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The first Visible Infrared Imaging Radiometer Suite (VIIRS) was launched in October 2011 aboard the Suomi-
National Polar-orbiting Partnership (S-NPP) satellite. The VIIRS instrument carries two separate sets of multi-
spectral channels providing full global coverage at both 375 m and 750 m nominal resolutions every 12 h or
less depending on the latitude. In this study, we introduce a new VIIRS active fire detection algorithm, which is
driven primarily by the 375 m middle and thermal infrared imagery data. The algorithm builds on the
well-established MODIS Fire and Thermal Anomalies product using a contextual approach to detect both day and
nighttime biomass burning and other thermal anomalies. Here we present the fire algorithm's design and imple-
mentation, including important information describing the input data characteristics and potential artifacts associ-
ated with pixel saturation and the South Atlantic Magnetic Anomaly, both found to affect the middle infrared
channel data. Initial assessment using results derived from the global processing of the algorithm indicated small,
although variable, commission errors (b1.2%) for nominal confidence fire pixels. We achieved improved perfor-
mance using the 375 m active fire data compared to the VIIRS 750 m baseline fire product, resulting in a 3× and
25× factor increase in the absolute number of fire pixels detected using day and nighttime data, respectively.
Similarly, VIIRS 375 m fire data showed significantly superior mapping capabilities compared to current MODIS
fire detection data with improved consistency of fire perimeter delineation for biomass burning lasting multiple
days.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

The Visible Infrared Imaging Radiometer Suite (VIIRS) was launched
in October 2011 aboard the Suomi National Polar-orbiting Partnership
(S-NPP) satellite, a United States mission jointly managed by the
National Aeronautics and Space Administration (NASA) and the National
Oceanic and Atmospheric Administration (NOAA). The S-NPP serves as a
preparatory mission to the upcoming Joint Polar Satellite System (JPSS),
while delivering operational data products (Hillger et al., 2013). The
JPPS program will provide continuity to the multi-decadal polar orbit
environmental satellite data record that includes NOAA's Advanced Very
High Resolution Radiometer (AVHRR) and NASA's Moderate Resolution
Imaging Spectroradiometer (MODIS) data, and is complemented by
data from the Defense Meteorological Satellite Program (DMSP) (Justice
et al., 2013). These different satellite data sets have been used in support
of a variety of active fire and biomass burning products and applications
(Davies, Ilavajhala, Wong, & Justice, 2009; Elvidge et al., 1996; Flasse &
Ceccato, 1996; Giglio, Descloitres, Justice, & Kaufman, 2003; Giglio,
Loboda, Roy, Quayle, & Justice, 2009; Ichoku, Giglio, Wooster, & Remer,
2008; Roy, Boschetti, Justice, & Ju, 2008). The resulting fire products
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have reached different levels of maturity based on validation analyses
and algorithm refinements made over the years, with the MODIS Fire
and Thermal Anomalies algorithm (MOD14 and MYD14) becoming the
most developed and widely used fire data set in the last decade (Giglio
et al., 2003; Morisette, Giglio, Csiszar, & Justice, 2005; Schroeder et al.,
2008).

The operational land products derived from the new VIIRS data
include key Environmental Data Records (EDRs), and the Active Fires
Application Related Product (ARP) in support of primarily weather
applications (Justice et al., 2013). Originally, the VIIRS Active Fires ARP
built on the 750 m channel data containing sparse array output data in-
cluding the geographic (latitude and longitude) and image (row and
column indices) coordinates, and associated quality flags describing
fire-affected pixels (Csiszar et al., in press). The algorithm used to gen-
erate the current operational VIIRS 750 m Active Fires ARP builds on
the MODIS Collection 4 fire algorithm (Giglio et al., 2003), applying vir-
tually the same combination of tests to the corresponding VIIRS 750 m
multi-spectral data. Subsequent revision of VIIRS land product require-
ments for the upcoming JPSS upgraded the 750 m Active Fires ARP
product to the category of EDR. The revised requirements incorporated
algorithm updates and additional layers to the product including a 2D
image classification array (firemask), a pixel-basedfire characterization
parameter (Fire Radiative Power [FRP]), among other features. The
revised active fire product will be gradually integrated into the current
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S-NPP/VIIRS data processing stream thereby enabling full delivery of re-
quired data layers with the launch of the first JPSS satellite around 2017.
In addition to the operational 750 m Active Fires ARP product, a new
algorithm was recently developed using primarily the VIIRS 750 m
short-wave infrared (1.61 μm) channel and Day-Night Band (DNB)
data for the nighttime detection of gas flares and other high tempera-
ture sources (Elvidge, Zhizhin, Hsu, & Baugh, 2013).

Building on the currentMODIS fire algorithm, the current operation-
al VIIRS 750 mActive Fires ARP and future EDR active fire detection and
characterization product will provide continuity to more than 10 years
of systematic global biomass burning monitoring (Justice et al., 2002).
Like MODIS, VIIRS 750 m Active Fires algorithm is primarily based on
a dual gain high saturation temperature (634 K) middle infrared chan-
nel (4 μm) and on a single gain thermal infrared (11 μm) channel data,
thereby accommodating a wide range of fire pixel radiances. Initial
post-launch assessment of the VIIRS 750 m Active Fires ARP indicated
good overall performance with high degree of agreement with near-
coincident Aqua/MODIS active fire detections (Csiszar et al., in press).
Compared to 1 km Aqua/MODIS MYD14 data, the VIIRS 750 m Active
Fires ARP showed increased fire detection rates as a result of the
radiometer's improved spatial resolution and unique sampling scheme.
The sampling scheme applied to VIIRS data incorporates data aggrega-
tion processing to compensate for pixel footprint enlargement with
distance from nadir (Cao, DeLuccia, Xiong, Wolfe, & Weng, 2013;
Csiszar et al., in press).

In this study, we investigate the use of the complementary set of
375 m resolution VIIRS channels for active fire detection, in order to
take full advantage of the finer spatial information provided by those
data. Improved spatial resolution enables detection of smaller fires of
the same temperature, as well as refined mapping of larger fires,
resulting in critical gain to both fire management and science applica-
tions. The VIIRS five-channel 375 m data include two bands centered
on the middle and thermal infrared regions. Consequently, it meets
the basic spectral requirements for application of fire detection
algorithms based on the differential radiometric response of high tem-
perature targets imaged in those two spectral regions. We present the
main data characteristics and describe the design and implementation
of the active fire detection algorithm, and how it compares against
the operational 750 m Active Fires ARP baseline fire product and other
active fire data sets.

2. Input data characteristics

The S-NPP/VIIRS flies in a sun-synchronous orbit with an equator
crossing local time of ~1:30 PM (ascending node) and ~1:30 AM
(descending node), acquiring simultaneous and co-registered 375 m
Fig. 1. VIIRS 375 m (I-bands) and 750 m (M-bands), and MODIS (B) data spectral intervals for
band sample spatial resolution describing the along track, cross track (aggregated), and area (a
(I-bands) and 750 m (M-bands) resolution data. The VIIRS 375 m data
are comprised of five distinct single-gain channels extending from the
visible to thermal infrared spectral region (Fig. 1; VIIRS spectral re-
sponse functions available at: http://www.star.nesdis.noaa.gov/jpss/
VIIRS.php). The pixel size increase with scan angle, typical to other
sensors such as AVHRR and MODIS, is minimized due to a unique data
aggregation scheme performed for all VIIRS channels (Wolfe et al.,
2013). This scheme results in three distinct image sections in the across
track direction (Fig. 1). The native I-band image resolution prior to
onboard aggregation is approximately 125 × 375 m at nadir. In the
first image section (scan angles from 0° (nadir) to ±31.72°), every
three native pixels are averaged over the radiance domain in the across
track direction to formone effective sample. In the second image section
(scan angles from±31.72° to ±44.86°), every two native pixels are ag-
gregated into one effective sample. Finally, no aggregation is performed
in the third image section (scan angles from±44.86° to ±56.28°) such
that each native pixel represents one effective sample. Consequently,
the first, second and third image sections total 1184, 736, and 1280
samples, respectively, and the effective footprint ranges from the
nominal 375 m resolution (383 × 360 m) at the sub-satellite point to
795 × 784 m at a maximum scan angle of 56.28°. The image swath ex-
tends to approximately 3000 km, or 6400 pixels, providing complete
global coverage every ≈12 h or less depending on the latitude.

Onboard pre-processing of VIIRS data is also applied to minimize
data redundancy during scanning. Data redundancy results from the
two-fold increase in sample footprint size from nadir to the edge of
scan (also known as the bowtie effect), which is still observed after ag-
gregation (Wolfe et al., 2013). An array of 32 detectors (compared to
16 on the 750 m channels) arranged along track generates 6400 × 32
samples during each rotation of the telescope. To minimize the bowtie
effect, the four outermost sample rows of an individual scan (two on
each end) are replaced with fill values across the second image section,
whereas the eight outermost sample rows of an individual scan (four on
each end) are replaced with fill values across the third image section.
Deletion of those samples results in approximately 50% reduction in
data redundancy in the Sensor Data Record (SDR). The bowtie deletion
creates a striped pattern across the second and third image sections,
which reflects the samples containing fill values (Fig. 2).

VIIRS channel I4 is the primary driver of the fire detection algorithm
presented in this study. The spectral response of Channel I4 (ranging
from 3.55 to 3.93 μm, centered at 3.74 μm) spans the wavelengths of
peak spectral radiance for blackbodies emitting at temperatures
between 737 and 817 K. Channel I4 is therefore well suited for
distinguishing pixels containing sub-resolution combustion compo-
nents from those pixels composed of cooler fire-free background
areas. Channel I4 is a single gain channel with a pixel saturation
all channels used in the corresponding active fire detection algorithms (left), and VIIRS I-
ggregated) dimensions (right).

http://www.star.nesdis.noaa.gov/jpss/VIIRS.php)
http://www.star.nesdis.noaa.gov/jpss/VIIRS.php)


Fig. 2. VIIRS 375 m swath (satellite projection; top left) and resampled (geographic projection; top right) data acquired on 15 August 2013 20:16–20:21UTC over part of Mexico and
United States. Lower panel comprises swath data subset (red rectangle) showing the striped pattern created by bowtie deletion (fill values) coincident with second and third image
sections. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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temperature of 367 K. The relatively low saturation temperature, in
combinationwith the improved spatial resolution, can result in frequent
fire pixel saturation. This is therefore considered the most important
channel characteristic influencing the development of an active fire
algorithm for this data set, as will be demonstrated below. Another
important aspect of VIIRS I4 data involves the channel's spectral place-
ment, which is approximately 0.3 μm shorter than the corresponding
VIIRS M13 radiometer channel driving the baseline 750 m Active Fires
ARP algorithm. This spectral offset introduces an approximately
three-fold increase of the reflected solar component in the I4 channel,
with potential reduction of the radiometric separation between fire-
affected pixels and bright fire-free surfaces.

Complementing the I4 channel data, channel I5 is centered at 10.5–
12.4 μm and is the primary channel against which I4 is compared in
order to separate active fires from their fire-free background. This is
also a single gain channel with a saturation temperature of 380 K. The
three remaining I-band channels (I1, I2, and I3) cover the visible (0.6–
0.68 μm), near-infrared (0.846–0.885 μm) and the shortwave infrared
(1.58–1.64 μm) regions and are used in support of cloud, sun glint
and water-body discrimination in the fire detection algorithm. VIIRS
channels I1–I3 are only operated during the daytime portion of the
orbit.

The VIIRS SDRs used in this studywere produced by the Interface Data
Processing Segment (IDPS), and distributed as Hierarchical Data Format
(HDF5) files corresponding to ~84 s orbit segments. Each SDR file con-
tains 16-bit data from a single VIIRS channel. Geolocation data are distrib-
uted as a separate HDF5 file containing terrain-corrected pixel level
navigation. Individual SDR files provide calibrated top-of-atmosphere
(TOA) reflectance (unitless) and radiance (W·m−2·sr−1·μm−1) data
for visible channels I1, I2, and I3, and scaled brightness temperature
(K) and radiance data for infrared channels I4 and I5. Additional
metadata complement the HDF5 file content, including pixel level
8-bit quality flags for each channel (JPSS, 2013). VIIRS SDRs include
quality flags describing a range of calibration scenarios that can lead
to anomalous pixel data and therefore are used to screen for such
departures fromnominal data quality. However, VIIRS SDR data lack de-
tailed flagging or special handling of fire-affected and other radiometri-
cally bright native pixels during the onboard data aggregation
processing. This limitation can lead to potential artifacts in the data
due to mixing of saturated and unsaturated pixels. A discussion of the
implications to active fire detection is provided in Section 2.1 below.

2.1. Data artifacts

Assessment of the VIIRS data available to date (approximately two
years of sensor operation at the time of writing) indicated two main
anomalous conditions affecting the primary I4 channel used for active
fire detection: pixel saturation and the South Atlantic Magnetic Anom-
aly (SAMA). Pixel saturationmay be found overfires typically spreading
over multiple contiguous pixels, an indication of potentially large and
intense biomass burning (Fig. 3a–b). In the first instance, saturated
pixels show a brightness temperature of 367 K and corresponding
channel I4 SDR quality flag indicating “poor calibration – all pixels
saturated”. A second variation in pixel saturation is associated with
very large wildfires where VIIRS pixels located at the core area coincid-
ing with intense fire activity will greatly exceed the effective saturation
temperature causing a complete folding of the digital count. In this case,
the pixel's brightness temperaturemay be set at 208 K, the lower end of
the channel I4 dynamic range (Fig. 3c). The corresponding SDR quality
flag will predominantly associate the folding pixels with a “poor



Fig. 3. (a) VIIRS 375 m visible RGB composite (channels 3-2-1) subset acquired at ~04:22UTC on 04 January 2013 over southern Tasmania/Australia showing a large active fire complex,
which is zoomed in (b–d) to show details. (c) VIIRS I4 channel data showing folding of pixel digital count at the core of themain active fire fronts with a brightness temperature of 208 K
(marked yellow), alongwith pixels of nominal saturation at a brightness temperature of 367 K (marked green). (d) VIIRS I5 channel data showing fewer saturated pixels with a brightness
temperature of 380 K (marked green). Spurious (cooler) VIIRS I4 brightness temperature pixel values resulting from the potential mixing of saturated and unsaturated pixels during
aggregation are outlined by the red vectors in (c); those pixels coincidewith nominal quality high brightness temperature I5 channel as shown in (d). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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calibration – radiance out of range” condition, although occasional “all
pixels saturated” flagging may occur. The third variation in pixel
saturation involves the generation of artificially low brightness temper-
ature values suggesting that saturated (including potential pixel data
folding) and unsaturated native pixels are mixed together during
aggregation (Fig. 3c). Mixed pixels are currently flagged as “good
quality” in the SDR quality flag. In all cases involving the three scenarios
above, I4 channel saturation may be determined by examination of the
companion I5 channel brightness temperature data,whichwill typically
show a higher absolute value compared to I4 (contrary to unsaturated
fire-affected pixels whichwill always show higher brightness tempera-
ture values on the I4 channel compared to I5) (Fig. 3d).

The second anomalous condition affecting the I4 channel involves
the occurrence of spurious brightness temperature data as a result of
the SAMA. The geographic area where the problem is most commonly
found extends from 110°W bN 11°E and 7°N bN 55°S (see for
example Fig. 5, Section 4.2) (Cabrera et al., 2005; Casadio, Arino, &
Serpe, 2012). The impact of the SAMA is evidenced by artificially high
brightness temperature values in the nighttime I4 channel data. These
occurrences are typically associated with nominal data quality and
therefore cannot be readily identified nor excluded using the available
quality flags. On average, individual I4 pixels affected by the SAMA
may depart from the background by 15–30 K, thereby creating similar
radiometric response associated with actual nighttime fire-affected
pixels at both absolute and contextual levels. No discernable impact
on nighttime I5 channel data quality was found associated with the
SAMA.
3. Algorithm description

The active fire detection algorithm proposed here for the VIIRS
375 m resolution data builds on the MODIS Fire and Thermal Anomalies,
taking advantage of several years of algorithm development, validation
and refinement (Giglio et al., 2003; Kaufman et al., 1998; Morisette
et al., 2005; Schroeder et al., 2008). While the most basic algorithm
data input requirements are met with the available VIIRS I4 and I5mid-
dle and thermal infrared and I1 and I2 visible channels, important differ-
ences in spatial resolution, sampling and spectral characteristics
demand a new customized approach in order to optimize algorithm
performance. Most notably, the reduced pixel saturation temperature
of 367 K in the primary I4 fire detection channel, in combination with
the channel's shorter wavelength compared to MODIS channels 21
and 22 (3.929–3.989 μm) and VIIRS M13 channel (3.973–4.128 μm),
prevented direct application of the original MODIS detection tests as
problems involving incorrect pixel classification quickly developed. In
order to improve on that, first data dependencies were identified
(namely by isolating pixel saturation scenarios and SAMA-related arti-
facts), and detection tests were then tuned to match the spatial and
spectral characteristics of the data. Tuningwas performed using several
images acquired over different geographic regions and was based on
histogram analyses of individual test results complemented by error
matrix analysis. Initial test sample error assessmentwas based on visual
inspection of the output fire detection data using expert analysis sup-
ported by higher resolution reference images from Google Earth and
Landsat-8. The algorithm is customized for both day and night data
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analyses, with the latter representing those pixels with a solar zenith
angle ≥90°.

3.1. Initial data screening

3.1.1. Classification of cloud and water pixels
Pixels containing optically thick clouds are classified independently as

part of the fire algorithm processing following the similar approach used
in the heritage International Geosphere-Biosphere Programme (IGBP)
and MODIS fire products (Giglio et al., 2003; Stroppiana, Pinnock, &
Grégoire, 2000), on which the VIIRS 750 m Active Fires ARP product
also builds upon. For daytime data, cloud pixels are classified using the
following tests:

BT5 b 265 K
OR
ρ1 þ ρ2 N 0:9 AND BT5 b 295 K
OR
ρ1 þ ρ2 N 0:7 AND BT5 b 285 K

where ρi is the reflectance in I-band channel i and BTi is the brightness
temperature in I-band channel i. For nighttime data, cloud pixels are
classified based on the brightness temperature of channels I4 and I5 as
follows:

BT5 b 265 K AND BT4 b 295 K:

Adding BT4 to the nighttime cloud test improved algorithm response
to fires occurring under semi-transparent clouds (e.g., cirrus), which
can have very cold brightness temperatures on channel I5. The fire
algorithm skips all day and nighttime pixels classified as cloud-covered,
and their data are excluded from the calculation of fire pixel background
conditions.

Water bodies were classified for daytime data using a spectral profil-
ing approach using the following VIIRS I-band channel combination:

ρ1 N ρ2 N ρ3:

This test can successfully separatemostwater bodies,whereas it tends
to underperformover sediment-filledwater pixels and along some shore-
lines. Also, burn scars may also be misclassified as water using the test
above although this limitation had no observable impact on the active
fire detection performance. The fire algorithm processes all pixels classi-
fied as water to allow for gas flare detection, although their data are
excluded from the calculation of daytime background conditions.

3.1.2. Fixed threshold tests
Detection of unambiguous daytime fire-affected pixels based on a

simple fixed threshold applied to VIIRS channel I4 brightness tempera-
ture data is not practical due to the spectral characteristics of that chan-
nel, which could lead to numerous potential false alarms. For nighttime
data any potential ambiguity is eliminated and the following test was
adopted:

BT4N320 K AND Q F4 ¼ 0 nighttime only½ �

where QF4 is the channel I4 quality flag, whichmust show nominal data
quality.

Potential daytime and nighttime fire-affected pixels may be identi-
fied through the screening of channel I4 saturated pixels in combination
with complementary data from channels I1, I2, and I5 applied to the fol-
lowing tests:

BT4 ¼ 367 K AND Q F4 ¼ 9 both day and night½ �
AND

BT5N290 K AND Q F5 ¼ 0 daytime only½ � AND ρ1 þ ρ2b0:7 daytime only½ �
where QFi is the quality flag on channel i. In this case, the channel I4
quality flag (decimal) value indicates complete saturation of the aggre-
gated pixel value and is found concurrently with channel I5 nominal
quality data. This condition coincides with the first saturation scenario
described above when channel I4 brightness temperature is set at the
saturation value of 367 K. In order to address the saturation scenario
when folding of the channel I4 data is encountered, a fire pixel detection
test is implemented using:

fΔBT45b0 both day and night½ �

AND

ðBT5N325 K AND Q F5 ¼ 0 daytime½ � OR
BT5N310 K AND Q F5 ¼ 0 nighttime½ �Þg
OR
BT4 ¼ 208 K AND BT5N335 K nighttime½ �f g

where ΔBT45 is the channel I4 and I5 brightness temperature difference.
Here, the negative difference between those two channels is indicative
of artificially cold brightness temperature on channel I4 caused by
complete folding of the aggregated pixel value, or mixing of folded
and non-folded pixels during onboard aggregation. Typically, this
condition is only observed at the core areas of large and very intense
wildfires that are assumed to greatly exceed the effective I4 channel
saturation temperature.

All fire pixels identified using the simple thresholding tests above
are exempted from the contextual fire detection analysis (Section 3.3),
thereby reducing the overall image processing time. However, daytime
fire pixels undergo additional false alarm screening described in
Section 3.4, whereas night pixels occurring in the SAMA region undergo
additional verification described in Section 3.5.

3.1.3. Masking of potential background fires
Potential background fire pixels are identified using daytime and

nighttime-specific tests as follows:

BT4N335 K AND ΔBT45 N30 K daytime only½ �
OR
BT4N300 K AND ΔBT45 N10 K nighttime only½ �

Potential background fire pixels are used below to supplement the
characterization of background conditions for candidate fire pixels.

3.1.4. Avoiding bright fire-free targets
Radiometrically bright targets such as sand banks along riverbeds

can form small clusters of high BT4 pixel values on daytime VIIRS
I-band data, some of which may be confused with active fires. In order
to avoid these areas, daytime pixels meeting the following criteria are
automatically skipped:

ρ1 þ ρ2 N 0:6 AND BT5b 285 K
AND
ρ3N0:3 AND ρ3 N ρ2 AND ρ2 N 0:25 AND BT4 ≤ 335 K:

3.2. Candidate fire pixels

Candidate pixels are defined using a less strict set of conditions to in-
clude potential background fire pixels plus other less prominent radio-
metric anomalies on channel I4. The candidate pixels are thosemeeting
the following criteria:

BT4NBT4s OR ΔBT45N25 K daytime only½ �
OR
BT4N295 K OR ΔBT45N10 K nighttime only½ �

where BT4s is a large-area background brightness temperature reference
value on channel I4 calculated for a 501 × 501window centered on the
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pixel. This initial large-area sampling accommodates variations in back-
ground conditions, adding flexibility to candidate fire pixel selection. It
is intended to improve algorithm sensitivity to fires occurring in colder
high latitude regions, while reducing false alarm rates in lower latitudes
consisting of warmer background. The large area background sampling
excludes all pixels previously classified as cloud, water bodies, and po-
tential background fire pixels, as well as any pixel with non-zero quality
flag including fill values associatedwith bowtie deletion samples. BT4s is
derived using the following:

BT4M ¼ Max 325;M½ � K
BT4s ¼ Min 330;BT4M½ � K

whereM is the BT4 median value calculated for the 501 × 501window.
The sampling window must contain a minimum of 10 valid observa-
tions or else BT4s is set to 330 K. BT4s is only derived for daytime data,
allowing the candidate fire pixel brightness temperature on channel I4
to vary between a minimum of 325 K to a maximum of 330 K in order
to accommodate scene-dependent changes in background conditions.
Nighttime background conditions are found to be less variable,
therefore we opted to use a single fixed value to define candidate fire
pixels at night.

3.3. Contextual analysis

The contextual analysis implemented for VIIRS 375 m fire detection
resembles the MODIS Fire Thermal Anomalies algorithm approach by
sampling a dynamically assigned window size to allow optimum char-
acterization of the candidate fire pixel background. In the VIIRS I-band
case, the minimum sample size is set to an 11 × 11 element window
centered on the candidate fire pixel. The sampling window is allowed
to grow to a maximum size of 31 × 31 until at least 25% of the sample
size is composed of valid pixels, or a minimum of 10 valid pixels are
found. Similarly to the large area background sampling applied to the
daytime data, valid pixels exclude those classified as cloud, water bod-
ies, potential background fire pixels, and pixels with non-zero quality
flags on any of the input bands, including those containing fill values.
If the minimum number of valid pixels cannot be met, the pixel is
assigned the class “unknown” indicating that the background condition
could not be properly characterized.

Provided the minimum number of background valid pixels is
satisfied, mean and mean absolute deviation values are calculated for
channels I4 BT4b;δ4b

� �
, I5 BT5b;δ5b

� �
, and the I4–I5 brightness tempera-

ture difference BT45b;δ45b using the background sample. In addition,
mean andmean absolute deviation are calculated for channel I4 bright-
ness temperature data from potential background fire pixels found

within the sampling window BT
′

4; δ
0

4

� �
. The parameters above are

used to define a set of contextual tests that must be jointly satisfied in
order to produce a nominal confidence fire pixel detection based on
the criteria below:

Daytime :
ΔBT45NΔBT45b þ 2� δ45b
ΔBT45NΔBT45b þ 10
BT4NBT4b þ 3:5� δ4b
BT5NBT5b þ δ5b−4 OR δ

0

4N5

Nighttime :
ΔBT45NΔBT45b þ 3� δ45b
ΔBT45NΔBT45b þ 9
BT4NBT4b þ 3� δ4b:

The tests above explore the distinct radiometric signature associated
with active fires, which will typically produce a strong departure of the
fire-affected pixel brightness temperature on VIIRS channel I4 com-
pared to fire-free adjacent pixels. The I4 channel response is
accompanied by a relatively small variation on VIIRS channel I5 bright-
ness temperature values relative to the same background. Test configu-
ration is meant to avoid other image features with high channel I4
brightness temperatures such as clouds, and bright and warm surfaces
such as deserts.

A complementary contextual test is applied to daytime data when
the number of potential background fire pixels exceeds 10% of all valid
background pixels in the sampling window, and is also greater than
four pixels. This additional test is represented as follows:

ρ2N0:15ANDBT ′
4b345 AND δ

0

4b3 AND BT4NBT
′
4 þ 6� δ

0

4 daytime only½ �:

This test targets desert boundary areaswhere themixing of high and
low temperature land surfaces could lead to erroneous pixel classifica-
tion. All candidate fire pixels meeting the test above are automatically
rejected.

3.4. Daytime false alarm filter

Sources of potential confusion found on the daytime VIIRS I-band
data are treated independently using custom filters to reduce false
alarm rates. Areas of high solar reflection are the primary cause of
false alarms resulting in localized spikes in brightness temperature on
channel I4 off metallic rooftops in industrial parks, over large and bright
surfaces such as concrete pavement, and at water bodies over which
specular reflection (Sun glint) may occur. In order to address this
condition, a test is applied to all daytime nominal confidence fire pixels
detected with the tests above using the angle θg between vectors
pointing in the surface-to-satellite and specular reflection directions as
in Giglio et al. (2003):

cosθg ¼ cosθv cosθs− sinθv sinθs cosϕ

where θg and θs are the view and solar zenith angles, respectively, and ϕ
is the relative azimuth angle. Using the expression above, pixels classi-
fied as fire-affected by the previous tests are further inspected and
downgraded to the class of “glint-related false alarm” if they satisfy the
following condition:

θgb15
�ANDρ1 þ ρ2N0:35

OR
θgb25

�ANDρ1 þ ρ2N0:4:

In addition to the test above, a 3 × 3 ring is used around all remain-
ing pixels classified as fire for which ΔBT45 b 30K or θg b 15° to look for
low confidence detections. Single stand-alone fire pixels (i.e., those
without adjacent detections) with a channel I4 brightness temperature
less than 15 K above any of the valid adjacent eight pixels forming the
ring are assigned a “low confidence” class; valid pixels are defined as in
the background sampling methods described above. If no valid pixels
are found, the pixel is also assigned a “low confidence” class.

3.5. Nighttime SAMA filter

The influence of the SAMA on channel I4, as described in Section 2.1,
can lead to numerous false alarms in theVIIRS nighttimedata as the vast
majority of pixels affectedwillmimic the radiometric signature of active
fires. In order to minimize the negative impact of that anomalous
feature on the output product, a filter based on the complementary
VIIRS M13 channel data is used to further inspect pixels classified as
nominal confidence fire detections by the nighttime tests and occurring
within the region of influence of the SAMA. The application of this addi-
tional filter is restricted to stand-alone night fire pixels, as inspection of
the first two years of VIIRS data indicated that manifestation of the
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SAMA on the I4 channel is typically associated with single pixel events
scattered over large regions.

First, the M13 brightness temperature [x, y] image coordinate is de-
rived from the corresponding 375 m fire pixel. Then, a simple neighbor-
ing analysis is performed using a 3 × 3 ring centered on that location
comparing the M13 brightness temperature of the target pixel with
all adjacent pixels. The 375 m fire pixel is downgraded to a “low
confidence” class if the M13 brightness temperature of the target pixel
is found to be less than 1 K above all adjacent pixels. Otherwise, provid-
ed the coincidentM13brightness temperature is also indicative of a heat
anomaly, the pixel is confirmed as a nominal confidence fire detection.

4. Results

4.1. Theoretical minimum detectable fire

We assessed the theoretical performance of the fire detection algo-
rithm by simulating different fire scenarios applied to actual VIIRS
375 m global imagery. Fires were simulated assuming areas ranging
from 2 to 250 m2, and temperatures ranging from 400 to 1200 K. Fire
radiances were derived at 2 m2 and 10 K intervals for both I4 and I5
channels using the instrument's spectral response functions, and
assuming blackbody emission. A total of 10 daytime and 10 nighttime
VIIRS 5-min orbit segments acquired duringAugust 2013were random-
ly selected covering different geographic areas, including low and high
latitude regions, with variable levels of fire activity. For every image,
we selected 10 pixels distributed along nadir and apart from each
other, and when possible, near areas of fire activity in order to best
represent regional fire-prone conditions. Simulated fire radiances and
actual background radiances were area-weighted to provide realistic
BT4 and BT5 pixel values representative of actual observation condi-
tions. The new VIIRS 375 m active fire detection algorithm was then
applied to the imagery data containing a simulated active fire pixel
surrounded by genuinely observed background pixels.

Fig. 4 shows the 50% probability of detection curves derived for the
daytime and nighttime fire algorithms applied to the global data sample.
Improved nighttime performance resulted from the more homogeneous
background conditions, significantly enhancing the algorithm's response
to relatively small heat sources. An experimental fire consisting of a
1.25 m radius circular bonfire burning at ~1000 K corroborated the
night fire detection curve. The burn was conducted on 08 July 2013
near Rio de Janeiro, Brazil (43°00′00″W 22°23′36.6″S), coincident with
the VIIRS overpass at 1:23 am local time. The fire was imaged by VIIRS
at a 32.7° scan angle producing a +10 K increment over the I4 channel
background, consequently satisfying all contextual tests in the nighttime
fire algorithm. Meanwhile, daytime algorithm performance is subjected
to the solar component, which introduces larger background variations
Fig. 4. Theoretical 50% probability offire detection curves derived for VIIRS 375 m day and
nighttime algorithms as a function of fire area and temperature.
and potential ambiguity involving highly reflective fire-free surfaces on
channel I4. Consequently, the simulated daytime probability of detection
was found to be lower compared to the same heat sources introduced in
the nighttime data.

Despite the differences between day and nighttime algorithm
theoretical fire detection probability curves indicated here, actual prod-
uct performance suggests that diurnal variations in fire behavior could
help reduce that contrast. For example, larger and/or more intense
biomass burning, typical of VIIRS early afternoon overpass times
when dryer and warmer fuel and weather conditions prevail (Beck,
Alexander, Harvey, & Beaver, 2002; Smith et al., 2013), should favor sep-
aration of active fire pixels frombackground. Conversely, smaller and/or
cooler night fires could partially offset the improved separation of
fire-affected pixels from a backgroundwith no solar component. Conse-
quently, we expect this to lead tomore uniformdetection rates for same
size fires burning during day and night observations (see for
example Figs. 8 and 9, Sections 4.2.1 and 4.2.2).

4.2. Global fire detection performance

The performance of the 375 m active fire detection algorithm is
demonstrated here for 30 days of global VIIRS data covering 1–30 Au-
gust 2013. The algorithm was applied to both day and nighttime data,
and the results compared to VIIRS 750 m Active Fires ARP (IDPS ver-
sion) and Aqua/MODIS 1 km (MYD14) active fire detection products.

Fig. 5 shows the spatial distribution of daytime and nighttime fire de-
tections produced by the VIIRS 375 m fire algorithm, plus low confidence
daytime pixels potentially associated with bright fire-free land surface
features and low confidence nighttime pixels identified across the
SAMA region. On average, ~59,000 daytime and ~15,000 nighttime nom-
inal confidencefire pixelswere detected daily during the period sampled.

The application of the special filter to separate lower confidence
nighttime pixels was effective in eliminating the vast majority of detec-
tions induced by the SAMA. However, on average 3 nighttime pixels of
nominal confidence were detected daily over suspicious locations
(e.g., pixels over open ocean away from known heat sources). Lack of
appropriate reference data prevented further inspection of those isolat-
ed pixels; these cases represented 1% of all low confidence nighttime
pixels detected over ocean in the SAMA region. Application of the night-
time false alarmfilter across the SAMA regionwas also found to produce
occasional omission errors for small and low intensity fires without a
measurable heat signature on channel M13. Examples of confirmed
omission errors induced by the SAMA filter were observed over
known inland gas flares. Overall, commission and omission errors
across the SAMA region were found to be reduced based on visual
image inspection; further investigation using quality reference data is
required in order to quantitatively estimate those potential errors. The
number of low confidence fire pixels in the SAMA region accounted
for approximately 5% of all nighttime fire pixels detected globally.

Daytime commission errors were typically found over bright land
surfaces in areas of Sun glint. Those pixelswere predominantly associat-
ed with reflective rooftops on large industrial buildings. Commission
error rates were estimated for the nominal confidence daytime fire
pixels by sampling single orbit data subsets distributed over 12 distinct
10° × 10° regions around the globe (Fig. 6). The data sample covered a
wide range of land surface conditions, including areaswith different fire
regimes and subject to different levels of urban development. Areas in
eastern China were particularly prone to produce false alarms showing
a 1.2% commission error rate. Those cases were ambiguous to low con-
fidence daytime pixels and were often observed over large industrial
buildings containing highly reflective rooftops. In those areas the build-
ingmaterials and the landscape configuration,which is characterized by
large industrial parks surrounded by cooler background, were found to
augment the ambiguity between fire-free and fire-affected pixels. The
daytime commission error rate for nominal confidence detections pre-
dominantly associated with urban false alarms was assessed using



Fig. 5.VIIRS 375 m fire algorithmoutput showing the accumulated daytime nominal confidence fire pixels (red; upper left), low confidence daytime pixels (light blue; upper right), night-
time fire pixels (purple; lower left), and SAMA-related low confidence nighttime pixels (dark blue; lower right) during 01–30 August 2013. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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visual analyses of pixel coordinates onGoogle Earth and estimated glob-
ally at 0.03%. Nighttime commission errors outside of the SAMA region
were considered negligible based on visual inspection of VIIRS I-band
channels, supported by higher resolution reference image from Google
Earth. Nighttime detections were largely associated with elliptical-
shaped pixel clusters typical of active fire fronts, spatially coincident
with known heat sources (e.g., active volcanoes, gas flares, iron mills),
or scattered around active biomass burning areas.

Daytime false alarm rates for low confidence pixels were estimated
using the same global sample based on 12 different regions described
Fig. 6.Regional subsets used for the estimation of VIIRS 375 mactivefire algorithmcommission
of detections sampled, and the confirmed false alarm rate.
above. On average 6% of low confidence daytime pixels were linked to
urban environment and bright rooftops extending over a full pixel.
Confirmed false alarms associated with low confidence daytime pixels
peaked over eastern China at a rate of nearly 40%. Visual inspection of
those locations using higher resolution images such as provided by
Google Earth showed no indication of thermal heat sources; we there-
fore attributed the occurrence of those pixels to high solar reflection
resulting in enhanced I4 channel brightness temperatures. Other areas
with large absolute numbers of low confidence daytime pixels such as
southern Africa showed predominant occurrence of those pixels along
errors. Boxes describe the date and time of the data subset used for each region, the number
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the edge of fire pixel clusters of nominal confidence; therefore we asso-
ciated those cases with lower intensity sub-pixel fire activity. Daytime
low confidence fire pixels accounted for approximately 11% of all
daytime detections produced globally.

Nominal saturation on channel I4 impacted approximately 8% of all
daytime fire pixels detected, compared to 0.02% on channel I5. Night-
time saturation rateswere equivalent to 1% on channel I4 and negligible
on channel I5. Folding of the I4 digital value occurred for 0.2% of the fire
pixels detected, whereas no pixel folding was identified on channel I5.
Additionally, suspicious brightness temperature values on channel I4
were found for 0.5% of the daytime and0.04% of the nighttimefire pixels
in associationwith potentialmixing of saturated and unsaturated native
pixel radiances during onboard data aggregation. As described above,
nominal pixel saturation and folding episodes were all accompanied
by SDR flags indicating poor data quality. Meanwhile, the suspicious
brightness temperature values involving potential mixing of saturated
and unsaturated pixels were all accompanied by nominal SDR quality
data flags. Due to the non-negligible rate of pixel saturation on channel
I4 and the potential idiosyncrasies involving the SDR quality flags, we
opted to defer the retrieval of sub-pixel fire characteristics such as
FRP, size and temperature to future studies pending proper investiga-
tion of the complementary use of the dual-gain M13 channel data in
support of those analyses.

4.2.1. Comparison with VIIRS 750 m Active Fires ARP
The VIIRS 375 m active fire detection data were compared to the

operational VIIRS 750 m Active Fires ARP detection data generated by
IDPS in order to assess the overall consistency between products.
VIIRS 375 m and 750 m data are acquired simultaneously, and spatially
Fig. 7. Frequency of VIIRS 375 m fire pixels with (dashed line) and without (solid line) coincide
2013. The horizontal axis indicates the number of VIIRS 375 m fire detections contained within
detected using VIIRS 375 m and 750 m daytime (c) and nighttime (d) data.
co-registered (one 750 m pixel overlaps with four [2 × 2] 375 m
pixels). Day and nighttime results were analyzed separately, as both al-
gorithm and observation conditions differ in each case. Overall, VIIRS
375 m fire algorithm showed a three-fold increase in the absolute num-
ber of daytime fire pixels detected compared to the 750 m Active Fires
ARP product, and a staggering 25-fold increase in the absolute number
of nighttime fire pixels detected compared to the 750 m fire product.
The number of coincident daytime detections produced by both data
sets (i.e., one 750 m Active Fires ARP fire pixel with a minimum of
one and a maximum of four overlapping 375 m nominal confidence
fire pixel; Fig. 7a–b, dashed lines) accounted for 43% and 83% of
the 375 m and 750 m fire pixels, respectively. Further consideration
of 375 m low confidence daytime fire pixels helped increase the rate
of coincident detections to 90% of the 750 m fire pixels. Meanwhile,
the number of coincident nighttime detections accounted for 10% and
98% of the 375 m and 750 m fire pixels produced, respectively. These
statistics reflect a significantly higher rate of fire detection using the
375 m data at night compared to the 750 m product (Fig. 7a–b; solid
lines).

Differences in day and nighttime performance observed for the two
VIIRS fire detection data sets also applied to spatially coincident clusters
of contiguous fire pixels. Fig. 7c–d shows density plots of spatially
coincident fire pixel clusters detected by the 375 m and 750 m fire
algorithms, ranging in size from 1 to 10 contiguous pixels in each
case. Coincident fire pixel clusters in the nighttime data were largely
skewed towards the lower part of the plot area, indicating the occur-
rence ofmultiple contiguous 375 m fire pixels overlappingwith smaller
750 m pixel clusters often containing less than two contiguous pixel
elements.
nt 750 m active fire detection for daytime (a) and nighttime (b) data during 1–30 August
each 750 m pixel footprint. Density plot showing the size of coincident fire pixel clusters



Fig. 8. VIIRS 375 m and 750 m fire detection data acquired at 14:28 h PDT on 06 August 2013 and at 2:50 h PDT on 07 August 2013 over the Power Fire in California. USDA-Forest Service
NIROPS airborne data acquired at 21:36 h PDT on 06 August 2013 shows the mapped fire perimeter as well as the areas showing intense heat.
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The occurrence of lower intensity fires at nightmay help explain the
results above, since those fires could fall below the detection limit of the
750 m product as suggested by the flat response of the 750 m product
to smaller 375 m fire pixel clusters (Fig. 7b). Meanwhile, the occurrence
of large 375 m fire pixel clusters with 1–2 750 m coincident pixels
suggests potential omission errors in the IDPS product. The VIIRS
750 m Active Fires ARP product generated by IDPS is a replica of the
Collection 4 MODIS Fire and Thermal Anomalies algorithm, modified to
accept VIIRS data format. Consequently, tuning of the 750 m fire algo-
rithm processed by IDPS to the VIIRS sensor-specific characteristics
may be required.

The relative performance of the 375 m and 750 m fire detection
algorithms was assessed using reference airborne fire data acquired by
the U.S. Department of Agriculture – Forest Service National Infrared
Operations (NIROPS) over wildfires in the United States in 2012 and
2013. Fig. 8 shows VIIRS 375 m and 750 m active fire detection clusters
detected approximately 7 h before and 5 h after the NIROPSmapping of
the Power Fire in California around 21:36 h PDT on 06 August 2013. The
first VIIRS overpass represents the daytime data acquisition, whereas
the second overpass coincides with the nighttime data approximately
12 h later. VIIRS 375 m detections are color-coded using the middle-
infrared channel I4 brightness temperature data in order to provide a
proxy for fire intensity across the complex at the moment of overpass.
Differences between day and night data may be due to changes in fire
behavior and background conditions as well as a result of the solar
contribution in the middle-infrared channel. The daytime VIIRS fire
Fig. 9. Daily fire spread mapped by 1 km Terra/MODIS (left), 375 m VIIRS (center), and 1 km
(−32.7°lat, −52.55°lon). The data cover the period beginning on 26 March 2013 (Julian day
31 March 2013. The white vector outline represents the burned area mapped using the 30 m L
detectionsderived from the375 mand750 mdata showed good spatial
agreement, and were well aligned with the underlying NIROPS fire pe-
rimeter and intense heat areas. The nighttime VIIRS 375 m data showed
a small noticeable spatial progress of the 375 m fire cluster moving in
the northeast direction, while maintaining good overall spatial agree-
ment with NIROPS. The nighttime 750 m fire cluster was reduced to
the northeastern part of the complex, omitting the cooler southwestern
portion of the fire complex.

4.2.2. Comparison with MODIS
For more than a decade the Fire and Thermal Anomalies product has

been among themost commonly used data set of theMODIS land prod-
uct suite, serving both fire managers and the fire science community.
The new VIIRS 750 m Active Fires EDR data will provide continuity to
that invaluable data set into the next decade, delivering similar fire de-
tection and characterization information to the user community. The
VIIRS 375 m fire detection data complement the 750 m fire product,
and could represent a significant improvement over the current
MODIS 1 km data providing spatially refined fire information. To illus-
trate the potential qualitative gain in performance of the new VIIRS
375 m data compared to current MODIS 1 km product we analyzed a
fire complex in southern Brazil. That fire burned for several days in
March of 2013 and was imaged by VIIRS and MODIS onboard Terra
andAqua (Fig. 9). Thefire data derived from sequential VIIRS 375 m im-
ages showed spatially consistent day and night fire detection clusters,
and was estimated to spread at a rate of 58 m/h. Comparatively, the
Aqua/MODIS (right) data for a wildfire at the Taim Ecological Reserve in southern Brazil
85) and ending at the approximate time of the Landsat-7 data acquired at 13:15UTC on
andsat-7 data.
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MODIS 1 km fire detection data showedmuch less coherent fire spread
information as a result of partial omission of the fire complex, as well as
due to limited coverage provided byMODIS data at that latitude. Conse-
quently, fire spread could not be properly estimated using MODIS data.
Additionally, the VIIRS active fire pixels provide significantly improved
spatial agreement with the available burned area perimeter digitized
using Landsat-7 data acquired on 31 March 2013.

4.2.3. Comparison with Landsat-8
Previous satellite fire remote sensing validation studies used

both coincident and near-coincident Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) and Landsat-5 and 7
data to quantify commission and omission errors for MODIS and
Geostationary Operational Environmental Satellite (GOES) active fire
products (Giglio et al., 2008; Morisette et al., 2005; Schroeder et al.,
2008). In the case of VIIRS and Landsat-8 sensor data, the average 3 h
separation between same-day image acquisition times prevents
Fig. 10. Landsat-8 image subsets acquired on 24 July (upper left) and 09 August (upper right) 20
shown are the VIIRS 375 m fire detection data (yellow vectors) acquired approximately 75 min
detection pixels during the time interval separating the two Landsat-8 acquisition dates, color
perimeter mapped using dNBR applied to Landsat-8 data. (For interpretation of the references
application of the paired data sets for quantitative error analyses, as ar-
tifacts associated with short-term variations in fire behavior can be in-
troduced (Csiszar & Schroeder, 2008). However, Landsat-8 images
may still be used as a reference data set in support of qualitative assess-
ment of the VIIRS 375 m fire detection data allowing for visual interpre-
tation of areas of active biomass burning.

Fig. 10 shows an active fire region in Melville Island/Australia im-
aged by Landsat-8 on 24 July and 09 August 2013. The VIIRS images
for those two dates were acquired approximately 75 min after the
Landsat-8 overpass. Areas showing active fire fronts could be separated
on the Landsat-8 data using a fire detection algorithm based on the
visible and shortwave infrared channels 5 and 7, similar to Schroeder
et al. (2008). Burn scars can also be identified adjacent to the active
fires. Visual analysis of the Landsat images shows the fire-affected area
expanding outward in all directions, and particularly to the east and
west of the large fire fronts detected on 24 July 2013. Overall, the instan-
taneous VIIRS 375 m fire detection data captured most of the near-
13 over theMelville Island inAustralia. Activefire fronts on Landsat-8 aremarked red. Also
after the Landsat-8 images. The lower left panel shows the accumulated VIIRS 375 m fire

-coded to indicate the calendar day of detection. The black vector shows the burned area
to color in this figure legend, the reader is referred to the web version of this article.)
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coincident Landsat-8 active fire perimeter. Small differences could be
identified and we assumed that thosewere caused by short-term varia-
tions in fire behavior, and due to differences in detection performance
between the two data sets. The VIIRS fire detections accumulated over
the period separating the acquisition dates of the two Landsat-8 scenes
showed good spatial overlap with the 30 m resolution burned area
mapped using differenced Normalized Burned Ratio (dNBR), providing
further temporal informationon thefire growthduring that 16-dayperiod.

5. Conclusions

In this paper we introduced the use of the new 375 m VIIRS sensor
data in support of active fire detection using a contextual algorithm
built on the heritage MODIS Fire and Thermal Anomalies product. Differ-
ences in VIIRS I-band spatial and spectral resolution were all addressed
with the new algorithm. The new data set provides significantly refined
spatial fire information, improving upon the current line of coarser
spatial resolution satellite active fire detection products. The lower
367 K pixel saturation temperature in the middle-infrared I4 channel,
combinedwith the pixel's smaller ground footprint, resulted in frequent
saturation of fire-affected pixels. While the impact on active fire detec-
tion performance could beminimized, this condition created additional
challenges to the retrieval of sub-pixel fire characterization parameters
such as FRP, size and temperature. Alternatively, use of the 750 m dual-
gain M13 channel data, which saturates at 634 K, could help comple-
ment the 375 m fire detection data providing unsaturated input data
for the retrieval of sub-pixel fire characteristics; this is the subject of on-
going investigation.

The VIIRS improved spatial sampling, which eliminates coverage
gaps over lower latitudes and minimizes pixel size increase with scan
angle, provided consistent daily fire mapping performance of fires last-
ing several days. Our initial data quality assessment indicated high level
of agreement between VIIRS 375 m fire detection data and near-
coincident higher resolution airborne and Landsat-8 reference data
sets. The classification of pixels into two main classes, namely nominal
and low confidence groups, helped separate confirmed fire-affected
pixels from ambiguous pixels more likely associated with false alarms
and marginal burning.

The availability of spatially-refined active fire perimeter derived
from 12 h VIIRS 375 m data provides new opportunities for using satel-
litefire information in support offire tacticalmapping andmodeling ap-
plications. New applications building on these data have successfully
demonstrated the assimilation of fire perimeter information derived
from VIIRS 375 m fire data into higher resolution fire behavior models
(Coen & Schroeder, 2013). Similar new applications are likely to follow.

Future development of the VIIRS 375 m algorithm described here
shall explore the complementary use of the 750 mdata, leading to a po-
tential hybrid algorithm based on both sets of data. The current 375 m
fire algorithm is intended for implementation as part of the Internation-
al Polar Orbiter Processing Package (IPOPP) in order to serve the
broader international community. Presently, routine data covering the
Conterminous United States can be accessed at the following URL:
http://viirsfire.geog.umd.edu/data.html.
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