Description
The Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Surface Kinetic Temperature (AST_08) is generated using the five Thermal Infrared (TIR) bands (acquired either during the day or night time) between 8 and 12 µm spectral range. It contains surface temperatures at 90 m spatial resolution for the land areas only. Surface kinetic temperature provides a vital input to studies of volcanism, thermal inertia, surface energy, and high-resolution mapping of fires. This product is derived using the same algorithm as the ASTER Surface Emissivity AST_05 Product.
Surface kinetic temperature is determined by applying Planck's Law using the emissivity values from the Temperature/Emissivity Separation (TES) algorithm, which uses atmospherically corrected ASTER surface radiance (TIR) data. The TES algorithm first estimates emissivity in the TIR channels using the Normalized Emissivity Method (NEM). These estimates are used along with Kirchoff's Law to account for the land-leaving TIR radiance that is due to sky irradiance. That figure is subtracted from TIR radiance iteratively to estimate the emitted radiance from which temperature is calculated using the NEM module.
The ASTER L2 Surface Kinetic Temperature data product is only available through NASA's Earthdata Search. The ASTER Order Instructions provide step-by-step directions for ordering this product.
Known Issues
- Data acquisition gaps: On November 28, 2024, one of Terra's power-transmitting shunt units failed. As a result, there was insufficient power to maintain functionality of the ASTER instrument. ASTER resumed acquisitions for the VNIR bands on January 18, 2025, and for the TIR bands on April 15, 2025. Users should note the data gap in ASTER acquisitions from November 28, 2024, through January 16, 2025, for VNIR observations, and a gap from November 28, 2024, through April 15, 2025, for TIR acquisitions.
Improvements/Changes from Previous Version
- The Science Scalable Scripts-based Science Processor for Missions (S4PM) Version 3.4 algorithm, which is used to generate L2 Product Generation Executables (PGEs), is relying on a new ancillary input for atmospheric parameters. Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) is global atmospheric reanalysis that combines remote sensing observations and interactions with the climate system. It will be one of the primary ozone and water vapor, pressure, and temperature inputs for L2 PGEs. MERRA-2 will provide a finer geographic resolution grid since it is a 3-dimensional, 3-hourly data collection with 50-km (latitudinal direction) spatial resolution.
- The fallback options for L2 PGEs are as follows:
- Ozone: [TOVS Ozone (OZ_DLY ) > AURA Ozone Monitoring Instrument (AURAOMI) > Total Ozone Analysis from Stratospheric and Tropospheric (TOAST) > Earth Probe-Total Ozone Mapping Spectrometer (EPTOMS)] or [MERRA-2] > National Centers for Environmental Prediction (NCEP)/Global Data Assimilation System (GDAS) > Climatology
- Water Vapor, Pressure, and Temperature: [MOD07_L2] or [MERRA-2] > NCEP/GDAS > Climatology
- Caveat: The temporal range for MERRA-2 covers 1980 to present; however, there is latency of ~3 weeks after the end of a month. Hence, NCEP/GDAS > Climatology fallback sequence will be applied for on-demand requests that fall outside of MERRA-2's temporal range or if the data is not science grade.
- Starting June 23, 2021, radiometric calibration coefficient Version 5 (RCC V5) will be applied to newly observed ASTER data and archived ASTER data products. Details regarding RCC V5 are described in the following journal article.
- Tsuchida, S., Yamamoto, H., Kouyama, T., Obata, K., Sakuma, F., Tachikawa, T., Kamei, A., Arai, K., Czapla-Myers, J.S., Biggar, S.F., and Thome, K.J., 2020, Radiometric Degradation Curves for the ASTER VNIR Processing Using Vicarious and Lunar Calibrations: Remote Sensing, v. 12, no. 3, at https://doi.org/10.3390/rs12030427.
- As of December 15, 2021, the LP DAAC has implemented changes to ASTER PGE Version 3.4, which will affect all ASTER Level 2 on-demand products. Changes include:
- Aura Ozone Monitoring Instrument (OMI) has been added as one of the ancillary ozone inputs for any observations made after May 27, 2020. The sequence of fallbacks for ozone will remain the same.
- Toolkit has been updated from Version 5.2.17 to 5.2.20. Users may notice minor differences between the two versions. Differences may include minuscule changes in digital numbers around the peripheral of the granule and boundaries of a cloud for Surface Reflectance and Surface Radiance (AST07 and AST09) QA Data Plane depending on the Operating System and libraries being used by the user to process the data.
- Additionally, Climatology, which is one of the inputs for Ozone and Moisture, Temperature and Pressures (MTP) will be removed from the Earthdata Order Form. It has been observed that PGEs generated with Climatology as an input yield noticeable differences statistically during image and spectral analysis. Climatology will continue to be used as the final default if neither of the first two selectable options are available for Ozone and MTP. Users can check the OPERATIONALQUALITYFLAGEXPLANATION field in the metadata or the output file for atmospheric parameters that were applied.
Product Summary
Citation
Citation is critically important for dataset documentation and discovery. This dataset is openly shared, without restriction, in accordance with the EOSDIS Data Use and Citation Guidance.
Copy Citation
Data Center Citation
Documents
ALGORITHM THEORETICAL BASIS DOCUMENT (ATBD) | The ATBD provides physical theory and mathematical procedures for the calculations used to produce the data products. | |
DATA PRODUCT SPECIFICATION | The ASTER Level-1 Products Specification provides a description of the data file. | |
HOW-TO | ASTER Order Instructions | |
USER'S GUIDE | ASTER Level-1 User Guide | |
USER'S GUIDE | ASTER Higher-Level Product User Guide |