"Current measurements are still far from providing a global view of nitrogen oxide distributions. Some of the most obvious gaps are over Europe, Asia, Australia and the polar regions."
"Another reason to put together these climatologies is for comparison with predictions from global models, as a way of validating the models," Emmons says. She found generally good, if rough, agreement of various global climate models with observed concentrations of total reactive nitrogen species. Many points of disagreement between various computer model predictions were over areas in which there were data gaps, she says, making interpretation difficult.
None of the models, she said, were either always lower or always higher than other models in their predictions. Because all of the models are so different, much more detailed study is required to understand them.
Emmons said, "The models also have different emission scenarios. That can also cause differences between the model and the observation. For a general study like this, it is hard to generalize about what would cause the differences."
The real value of her work, she said, is in providing a baseline of broadly based data to measure changes over time. Emmons said, "I'm not sure I've found anything new, because these are data sets that have all been previously studied and published. I've provided a way to look at all of the data at once, which gives a picture of seasonal variations and variations across the globe.
"There isn't really enough data to say if things have been changing over time. The data are so sparse, it is hard to compare for trends. My work might be a baseline for trend comparison."
References
Emmons, L. K., M. A. Carroll, D. A. Hauglustaine, G. P. Brasseur, C. Atherton, J. Penner, S. Sillman, H. Levy II, F. Rohrer, W. M. F. Wauben, P. F. J. Van Velthoven, Y. Wang, D. Jacob, P. Bakwin, R. Dickerson, B. Doddridge, C. Gerbig, R. Honrath, G. Hubler, D. Jaffe, Y. Kondo, J. W. Munger, A. Torres, and A. Volz-Thomas. 1997. Climatologies of NOx and NOy: A comparison of data and models. Atmospheric Environment 31: 1851-1904.
For more information
NASA Atmospheric Science Data Center (ASDC)
About the remote sensing data used |
Sensor |
Global Tropospheric Experiment (GTE) |
Parameter |
Ozone (O3) |
DAAC |
NASA Atmospheric Science Data Center (ASDC) |