnmean.nc'
ds = xr.open_dataset(url + fname)
ds
```

Dimensions: (lat: 89, lon: 180, nbnds: 2, time: 1974) Coordinates: * lat (lat) float32 88.0 86.0 84.0 82.0 80.0 78.0 76.0 74.0 72.0 ... * lon (lon) float32 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 ... * time (time) datetime64[ns] 1854-01-01 1854-02-01 1854-03-01 ... Dimensions without coordinates: nbnds Data variables: time bnds (time, nbnds) float64 ... sst (time, lat, lon) float32 ... Attributes: climatology: Climatology is based on 1971-2000 SST, X... description: In situ data: ICOADS2.5 before 2007 and ...

XARRAY: LABEL-BASED SELECTION

time = 1982-08-01 Sea Surface [degC] Latitude [degrees_north] Monthly Means Tamperat -20 -40 -60-80 -30 Longitude [degrees_east]

XARRAY: GROUPING AND AGGREGATION

sst clim = ds['sst'].groupby('time.month').mean(dim='time') sst anom = ds['sst'].groupby('time.month') - sst clim nino34 index = (sst anom.sel(lat=slice(5, -5), lon=slice(190, 240)) .mean(dim=('lon', 'lat')).rolling(time=3).mean() .sel(time=slice('1950', '2016')))

SST Anomaly in Nino 3.4 Region (5N-5S,120-170W)

Analysis ready data

Analysis Ready Data Example: Land Surface Model Output

https://zarr.readthedocs.io https://www.cogeo.org/

25

https://github.com/intake/intake-stac

- Spatio-Temporal Asset Catalogs (STAC) are an emerging standard among imagery providers to simplify and unify search capabilities
- Intake is a Python-specific library for data catalog management
- Intake-STAC facilitates exploring STAC catalogs and loading imagery directly into Python for interactive computation

\varTheta PANGEO

Example: Static STAC Catalogs

[1]: %%time

```
import intake # Automatically will discover intake-stac installed
```

```
item = intake.open_stac_item('https://sat-api-dev.developmentseed.org/collections/landsat-8-l1/items/LC80090142019038LGN00')
da = item.B1(chunks=dict(band=1,x=2048,y=2048)).to_dask()
da
```

```
CPU times: user 1.34 s, sys: 153 ms, total: 1.49 s Wall time: 3.18 s
```

- ^[1] xarray.DataArray (band: 1, y: 8591, x: 8541)
 - dask.array<chunksize=(1, 2048, 2048), meta=np.ndarray>

▼ Coordinates:

band	(band)	int64	1	
У	(y)	float64	7.406e+06 7.405e+06 7.148e+06	
х	(x)	float64	2.37e+05 2.37e+05 4.932e+05	

▼ Attributes:

transform :	(30.0, 0.0, 236985.0, 0.0, -30.0, 7405515.0
crs:	+init=epsg:32622
res:	(30.0, 30.0)
is_tiled :	1
nodatavals :	(nan,)

Example: Search with STAC-APIs

[4]:	<pre># Search STAC API results = satsearch.Search.search(collection='landsat-8-l1', bbox=[-55, 65, -53, 66], datetime='2019-06-01/2019-07-11; property=["landsat:tier=T1"]) # Load with Intake-STAC catalog = intake.open_stac_item_cod intake.gui.add(catalog) intake.gui</pre>	5', llection(results.items())	
[4]:	Catalogs	Sources	<pre>name: B1 container: xarra plugin: ['raste</pre>
	builtin	index	description: Ba
	<class 'satstac.itemcollection.lte<="" td=""><td>thumbnail</td><td>1)</td></class>	thumbnail	1)
	LC80080142019191	B1	direct_access:
		B2 B3	user_parameters
	LC80072502515165	B4	metadata:
	LC80070142019184	B5	eo:bands: [0]
	LC80090142019182	B6	title Band 1
	LC80090132019182	B7	href: https://
	+ – Q		s.s3.amazonaws. 8/014/LC08_L1TP

ay rio'l nd 1 (coasta True : [] .geotiff (coastal) /landsat-pd com/c1/L8/00 _008014_2019

https://www.element84.com/earth-search/

Interactive visualizations

import hvplot.xarray

Interactive visualizations

Future Effort: Integrations with NASA CMR

DEMO!

 \square

Scaling out to large archives

http://gallery.pangeo.io/repos/pangeo-data/landsat-8-tutorial-gallery/

PANGEO GALLERY	Landsat 8 Tutorial		Dataset size: [0	Gb] 77.357853	3784	
Contributor Guide	LANDSAT 8 TUTORIAL	[26]:	xarray.Dataset			
Gallery for CESM LENS on AWS Pangeo & Dask Gateway.	Opangeo-data/landsat-8-tutorial-gallery		Dimensions:	(time : 19, x	:: 7981, y : 7971)	
Cloud Storage Benchmarks	license wit Quasc commit july (7 Binderoc passing V Bunch Binder)		v Coordinates.	(v)	float64	5 374e+06 5 374e+06 5 135e+06
Landsat 8 Tutorial	THUMBNAIL IMAGE		x	(y) (x)	float64	3.522e+05 3.522e+05 5.916e+05
Landsat-8 on AWS Pangeo Tutorial Gallery			time	(time)	datetime64[ns]	2019-04-06T19:01:20 2020-06-27T19:01:3
CMIP6 Gallery			Data variables:			
isical	All and a second second		coastal	(time, y, x)	float64	dask.array <chunksize=(1, 2048),="" 2048,="" meta="r</td"></chunksize=(1,>
Oceanography			blue	(time, y, x)	float64	dask.array <chunksize=(1, 2048),="" 2048,="" meta="r</td"></chunksize=(1,>
y			green	(time, y, x)	float64	dask.array <chunksize=(1, 2048),="" 2048,="" meta="r</td"></chunksize=(1,>
	DESCRIPTION		red	(time, y, x)	float64	dask.array <chunksize=(1, 2048),="" 2048,="" meta="r</td"></chunksize=(1,>
	Notebook adapted from the pangeo-tutorial notebook on Landsat 8		nir	(time, y, x)	float64	dask.array <chunksize=(1, 2048),="" 2048,="" meta="r</td"></chunksize=(1,>
	ioi Fairgeo Gallery.		swir16	(time, y, x)	float64	dask.array <chunksize=(1, 2048),="" 2048,="" meta="r</td"></chunksize=(1,>
	NOTEBOOKS		swir22	(time, y, x)	float64	dask.array <chunksize=(1, 2048),="" 2048,="" meta="r</td"></chunksize=(1,>
	Landsat-8 on AWS		cirrus	(time, y, x)	float64	dask.array <chunksize=(1, 2048),="" 2048,="" meta="r</td"></chunksize=(1,>

Hackweeks

Hackweeks to support community training

GEOHACKWEEK 2019

WORKSHOP ON GEOSPATIAL DATA SCIENCE UNIVERSITY OF WASHINGTON ESCIENCE INSTITUTE SEPT 9 - 13, 2019

https://geohackweek.github.io

WATERHACKWEEK 2019

WORKSHOP ON WATER DATA SCIENCE UNIVERSITY OF WASHINGTON ESCIENCE INSTITUTE MARCH 25-29, 2019 APPLICATIONS ARE OPEN UNTIL NOVEMBER 26, 2018

https://waterhackweek.github.io

university of washington eScience Institute

CRYOSPHERIC SCIENCE WITH ICESAT-2 HACKWEEK 2019

WORKSHOP ON ICESAT-2 DATASETS FOR CRYOSPHERIC STUDIES UNIVERSITY OF WASHINGTON JUNE 17-21, 2019

https://icesat-2hackweek.github.io

What is a Hackweek?

A welcoming learning environment designed to build an *open and collaborative research community* while introducing participants to new software tools

FICESat-2 Hackweek Learning Resources	Dacs • Overview Q Edit on GitHub
earch docs	
	Malaamal
rerview	welcome:
Velcome!	Welcome to the ICESat-2 hackweek! We look forward to working with you in building an open and
Quick Links	collaborative community as we explore the cryosphere using ICESat-2 datasets.
/hat inspires the 2020 hackweek ommunity?	Ouick Links
/hat is a hackweek?	· · · · · · · · · · · · · · · · · · ·
/hy have a virtual hackweek?	Here are some quick links to material for our upcoming June 2020 event:
loadmap	Today's Asthélies
ieneral Structure	 hackweek schedule: overview of our planned virtual events spanning June 8 - 18, 2020.
nduct	 preliminary work: everything you need to know to be ready for the hackweek.
ode of Conduct	 the Pangeo Hub: link for accessing the Pangeo deployment.
earning Community	 Getting Help Decision Tree: figure to help you determine the best place to get help.
ristics	What in mixes the 2020 heals weak asymptotic
oday's Activitites	what inspires the 2020 nackweek community?
lackweek Schedule	
arning Technologies	What inspires our work
etting Help	field needCESat-2DeODIe
Dur Team	beauty danges
eliminary Steps	science
SitHub account	landscapes -
upyterHub connection	
ython installation	And a
arthdata login	beautial diacier
orials	Bidciter Bidciter
Setting Started	
ntroduction to GitHub	for
ntroduction to Jupyter	amazing with a learning passion data
troduction to Python	
jects	What is a backweek?
verview	Wildl 15 a Hackweek!
roject Roles and Responsibilities	Hackweeks were originally designed by the University of Washington's eScience Institute, and they
roject Initialization	aim to provide a welcoming learning environment where you can learn new software tools,
voject Example Github Vorkflow and Data Sharing	collaborate with colleagues, build community and make progress on specific projects. Our hackweek model is constantly evolving and we invite you actively participate as we experiment with new
	approaches and ideas.

Slides courtesy of Jessica Scheik, ESIP 2020

\varTheta PANGEO

A typical Hackweek includes...

- Community building activities
- Curated computational environment (Pangeo)
- Hands on tutorials
- Interactive peer-to-peer learning
- Project time to "hack" on something of interest to you
- Access to a team of experts in your field AND open-source software

Cryosphere themed ICESat-2 Hackweek

university of washington eScience Institute

- June 2020
- 80+ participants
- First 100% virtual hackweek! Used Zoom+Slack.
- Only ~2 months to transition to virtual
- A great success!

Yotribe virtual happy hour!

🖯 PANGEO

https://icesat2-hackweek.io

Welcome to icesaic2hackweek.io, the computational environment for icesaic2Hackweek! This hub lives in AWS region us-ware?: ... It is maintained by the Pangeo project and is supported by NASA Grant 17.AcCESS17.003 and dout certains from Amazon. This is a prototype and should be treated accordingly. We make no promises that the hub will remain active. Do not store passwords or sensitive data in your home directory Access is currently limited to members of the Pangeo Calif-lub Organization and the locSaic2 Hackweek Organization. To provide feedback and report any technical problem. Journal of the pangeo Calif-lub Organization and the locSaic2 Hackweek Organization. To provide feedback and report any technical problem, please use the github lases tracker.

- Custom JupyterHub deployed for 2 months
- Key technology for facilitating collaboration
- On AWS-uswest2 (where NASA is starting to host icesat2 data)
- Total Cloud bill ~\$1000

Slide courtesy of Sebastian Alvis, UW

Deploy your own Pangeo

https://medium.com/pangeo/terraform-jupyterhub-aws-34f2b725f4fd

Conclusions and Lessons Learned

When hosting your data in the cloud, consider cloud-optimized formats.

Explore existing open-source solutions and avoid reinventing the wheel.

Infusion / interoperability is more likely when we adopt consistent community standards.

Education and outreach are critical to facilitate community adoption of cloud technologies.

Researchers will benefit from having clear funding models to support future adoption of JupyterHub and Binder toolkits.

Funding and other Contributors

PANGEO

A community platform for Big Data geoscience

C contributors 62 O discourse 341 users |||| chat on gitter y follow @pangeo_data 2.4k

http://pangeo.io

@pangeo_data

https://github.com/pangeo-data