Remote sensing data can be used to identify the vulnerability, exposure, and flooding risk of communities as well as help mitigate the social and economic impacts. NASA Earth observations can help scientists, application-based users, and decision makers understand factors contributing to flood events, respond to events in near real-time, and map flood inundation and its impacts post-event. This toolkit is designed to support this research by providing easy access to data and other resources.
Discover and Visualize Data
Rainfall
Any place where rain falls is susceptible to flooding. Measuring rainfall helps advance our understanding of Earth's water cycle, improving forecasts of extreme events such as flooding.
- Discover Rain Data in Earthdata Search
- Rain Data at NASA's Goddard Earth Sciences Data and Information Services Center (GES DISC)
- Rain Data at NASA's Global Hydrometeorology Resource Center Distributed Active Archive Center (GHRC DAAC)
- Interactively explore Rain Data in NASA Worldview
Webinars
- Data Access and Visualization of Model Data at NASA GES DISC
- NetCD-what? An Ecologist’s Guide to Working with Daymet and other NetCDF-formatted Data
- Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) Precipitation Products and Services at NASA GES DISC
Data Tutorials/Recipes
- Daymet Single Pixel Data Extraction: Web Services
- How to Import MERRA Surface Product Data into ArcGIS
- How to Obtain Data for Conducting Hurricane Case Study
Snow Cover and Snow Water Equivalent
Both seasonal and long-term changes to snow cover can impact the amount of water flowing through watersheds, resulting in a water deficit or a water abundance. The amount of snow pack and timing of snow melt affects flood risk.
Snow Cover
- Citizen Science on Snow
- Discover Snow Data in Earthdata Search
- Snow Data at NSIDC DAAC
- Interactively explore Snow Data in NASA Worldview
Snow Water Equivalent (SWE)
- Discover SWE Data in Earthdata Search
- SWE at NSIDC DAAC
- Interactively explore SWE Data in NASA Worldview
Webinars
- Let It Snow! Accessing and Analyzing Snow Data at NSIDC DAAC
- Discovering and Differentiating Data with NSIDC Search
Soil Moisture
Understanding soil moisture aids in improving weather forecasts and predicting floods. Soil moisture controls the amount of water that can infiltrate the ground, replenish our aquifers, or contribute to excess runoff.
- Discover Soil Moisture Data in Earthdata Search
- Soil Moisture Data at NASA's GES DISC
- Soil Moisture Data at NASA's National Snow and Ice Data Center DAAC (NSIDC DAAC)
- Soils Data at NASA's Oak Ridge National Laboratory DAAC (ORNL DAAC)
- Interactively explore Soil Moisture Data in NASA Worldview
Webinars
Data Tutorials/Recipes
- Download and Visualize SMAP Data using Python
- Learn how to Search, Order, and Customize SMAP Data using Earthdata Search
Topography
Knowing local topography is essential for disaster managers and emergency management professionals seeking to assess an area's risk level; knowing the height at which communities sit in relation to flood waters determines the exposure.
- Discover Topography Data in Earthdata Search
- Interactively explore Topography in NASA Worldview
- Land Surface Topography/Elevation Data at NASA's Land Processes DAAC (LP DAAC)
Data Recipes/Tutorials
- Looking to Fill the Voids? NASADEM is Here!
- Working with Land Remote Sensing Data in a GIS Environment
Flood Inundation with Land Surface Reflectance
Understanding and mapping flood inundation is critical to assessing the scope of the disaster, where the damage is greatest, and where to respond with relief efforts.
- Discover Land Surface Reflectance Data in Earthdata Search
- Interactively explore Land Surface Reflectance in NASA Worldview
- Interactively explore MODIS Corrected Reflectance Bands 7-2-1 in NASA Worldview
- Interactively explore VIIRS Corrected Reflectance Bands 11-I2-I1 in NASA Worldview
- Surface Reflectance Data at NASA's LP DAAC
Webinars
- NASA ORNL DAAC MODIS and VIIRS Data Tools and Services at your Fingertips
- Navigating NASA's LP DAAC to Find Answers to your Deepest Land Data Questions
- R you Ready to Python? An Introduction to Working with Land Remote Sensing Data in R and Python
- Exploring Earth’s Land Surface with Suomi NPP NASA VIIRS Land Data
Data Tutorials/Recipes
- Getting Started with VIIRS Surface Reflectance Data: All about Accessing the Data
- Getting Started with VIIRS Surface Reflectance Data: Using the Data
- Getting Started with NASA MODIS Version 6 Surface Reflectance Data: Accessing the Data
- Getting Started with NASA MODIS Version 6 Surface Reflectance Data: Using the Data
- Getting Started with NASA MODIS Version 6 Surface Reflectance Data: Interpreting Quality Information
Flood Inundation with Synthetic Aperture Radar (SAR)
Understanding and mapping flood inundation is critical to assessing the scope of the disaster, where the damage is greatest, and where to respond with relief efforts. The wavelengths used for creating SAR imagery can penetrate clouds, smoke, soil, ice, and tree canopies, meaning that high-relief SAR imagery can be created day or night, rain or shine. SAR imagery can be used to assess post-storm flood and storm-surge damage along with shoreline changes.
Webinars
Data Tutorials/Recipes