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Executive Summary 

Radiant Earth Foundation, with sponsorship from NASA’s Earth Sciences Data Systems (ESDS) 

Program, hosted the “Advancing Application of Machine Learning Tools for NASA’s Earth 

Observation Data” workshop Jan. 21-23, 2020, in Washington, D.C. During the workshop, experts 

from academia, industry, government, and nonprofit organizations discussed opportunities for 

advancing Earth sciences by way of using machine learning techniques to analyze NASA Earth 

observation data. 

Workshop participants were separated into three working groups, each of which generated 

findings and recommendations according to a theme of the group:  

• Working Group 1: Training Data Generation and Accounting for Errors/Uncertainties 

Training data is the main component of supervised machine learning techniques and 

is increasingly becoming the main bottleneck to advance applications of machine 

learning techniques in Earth science. Several concerted efforts have started in recent 

years to catalog and publish benchmark datasets to support new model development 

and running data science challenges. However, more investment must be made to 

increase diversity and representativeness of open training datasets across all science 

disciplines.  

While development and sharing of benchmark training datasets is essential, research 

and investment in techniques that require less training data (such as semi-supervised 

learning and active learning) is required. Use of synthetic and simulation datasets to 

build machine learning models that mimic the physics of Earth system was 

recommended by the group. Finally, the group also recommended several best 

practices to account for errors and uncertainties in training datasets as it pertains to 

Earth science problems.  

• Working Group 2: Modeling Approaches and Best Practices for Building the Best and 

Computationally Optimum Model 

Machine learning models are built on data, and by design they do not incorporate any 

physical law (such as mass and energy balance) and do not extrapolate well beyond 

the range of  the training data. Different techniques such as regularization and 

embedding the physical constraints into the model architecture have been 

successfully implemented to address this issue. However, more research and 

investment in building domain-aware models and using techniques such as 

reinforcement learning is a high priority.  

Earth science data include a wealth of ground observations that do not fit into the 

common gridded data frameworks (i.e. images) and satellites and models provide 
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multi-band and multi-modal raster images that are not necessarily three bands which 

is the common data type in computer vision problems. Therefore, new model 

architectures that can benefit from the characteristics of Earth science data need to 

be developed and adopted.  

Similar to training data, sharing baseline pre-trained machine learning models is 

essential to ensure research results are reproducible and to facilitate development of 

new models and applications.  

• Working Group 3: Best Practices for Sharing and Publishing Machine Learning 

Applications (Model, Training Data, and Results) 

Training data and models should be well documented and shared following the FAIR 

(findability, accessibility, interoperability, and reusability) data management 

principles. It is expected that journals enforce more strict policies for sharing training 

data and models, and funding agencies provide support for the required efforts 

through grants data management plans.   

Training data and model catalogs should have sufficient metadata in a standard 

format. The SpatioTemporal Asset Catalog (STAC) specification provides a framework 

for cataloging various geospatial data types but it has shortcomings for storing non-

raster data and it needs further investment. A similar specification to STAC needs to 

be adopted by the community for cataloging and publishing machine learning models.  

A cultural shift is needed to incentivize and reward researchers, developers and 

practitioners to share their scripts used to generate training data and build models. 

There should also be more collaborative efforts, supported by funding agencies, to 

develop and maintain open-source scientific software packages that facilitate 

research studies.  
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1. Introduction 

During the last decade, machine learning (ML) techniques have improved significantly due to an 

abundance of data and advancements in high-performance computing. ML-based applications 

are now being deployed across diverse markets to provide new, faster, and/or more accurate 

solutions, or to augment human intelligence and increase human efficiency. Increasingly, the 

science community also is using these techniques to better harness the ever-increasing volume 

of Earth observation (EO) data for geospatial analysis—i.e., modeling the Earth system and its 

changing environment. 

In order to increase the adoption of ML techniques for geospatial analysis by researchers, 

practitioners and application developers, several challenges must be addressed. A key 

component of many ML techniques, for example, is training data (TD), which are used to develop 

and train models. Such models “learn” patterns in the TD by identifying relationships between 

input data and observed outputs, allowing them to predict future scenarios. Therefore, it is 

essential to have comprehensive and diverse TD for building models that can be applied to the 

broad spectrum of possible input and output scenarios. This is essential for geospatial analysis, 

as satellites capture EO data with global coverage that can be used to address problems spanning 

numerous and diverse geographies and time frames. 

NASA’s Earth Science Division is implementing a cloud-based solution to address the challenges 

posed by future high-data-volume missions. The collocation of large data repositories and cloud 

computing democratizes science by allowing anyone to pursue new discoveries without investing 

in substantial hardware and with only minimal need for large data transfers. Furthermore, cloud 

computing is expected to make it easier for researchers to exploit new ML techniques that utilize 

data to solve challenging problems in Earth science. The goal of this new cloud-based approach 

is to build ML-ready datasets for rapid prototyping and to create common frameworks that 

enable decentralized development and sharing. This requires shifting from the classical paradigm 

of data curation and model development to a cloud-centric and data-driven approach. This 

workshop sought to address the scientific and technological challenges underlying this paradigm 

shift by presenting successful use case implementations, identifying existing gaps, and 

developing best practices that will help the community benefit from advancements in ML 

techniques. 

NASA’s Earth Science Data Systems (ESDS) Program selected Radiant Earth Foundation—a 

nonprofit organization whose mission is expanding the application of Earth observations to 

address global development and environmental challenges—to host this international expert 

workshop and compile a report that’s based on it. 
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1.1 Definitions 

 Machine Learning 

Machine learning (ML) is the science of getting computers (specifically, algorithms or models) to 

learn from data and act accordingly in future situations. Generally, there are three types of 

learning: supervised, unsupervised, and reinforcement. In supervised learning, data contains 

inputs and outputs (i.e., labels), and models try to learn patterns between them. Regression and 

classification are the two main types of supervised learning. In unsupervised learning, data 

doesn’t have any labels; models therefore try to find and group patterns based on similarities. 

Clustering is the most common unsupervised learning problem. Finally is reinforcement learning, 

wherein the model continuously learns from data based on a reward system. In contrast to 

supervised learning, where the model can learn patterns just by analyzing the data, models in 

reinforcement learning are rewarded based on the quality of their predictions and continue to 

improve until a reward threshold is reached. 

 Analysis Ready Data 

With rapid expansion of EO data, more datasets are becoming available with varying resolutions, 

processing levels, accuracy, and formats, among other properties. Against that backdrop of data 

diversity exists the concept of Analysis Ready Data (ARD), which seeks to reduce the 

preprocessing requirements for users. Specifically, the term “ARD” refers to products that are 

stored in ARD format or a reproducible pipeline to generate data when it’s needed. The 

processing steps that go into an ARD product depend on the source data and applications for 

which the data is being prepared. These can include atmospheric correction, masking unusable 

data (e.g., clouds in visible band imagery), harmonization of different instruments, reprojection, 

and regridding, among others.  

Currently, the U.S. Geological Survey (USGS) is developing ARD for its Landsat mission [1]–[3]. 

The Committee on Earth Observation Satellites (CEOS) likewise has worked with the community 

to develop a framework for “ARD for Land” products.1 Other efforts and partnerships among 

commercial providers also are progressing to define community standards for ARD.2 This is an 

emerging topic that eventually will enable many large-scale ML applications. 

2. Workshop Overview 

The two-and-a-half-day workshop hosted a diverse group of researchers, practitioners, 

developers, and stakeholders from academia, industry, government, and nonprofit 

 

1 http://ceos.org/ard/ 
2 https://medium.com/radiant-earth-insights/the-first-satellite-data-interoperability-workshop-is-happening-next-
week-fae9539f81f9 

http://ceos.org/ard/
https://medium.com/radiant-earth-insights/the-first-satellite-data-interoperability-workshop-is-happening-next-week-fae9539f81f9
https://medium.com/radiant-earth-insights/the-first-satellite-data-interoperability-workshop-is-happening-next-week-fae9539f81f9
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organizations. The schedule included two half-day oral presentations by participants, and three 

half-day working group discussions. 

The workshop scientific committee set up three working groups:  

• Working Group 1: Training Data Generation and Accounting for Errors/Uncertainties 

• Working Group 2: Modeling Approaches and Best Practices for Building the Best and 

Computationally Optimum Model 

• Working Group 3: Best Practices for Sharing and Publishing ML Applications (Model, 

Training Data, and Results) 

To better organize the discussions, participants were assigned to a working group in advance of 

the workshop and received a set of questions to start the conversation. A member of the 

scientific committee moderated each working group while rapporteurs captured all the 

discussions. During three planned report-out sessions, moderators presented their working 

group’s findings to all workshop participants and received feedback along with potential topics 

to discuss further in their respective groups. 

The workshop schedule and list of presenters are available on the workshop website3 and 

recorded presentations on YouTube.4 The full list of workshop attendees also is provided in 

Appendix B: Workshop Participants. 

3. State of Research and Gaps in Training Data and Models for Earth 

Science ML 

Results from a recent study conducted by the University of Alabama and NASA’s Marshall Space 

Flight Center shows significant trends in using ML across different Earth science disciplines 

between 2008 and 2018, including a 40% increase in atmospheric science papers using 

supervised ML published by the American Meteorological Society (AMS) in its journals, a 90% 

increase in similar papers published by the American Geophysical Union (AGU) in its journals, and 

a 10-fold increase in geoscience papers published by the Institute of Electrical and Electronics 

Engineers (IEEE). Data from in situ instruments, models, and satellites are the most used for 

building these ML models. Other data that are used include reanalysis, physical samples, and 

airborne data. There is also diversity across sub-domains in the dominant source of data for ML 

applications [4]. The following summarizes the latest advancements and gaps in ML applications 

using EO based on participants’ presentations and input.  

 

3 https://www.radiant.earth/events/nasa-ml-2020/ 
4 http://bit.ly/ML4EO20 

https://www.radiant.earth/events/nasa-ml-2020/
http://bit.ly/ML4EO20
https://www.radiant.earth/events/nasa-ml-2020/
http://bit.ly/ML4EO20
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3.1 State of Research 

 Training Datasets 

Several organizational and academic efforts are underway to publish and share open 

source benchmark TD for EO in support of ML applications, including SpaceNet,5 Radiant 

MLHub,6 BigEarthNet [5], Dynamic World, and WeatherBench.7  

Although size of TD is important for its impact on models’ performance, another key 

factor is its representativeness with respect to the distribution of phenomenon of 

interest. Moreover, different model architectures cannot be absolutely ranked for their 

performance because their accuracy is highly dependent on the number of samples8. 

Using simulation data as TD is key to assess whether ML models can learn the physics of 

a geoscience phenomenon. Several examples were presented across science disciplines, 

including ocean science, climate modeling, and soil moisture retrieval [6]–[9]. 

 Algorithms 

Active learning techniques that involve humans in the loop provide a suitable framework 

for building accurate ML models by directing label generation where the model has low 

accuracy [10]. This technique can also be used to fine-tune existing models for new spatial 

or temporal domains [11]–[12]. 

Manifold embedding to partition massive amounts of data into homogeneous 

distributions and then fitting simple models helps optimize resource utilization when 

working with massive geospatial data [13]. 

To take advantage of multi-resolution bands in satellite imagery or model outputs, a 

customized Convolutional Neural Network (CNN) can be built that receives multi-

resolution data as input [14]. 

Many successful ML applications are developed and in some cases commercialized to 

provide crop type classification using satellite data in-season and post-harvest [15]–[19]. 

 Tools and Analytic Frameworks 

Analytic frameworks (cloud-based or local) have progressed significantly in recent years 

and continue to add new functionalities and features to enable development of scalable 

models. 

 

5 https://spacenet.ai/ 
6 https://mlhub.earth/ 
7 https://github.com/pangeo-data/WeatherBench 
8 https://medium.com/the-downlinq/robustness-of-limited-training-data-part-3-9df24c58c2 

https://spacenet.ai/
https://mlhub.earth/
https://github.com/pangeo-data/WeatherBench
https://medium.com/the-downlinq/robustness-of-limited-training-data-part-3-9df24c58c2
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Pangeo is an open-source architecture that is built on top of other open source tools such 

as Jupyter, xarray, Dask-Kubernetes, and Binder. It provides ARD with parallel computing 

and an interactive interface. Future versions will have enhanced integration with ML 

packages [20]. 

Open Data Cube (ODC) is an open source data management and analysis platform that 

provides a flexible framework for hosting multi-spectral data as ARD and accessing it for 

analysis at scale. Similar to Pangeo, it has a Jupyter interface.  

Google Earth Engine is widely used in geoscience research and recently released an 

integration with TensorFlow and Google Colab for deploying ML models. 

RasterVision,9 Solaris,10 and eo-learn11 are examples of open source Python packages for 

conducting end-to-end ML on satellite imagery. 

There are several open source labeling tools to help the community generate high-quality 

labels from satellite imagery, including: Image Labeler,12 Geo-Wiki,13 Picture Pile, 

FotoQuest Go, LACO-Wiki Validation Platform, and Groundwork14.  

Several competitions have been held in recent years to build and open source ML models 

for various Earth science applications (clouds organization15, understanding the 

Amazon16, tree detection/classification17, crop type classification18, roads and buildings 

detection19, and sea lion counts20). Because these are very effective for showcasing the 

state of the art for the corresponding benchmark data, more efforts in this regard are 

required. 

3.2 Gaps 

 Training Datasets 

Lack of open benchmark training datasets across all science disciplines is the main 

bottleneck in advancing ML application in Earth science and it’s also causing 

 

9 https://rastervision.io/ 
10 https://github.com/CosmiQ/solaris 
11 https://github.com/sentinel-hub/eo-learn 
12 https://labeler.nasa-impact.net/ 
13 https://www.geo-wiki.org/ 
14 https://groundwork.azavea.com/ 
15 https://www.kaggle.com/c/understanding_cloud_organization 
16 https://www.kaggle.com/c/planet-understanding-the-amazon-from-space 
17 https://www.ecodse.org/ 
18 https://zindi.africa/competitions/iclr-workshop-challenge-2-radiant-earth-computer-vision-for-crop-recognition 
19 https://spacenet.ai/challenges/ 
20 https://www.kaggle.com/c/noaa-fisheries-steller-sea-lion-population-count 
 

https://rastervision.io/
https://github.com/CosmiQ/solaris
https://github.com/sentinel-hub/eo-learn
https://labeler.nasa-impact.net/
https://www.geo-wiki.org/
https://groundwork.azavea.com/
https://www.kaggle.com/c/understanding_cloud_organization
https://www.kaggle.com/c/planet-understanding-the-amazon-from-space
https://www.ecodse.org/
https://zindi.africa/competitions/iclr-workshop-challenge-2-radiant-earth-computer-vision-for-crop-recognition
https://spacenet.ai/challenges/
https://www.kaggle.com/c/noaa-fisheries-steller-sea-lion-population-count
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reproducibility issues and making it difficult to compare results across studies. Moreover, 

coordinated efforts to collect and publish ground reference data for applications that 

require those data as labels (agricultural and oceanographic applications, in particular) 

are needed.  

 Algorithms 

There is limited availability of baseline models for Earth science data that allow for 

integration of multi-resolution, multi-modal (e.g., EO, SAR, model), multi-scale, and high-

dimensional data. 

Geoscience models must generalize across space and time; however, for supervised 

learning one needs large training datasets to build generalizable models. Potential 

innovative solutions in which to invest include techniques that: 

o Require less data, such as transfer learning, representation learning, semi-

supervised learning, and unsupervised learning [21]–[25]; and/or 

o Use alternative data sources, such as weak and crowdsourced labels [26]. 

Because ML models generally do not preserve physical laws (e.g., mass and energy 

balance), innovative ways to incorporate physics in ML models are needed [8]. Moreover, 

there are complex spatio-temporal relationships—including non-trivial and lagged long-

distance relationships (i.e., teleconnections) between geophysical variables—that must 

be adequately modeled in ML architectures. 

The majority of ML models do not generalize to data outside of their training dataset; 

therefore, they cannot be used for extrapolating (e.g., forecasting extreme events or 

climate change). This is a major barrier for their application in Earth sciences and requires 

further research—for example, using reinforcement learning.  

Unstructured data are key in some disciplines, such as oceanic and atmospheric sciences. 

However, the majority of ML models are built for structured (e.g., gridded) data. A 

potential solution that requires more investment is using graph neural networks [27]. 

Meanwhile, sparsity of these data in space and time makes it more challenging to use 

them for training and validation. It’s necessary to quantify the uncertainty that is caused 

by their heterogeneous sampling, and to propagate that into the model predictions. 

Improved characterization of models’ confidence and accuracy is essential to their wide 

adoption. Bayesian/probabilistic inference should be integrated into models because 

such inference allows for explicit representation and propagation of uncertainties. 

Lack of interpretability in geoscience models reduces the trust in model predictions. More 

research in developing interpretability metrics is essential. 
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 Tools and Analytic Frameworks 

There are limited open source software and ML frameworks for deploying Earth science 

ML models, and more investment is required to expand existing resources and build new 

cost-effective, scalable, and maintainable frameworks.  

Data preparation and preprocessing is still time-consuming while new cloud-based ARD 

are gradually filling this gap.  

4. Working Group Discussions and Recommendations 

4.1 Working Group 1: Training Data Generation and Accounting for Errors/ 
Uncertainties 

TD is the building block of supervised ML models which constitutes majority of ML applications 

in Earth science. ML models iteratively learn from TD, and any uncertainty or error in TD will be 

propagated to the model and its outputs. Therefore, it’s essential to ensure quality of training 

datasets by quantifying and documenting their uncertainties and characterizing their 

representativeness. To that end, Working Group 1 was asked to review existing practices and 

provide recommendations for future applications. In particular, the group started by reviewing 

the results of a January 2019 workshop at Clark University, the focus of which was errors in TD 

and approaches to account for them [28]. 

 Findings 

Errors in TD can be design- or collection-related. In design-related cases, the data lacks 

spatial or temporal representativeness due to several factors, including out-of-date data, 

rare classes not captured, labels collected by users who are biased, or in situ point data 

that is not scalable for labeling gridded data (e.g., pixels in the image or model output). In 

collection-related cases, there can be interpretation errors due to vagueness of class 

definitions for categorial data or observation errors for continuous data.  

“How much data is enough?” and “Is the data spatially and temporally representative?” 

are common questions asked by researchers who are interested in developing or using an 

ML model. However, there is no universal answer to these questions. Many factors can 

impact how much TD is needed to build an ML model, including: whether it’s a 

classification (e.g., segmentation, object detection) or regression problem, architecture 

of the model being used, preferred accuracy level, generalizability of the model, and 

sampling technique used to generate the TD. 

In order to best utilize annotations, in situ measurements, or other outputs as TD, it is 

necessary to capture basic metadata and report it in the TD catalog. This may encompass 

dates of measurement or imagery used for annotation, spatial coordinates, how 
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measurements were taken, how labels were generated, and uncertainty of the 

measurement device or annotator.  

Class imbalance (i.e., one class or a range of values is under-represented or over-

represented in TD) is a common problem. In categorical data, certain class(es) may not be 

well represented, depending on the geographical domain from which the data is 

generated. For continuous data, extreme events are usually rare in TD, which makes it 

hard to train the model for such scenarios and achieve reasonable accuracy.  

Advancing applications of ML techniques on EO is contingent on “benchmark training 

data” that the community can use to assess models’ performance. These benchmarks are 

application-specific and would require due diligence to generate and share with the 

community. 

NASA provides a wealth of data across all Earth science disciplines. These data provide a 

unique opportunity to build new ML models—potentially by fusing multiple data 

sources—to detect new patterns and improve our understanding of the Earth system. 

 Recommendations 

Generating TD and accessing TD from previous studies is a major bottleneck in building 

new ML models and benchmarking existing ones in Earth science. The group compiled the 

following recommendations for new areas of research and investment to address TD 

issues.  

TD errors: The group recommended the guidelines and use cases presented in [28] as best 

practices to learn more about ways to account for errors in TD. 

TD sparsity: More investment is needed in order to advance techniques that require less 

training data (e.g., active learning and semi-supervised learning). Innovative solutions 

that exploit alternative datasets, transfer learning, and/or fusion of multiple datasets 

(either by taking the most consistent one over time or weighting them by quality [29]) 

should be supported across all disciplines—with the caveat that some models are not 

transferrable and researchers must explicitly define the applicable spatial and temporal 

domain of the TD and model. 

Size of TD: Researchers should consider the physics of the problem and the data 

range/distribution before deciding on their TD size. Comparing model performance for 

different TD sizes and for different model architectures (from simple to complex) should 

be routine in order to justify the size of TD. While this analysis will be informative for the 

problem of interest, it may not be easily generalized to other problems or to the same 

problem in a geographically diverse region [30]. 

Class Imbalance: To generate new TD, a representative sampling scheme should be 

developed in space and time (for annotation or otherwise generating labels). For existing 
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TD, mitigation strategies such as penalizing certain classes in the cost function or under-

/over-sampling during training can be implemented. Moreover, architectures such as 

random forests can handle class imbalance better than neural networks. 

Benchmark TD: Significant investment in generating and sharing high-quality open-access 

benchmark data is requested from NASA and other federal funding agencies to advance 

ML applications in geosciences. These data should have sufficient diversity and sample 

size with respect to space, time, and scale to allow exploring different model 

architectures and their performance. Ideally, generating the TD should be grounded in a 

peer-review process that includes community consensus, adaptation, documentation, 

domain specificity, transparency, and validation of quality and accuracy in order to build 

trust in the dataset. 

4.2 Working Group 2: Modeling Approaches and Best Practices for Building the Best 
and Computationally Optimum Model 

Unlike common ML problems that are defined on deterministic systems, the Earth system is 

stochastic; therefore, scientists must incorporate this characteristic in modeling frameworks and 

develop uncertainty-aware models. In addition, EO and many model-based datasets have more 

than three bands of observation, which is the typical case in computer vision problems. These 

data are usually collected over time at fixed temporal frequencies, which makes them unique in 

nature. These properties require domain-specific modeling practices, which was the focus of 

Working Group 2. 

 Findings 

A key challenge pertaining to domain-aware models for ML in EO applications, the group 

found, is effectively incorporating prior knowledge, such as physical principles, 

constraints, and computational simulations. Among the biggest challenges with building 

domain-aware models for supervised learning with hard and soft constraints on TD spaces 

are: subjectivity in labeling data, lack of common standards in tools for TD collection, and 

tracking temporal changes (labels are snapshots in time). Incorporating regularization 

techniques—such as data augmentation, label smoothing, incremental partial training, 

time-dependent labels, and active learning methods that include a human in the loop—

can help create generalizable models and dramatically reduce data requirements. 

Building domain-aware models using unsupervised learning suffers from the 

development of features that are representative, informative, interpretable, and 

generalizable; the incorporation of prior knowledge, such as physical constraints and 

computational simulations, into features; and the evaluation of features’ effectiveness. 

The group recognized that dimensionality reduction methods, generative models, and 

manifold and metric learning are among the state-of-the-art techniques available to 
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address these challenges and improve unsupervised techniques’ interpretability, 

robustness, and generalization.  

Challenges in finding effective strategies for incorporating multi-band data into ML 

models include interpretation of new bands and lack of baseline remote sensing pre-

trained models. Moreover, these pre-trained models are application-specific and must be 

built by addressing the requirements of those applications. Another challenge is the curse 

of dimensionality and the Hughes effect. In 1968, Gordon Hughes developed a numerical 

relationship between measurement complexity and mean accuracy of a classifier [31]. His 

work shows that increasing measurement complexity increases model accuracy up to a 

certain point, after which further increasing measurement complexity reduces model 

accuracy (ref. Fig 3. in [31]). This calls for an assessment of optimal model architectures 

for a given application and TD. 

Geospatial data have special characteristics such as projection, spatial grid, and temporal 

revisit that are rarely the same across two datasets. In order to best utilize these data and 

increase their interoperability, a set of community standards should be compiled by 

implementing a wide range of use cases. Moreover, we must define application-specific 

reference frameworks (including the TD and performance metric) in order to effectively 

increase interoperability of heterogenous input data. Such frameworks can then guide 

development of model architectures to incorporate these data.  

Finally, the group reviewed the potential use of ML models and existing TD and modeling 

frameworks to inform new data collection strategies. According to the group, having a 

human in the loop to compare human label and model confidence estimates can inform 

what new bands of information are needed in order to enhance separability in feature 

space or develop guidelines for better data collection for the specific application (e.g., 

maybe no cloud data). 

 Recommendations 

ML models are actively changing with new techniques being developed continuously. 

Therefore, the group provided priorities in three categories to advance ML models in 

Earth science and increase their adoption for addressing challenging problems. 

Domain-aware models: While several successful examples of domain-aware models were 

presented and reviewed, more research and development is needed around 

incorporating regularization techniques, implementing techniques for constant learning 

from the environment (e.g., reinforcement learning), utilizing simulation and synthetic 

data, and enhancing domain-specific validation metrics. Further research into using 

Bayesian-based simulation frameworks also is required. These models have the potential 

to improve interoperability, accuracy, and uncertainty propagation while also simplifying 

models’ TD requirements. Finally, more research is needed into advancing unsupervised 
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models to automatically learn features by satisfying a given set of constraints along with 

learning features for processes described by large heterogeneous datasets. These can 

help achieve increased interpretability and improve models’ robustness. 

Multi-band/multi-source ML models: This area should be a top priority for researchers 

and NASA programs in order to accelerate adoption of ML techniques across different 

science disciplines. In particular, areas that need further support include: developing 

benchmark pre-trained models using multi-band/multi-source data, establishing a 

repository for sharing these models to be used as a backbone for new developments, 

incorporating interpretability metrics into these models to understand the value of each 

input, publishing review papers to benchmark different model architectures in each 

domain, and providing guidance for future developments.  

Productionizing models: Several steps should to be taken during model development to 

enable scaling of prototypes for production later on, including: building models for scale 

from the beginning (in particular, model compression/pruning—e.g., using TensoRT21); 

conducting out-of-sample test runs on baseline models before moving to production, 

including spatially and temporally varying samples in the training and test sets to better 

assess performance of the model in production; striking a balance between model 

versioning and robustness of models; and back testing models to measure and correct for 

catastrophic forgetting. 

4.3 Working Group 3: Best Practices for Sharing and Publishing ML Applications 
(Model, Training Data, and Results) 

To ensure that ML applications and research studies are reproducible, it is necessary to define 

best practices for documenting, storing, and sharing models, TD, and their results/outputs. 

Moreover, proper cataloging of TD will allow for development and evaluation/benchmarking of 

models, as well as for running data science challenges. Working Group 3 was asked to discuss 

existing practices around this topic and to provide recommendations for the community. The 

group emphasized the importance of holding TD and ML models to the same documentation and 

reproducibility standards as other datasets and models while also making necessary adaptations 

to general data management standards in order to account for the unique characteristics of ML 

techniques. 

 Findings 

The group agreed that TD and ML models should adhere to FAIR (findability, accessibility, 

interoperability, and reusability) data management principles,22 which recommend 

generating rich metadata interpretable by humans and machines [32]. Moreover, it said, 

 

21 https://developer.nvidia.com/tensorrt 
22 https://www.go-fair.org/fair-principles/ 

https://developer.nvidia.com/tensorrt
https://www.go-fair.org/fair-principles/
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TD and ML models should be version-controlled to ensure usability, accessibility, and 

permanency, and should be deposited in an open and trusted repository. 

Although many journals currently require authors to share their data, the process and 

specifications are highly variable. A stricter enforcement by journals to ensure that data 

is properly shared, accessible, and permanently available is required. Additionally, open 

data sharing could lead to more co-author and citation credits, which could motivate the 

community to adhere to best practices for data sharing. The group agreed that different 

incentives should be developed to foster data sharing by the community according to best 

practices, and that the community should reframe TD as a deliverable that should be 

documented and published at the end of a project. 

4.3.1.1 Training Datasets 

The group underscored that TD documentation should include general spatiotemporal 

information and TD-specific attributes such as the original data used to generate labels, 

data processing, and type(s) of applicable ML model/algorithm. The TD’s metadata should 

include these same attributes, but in a machine-readable format to facilitate discovery 

and query of these data. 

The group discussed the SpatioTemporal Asset Catalog (STAC) as an example of a detailed 

and queryable metadata schema that could be utilized for TD documentation and 

dissemination.23 The STAC label extension would be a particularly useful specification for 

documenting TD. Storing TD catalogs using STAC specification could create a centralized 

system with a human interface (STAC browser) and machine interface (STAC API) where 

one could discover imagery, TD, and corresponding metadata. 

With increasingly more data becoming available on public clouds, and the paradigm shift 

in using cloud-based data, it is necessary to store data in formats that facilitate easy 

access to and usage of TD. NetCDF format,24 which has been historically used to store 

many spatiotemporal geoscience datasets, is an option that can be pushed onto the cloud 

with a converter for cloud optimization as an interim format until Unidata releases an 

integrated NetCDF and Zarr format.25 Zarr is a more ML-ready format but is relatively new 

and will need to go through NASA and other agency standard offices in order to be 

accepted as an official storage format. The group identified a need for a hierarchal 

approach to storing mission data with “archival” and “reproducibility” levels. A tiered 

 

23 https://github.com/radiantearth/stac-spec 

24 https://www.unidata.ucar.edu/software/netcdf/ 
25 https://zarr.readthedocs.io/ 

https://github.com/radiantearth/stac-spec
https://www.unidata.ucar.edu/software/netcdf/
https://zarr.readthedocs.io/
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system of data storage would allow the community to have a long-term record without 

sacrificing accessibility. 

The group noted that there are varying levels of sophistication within ML’s user base. As 

such, it’s important to recognize that not everyone accesses data in the same way or at 

the same point in the pipeline. While a centralized repository of all would be ideal, it is 

therefore not feasible in the short term. Instead, the group proposed that existing 

repositories like NASA’s CMR add TD metadata and query parameters for TD and ML 

models to ensure that these data are searchable. 

4.3.1.2 Scripts and ML Models 

Some TD are not stored as data, but rather are generated on-demand using a script or 

scripts that train models without saving the intermediate data. This is more common 

when using outputs of physical models or generating synthetic data for TD. For the sake 

of reproducibility, the group agreed that such scripts should also be documented and 

shared.  

Sharing ML models themselves could similarly increase reproducibility. Models should be 

shared in a universal format (e.g., ONNX26) or in other formats that can be easily 

converted to other universal/standard formats. Model metadata should be recorded 

using the standard terminology of the model’s domain. If test cases or benchmark 

datasets are included with shared models, they should be documented appropriately.  

The code used in both TD generation scripts and ML models should be maintained so it 

does not become obsolete after publication. The group proposed that researchers should 

be responsible for maintaining code for three years—the typical grant funding cycle. 

However, an alternative data-driven approach would measure the code’s usage and 

determine how long it should be maintained based on a popularity metric. The 

community could reduce the need for maintenance if everyone continuously integrated 

code and extended features from the robust community archive. The adoption of 

“community code” would require a huge cultural shift and raises questions about how to 

report one’s contribution to integrated code on resumes, etc. A successful example of 

such community code is the Pangeo27 project. 

4.3.1.3 Data and Knowledge Gaps  

The group identified several geographical, scientific domains, and methodological gaps in 

existing TD catalogs and ML applications. It recognized  that applications using labels from 

satellite image annotation currently are overrepresented in the community due to their 

similarity with common computer vision problems. However, there are other sources of 

 

26 https://onnx.ai/ 
27 https://pangeo.io/ 

https://onnx.ai/
https://pangeo.io/
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EO data (e.g., non-optical imagery) and in situ or simulation data that can be utilized. Non-

traditional data sources such as NOAA storm events,28 Data.gov, or ancillary data like 

plane routes are not stored in the same repositories as EO and provide valuable 

information for creating training data. 

 Recommendations 

Understanding the community effort and cultural shift that is required to encourage 

researchers, practitioners and developers to document and share their TD and models, 

the group provided specific recommendations utilizing existing resources standards.   

Cataloging TD: TD catalogs should follow FAIR principles for data management. In 

particular, they should have: permanent identifier and storage, ReadMe/documentation, 

data dictionary, version, license, citation, and machine-readable metadata. Scripts/codes 

that generate TD as intermediary products should be preserved by containerizing the 

code (ideally using lightweight Docker containers) or using binders. TD generation scripts 

should also have appropriate metadata and documentation about their attributes, 

particularly for the ML algorithms with which they are used. 

The group suggested two options to address STAC’s shortcomings for storing non-

regularly gridded data: 1) removing the requirement for regular latitude and longitude 

grids in STAC, and 2) creating a more generalized version of a data catalog specification 

(of which STAC would be a subset) that could be used with a more diverse set of 

geoscience. 

Research proposals should allocate financial and human resources in their data 

management plan (DMP) to ensure that cataloging and documentation of code/data is 

implemented throughout the project. 

Cataloging models: ML models should be shared with specific metadata to ensure 

reproducibility. At minimum they should include: 

• Any metadata required by the format that the model object is stored in; 

• List of input(s) and output(s) with a harmonized vocabulary (domain-specific), along 

with the format, structure/shape, unit, and any normalization of the input data; 

• Spatial and temporal extent that the model is applicable; 

• URL to documentation; 

• URL/identifier of the TD used to train the model; 

• License; 

• Provider; and 

 

28 https://www.ncdc.noaa.gov/stormevents/ 

https://www.ncdc.noaa.gov/stormevents/
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• Accuracy (optional): If model has been tested against a benchmark dataset, it is 

informative to report the accuracy in the metadata. 

The group reviewed the STAC collection specification29 and recommended including all of 

the fields for ML model catalogs. The group also called for a coordinated community effort 

to develop a standard specification for cataloging ML models.  

Data Format: The group agreed that TD: 1) must use a well-documented format, and 2) 

should be stored in a cloud-optimized format. 

Incentives: Understanding that data and software development and maintenance is an 

extensive effort, researchers should be incentivized to focus on them. Incentives may 

include employer recognition (especially at academic institutions), legal support to ensure 

intellectual property (IP) and proper use of their work by others, as well as proper citation 

mechanisms. Data agreements that stipulate open sharing of ML applications could 

provide legal motivation for data sharing, particularly for companies and NGOs. 

Tooling: Development of a geospatial community tool that would run/containerize a code 

based on a specification file is required. Because geospatial pipelines have unique 

requirements to the characteristics of the data, developing a tool that can read from a 

specification file and generate the processing pipeline in a modular format would be of 

significant value for reproducibility of scientific results. 

Existing data: Develop tools to exploit the wealth of in situ data in oceanic and 

atmospheric science applications that are usually stored in a Lagrangian coordinate 

system and therefore not easily convertible to a Euclidean system of EO and Earth science 

models. Encourage utilization of Cal/Val data in ML applications by investing in 

methodologies to make this data more ML-ready or build community tools that would 

help users access these data along with EO more easily. Finally, increase awareness about 

the potential of using non-traditional geospatial data sources as TD with EO. 

Data Management Plans: ML applications need data, and their applications go beyond 

the scope of one government agency. Therefore, coordination across government 

agencies to standardize DMPs and data storage practices would significantly help 

researchers and grantees.  

 

29 https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md 

https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md
https://github.com/radiantearth/stac-spec/blob/master/collection-spec/collection-spec.md
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Appendix A: Acronym List 

Acronym Description 

ACCESS Advancing Collaborative Connections for Earth System Science 

AGU American Geophysical Union 

AMS American Meteorological Society 

ARD Analysis Ready Data 

CEOS Committee on Earth Observation Satellites 

DL Deep Learning 

DMP Data Management Plan 

DOI Digital Object Identifier 

EO Earth Observations 

ESDS NASA Earth Science Data Systems 

FAIR  Findable, Accessible, Interoperable, and Reproducible 

HQ NASA Headquarters 

IEEE The Institute of Electrical and Electronics Engineers 

IEEE GRSS IEEE Geoscience and Remote Sensing Society 

IP Intellectual Property 

ML Machine Learning 

NASA National Aeronautics and Space Administration 

NOAA National Oceanic and Atmospheric Association 

ONNX Open Neural Network Exchange 

R&D  Research and Development 

SAR Synthetic Aperture Radar 

STAC SpatioTemporal Asset Catalog 

TD Training Data 

USGS U.S. Geological Survey 
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